1
|
Kilpatrick LA, An HM, Pawar S, Sood R, Gupta A. Neuroimaging Investigations of Obesity: a Review of the Treatment of Sex from 2010. Curr Obes Rep 2023; 12:163-174. [PMID: 36933153 PMCID: PMC10250271 DOI: 10.1007/s13679-023-00498-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE OF REVIEW To summarize the results of adult obesity neuroimaging studies (structural, resting-state, task-based, diffusion tensor imaging) published from 2010, with a focus on the treatment of sex as an important biological variable in the analysis, and identify gaps in sex difference research. RECENT FINDINGS Neuroimaging studies have shown obesity-related changes in brain structure, function, and connectivity. However, relevant factors such as sex are often not considered. We conducted a systematic review and keyword co-occurrence analysis. Literature searches identified 6281 articles, of which 199 met inclusion criteria. Among these, only 26 (13%) considered sex as an important variable in the analysis, directly comparing the sexes (n = 10; 5%) or providing single-sex/disaggregated data (n = 16, 8%); the remaining studies controlled for sex (n = 120, 60%) or did not consider sex in the analysis (n = 53, 27%). Synthesizing sex-based results, obesity-related parameters (e.g., body mass index, waist circumference, obese status) may be generally associated with more robust morphological alterations in men and more robust structural connectivity alterations in women. Additionally, women with obesity generally expressed increased reactivity in affect-related regions, while men with obesity generally expressed increased reactivity in motor-related regions; this was especially true under a fed state. The keyword co-occurrence analysis indicated that sex difference research was especially lacking in intervention studies. Thus, although sex differences in the brain associated with obesity are known to exist, a large proportion of the literature informing the research and treatment strategies of today has not specifically examined sex effects, which is needed to optimize treatment.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Hyeon Min An
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Shrey Pawar
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Riya Sood
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA.
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Geary N, Asarian L, Graf G, Gobbi S, Tobler PN, Rehfeld JF, Leeners B. Increased Meal Size but Reduced Meal-Stimulated Plasma Cholecystokinin Concentrations in Women With Obesity. Endocrinology 2022; 164:6845692. [PMID: 36423205 DOI: 10.1210/endocr/bqac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/26/2022]
Abstract
To better understand the physiological basis of obesity in women, we investigated whether obesity or menstrual cycle phase affects laboratory test-meal size or meal-stimulated plasma cholecystokinin (CCK) concentration. Women with healthy weight (body mass index [BMI] of 18.5-24.9 kg/m2, N = 16) or obesity (BMI 30-39.9 kg/m2, N = 20) were tested once in the late-follicular or peri-ovulatory phase (LF/PO) and once in the mid-luteal phase (ML). Meals of ham sandwiches were offered and blood was sampled. Menstrual cycle phases were verified with participants' reports of menses and measurements of progesterone and luteinizing hormone (LH) concentrations. Women with obesity ate significantly larger meals than women with healthy weight, (mean, 711 [95% CI, 402-1013] kJ, P = 0.001, during the LF/PO and 426 [105-734] kJ, P = 0.027, larger during the ML). Women with healthy weight ate smaller meals during LF/PO than ML (decrease, 510 [192-821 kJ], P = 0.008), but women with obesity did not (decrease, 226 [-87-542] kJ, P = 0.15). CCK concentrations 18 to 30 minutes after meal onset were lower in women with obesity than in women with healthy weight during LF/PO (3.6 [3.1-4.1] vs 6.1 [4.5-7.7] pmol/L; P = 0.004), but not during ML, with a significant interaction effect (1.8 [1.2-2.4] pmol/L, P = 0.048). Women with obesity consumed larger meals than women with healthy weight but displayed reduced meal-stimulated plasma CCK concentrations. These data are consistent with the hypothesis that a defect in CCK secretion compromises satiation in obese women and contributes to the development or maintenance of obesity.
Collapse
Affiliation(s)
- Nori Geary
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, USA†
| | - Lori Asarian
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Gwendolyn Graf
- Department of Reproductive Endocrinology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Susanna Gobbi
- Zurich Center for Neuroeconomics, University of Zurich, 8006 Zurich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, University of Zurich, 8006 Zurich, Switzerland
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Dan O, Wertheimer EK, Levy I. A Neuroeconomics Approach to Obesity. Biol Psychiatry 2022; 91:860-868. [PMID: 34861975 PMCID: PMC8960474 DOI: 10.1016/j.biopsych.2021.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Obesity is a heterogeneous condition that is affected by physiological, behavioral, and environmental factors. Value-based decision making is a useful framework for integrating these factors at the individual level. The disciplines of behavioral economics and reinforcement learning provide tools for identifying specific cognitive and motivational processes that may contribute to the development and maintenance of obesity. Neuroeconomics complements these disciplines by studying the neural mechanisms underlying these processes. We surveyed recent literature on individual decision characteristics that are most frequently implicated in obesity: discounting the value of future outcomes, attitudes toward uncertainty, and learning from rewards and punishments. Our survey highlighted both consistent and inconsistent behavioral findings. These findings underscore the need to examine multiple processes within individuals to identify unique behavioral profiles associated with obesity. Such individual characterization will inform future studies on the neurobiology of obesity as well as the design of effective interventions that are individually tailored.
Collapse
Affiliation(s)
- Ohad Dan
- Department of Comparative Medicine, Yale University, New Haven, Connecticut
| | - Emily K Wertheimer
- Department of Comparative Medicine, Yale University, New Haven, Connecticut
| | - Ifat Levy
- Department of Comparative Medicine, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
4
|
Heuberger LS, Gobbi S, Weber SC, Graf G, Tobler PN, Asarian L, Geary N, Roth M, Leeners B. Is It Worth It? Obesity Affects Snack Food Valuation Across the Menstrual Cycle. Front Neurosci 2022; 16:800976. [PMID: 35250448 PMCID: PMC8889102 DOI: 10.3389/fnins.2022.800976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background The importance of menstrual cycle physiology in appetite and obesity is poorly understood. We investigated the effects of body mass index (BMI), menstrual cycle phase and sweet and salty taste on monetary valuation of snack foods. Methods We recruited 72 women and after the application of in- and exclusion criteria 31 participants with healthy weight and 25 with obesity remained. The participants completed a willingness to pay (WTP) task to measure subjective value of 30 snack food items in the pre-ovulatory and mid-luteal cycle phases. Results Generalized linear mixed model (GLMM) analysis revealed that BMI, cycle phase and snack taste interacted to influence WTP (−0.15 [−0.22, −0.03], p = 0.002). Hence, WTP was inversely related to BMI, but the strength of the relation depended on cycle phase and taste. The WTP of participants with healthy weight for salty taste changed across cycle phase but the WTP for sweet taste was not affected by cycle phase. Moreover, the cycle effect for the salty snacks ceased in participants with obesity. Conclusion The inverse effect of BMI on WTP valuation of snack foods contrasts with the positive effect of BMI on pleasantness ratings for milkshakes by the same women that we previously reported. This indicates that the two measures reflect different aspects of food-related valuative processing in obesity. Furthermore, the WTP data suggest that the selection of salty snacks may differ from that of sweet snacks in the pre-ovulatory phase of the menstrual cycle for individuals of healthy weight. The cycle phase does not seem to affect food valuation of participants with obesity. These findings are relevant to understanding and treating obesity in women.
Collapse
Affiliation(s)
| | - Susanna Gobbi
- Zurich Center for Neuroeconomics, University of Zurich, Zurich, Switzerland
| | - Susanna C. Weber
- Zurich Center for Neuroeconomics, University of Zurich, Zurich, Switzerland
| | - Gwendolyn Graf
- Department of Reproductive Endocrinology, University Hospital of Zurich, Zurich, Switzerland
| | - Philippe N. Tobler
- Swiss Federal Institute of Technology, Zurich, Switzerland
- Zurich Center for Neuroeconomics, University of Zurich, Zurich, Switzerland
| | - Lori Asarian
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | | | - Mareike Roth
- Department of Reproductive Endocrinology, University Hospital of Zurich, Zurich, Switzerland
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital of Zurich, Zurich, Switzerland
- Department of Reproductive Endocrinology, University of Zurich, Zurich, Switzerland
- *Correspondence: Brigitte Leeners,
| |
Collapse
|
5
|
Portella AK, Papantoni A, Joseph AT, Chen L, Lee RS, Silveira PP, Dube L, Carnell S. Genetically-predicted prefrontal DRD4 gene expression modulates differentiated brain responses to food cues in adolescent girls and boys. Sci Rep 2021; 11:24094. [PMID: 34916545 PMCID: PMC8677785 DOI: 10.1038/s41598-021-02797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
The dopamine receptor 4 (DRD4) in the prefrontal cortex (PFC) acts to modulate behaviours including cognitive control and motivation, and has been implicated in behavioral inhibition and responsivity to food cues. Adolescence is a sensitive period for the development of habitual eating behaviors and obesity risk, with potential mediation by development of the PFC. We previously found that genetic variations influencing DRD4 function or expression were associated with measures of laboratory and real-world eating behavior in girls and boys. Here we investigated brain responses to high energy–density (ED) and low-ED food cues using an fMRI task conducted in the satiated state. We used the gene-based association method PrediXcan to estimate tissue-specific DRD4 gene expression in prefrontal brain areas from individual genotypes. Among girls, those with lower vs. higher predicted prefrontal DRD4 expression showed lesser activation to high-ED and low-ED vs. non-food cues in a distributed network of regions implicated in attention and sensorimotor processing including middle frontal gyrus, and lesser activation to low-ED vs non-food cues in key regions implicated in valuation including orbitofrontal cortex and ventromedial PFC. In contrast, males with lower vs. higher predicted prefrontal DRD4 expression showed minimal differences in food cue response, namely relatively greater activation to high-ED and low-ED vs. non-food cues in the inferior parietal lobule. Our data suggest sex-specific effects of prefrontal DRD4 on brain food responsiveness in adolescence, with modulation of distributed regions relevant to cognitive control and motivation observable in female adolescents.
Collapse
Affiliation(s)
- Andre K Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada.,Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brazil
| | - Afroditi Papantoni
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antoneta T Joseph
- McGill Centre for the Convergence of Health and Economics (MCCHE), McGill University, Montreal, Canada
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Division of Psychiatric Neuroimaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Koenis MMG, Papasavas PK, Janssen RJ, Tishler DS, Pearlson GD. Brain responses to anticipatory cues and milkshake taste in obesity, and their relationship to bariatric surgery outcome. Neuroimage 2021; 245:118623. [PMID: 34627978 PMCID: PMC10947342 DOI: 10.1016/j.neuroimage.2021.118623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
There is substantial variability in percent total weight loss (%TWL) following bariatric surgery. Functional brain imaging may explain more variance in post-surgical weight loss than psychological or metabolic information. Here we examined the neuronal responses during anticipatory cues and receipt of drops of milkshake in 52 pre-bariatric surgery men and women with severe obesity (OW, BMI = 35-60 kg/m2) (23 sleeve gastrectomy (SG), 24 Roux-en-Y gastric bypass (RYGB), 3 laparoscopic adjustable gastric banding (LAGB), 2 did not undergo surgery) and 21 healthy-weight (HW) controls (BMI = 19-27 kg/m2). One-year post-surgery weight loss ranged from 3.1 to 44.0 TWL%. Compared to HW, OW had a stronger response to milkshake cues (compared to water) in frontal and motor, somatosensory, occipital, and cerebellar regions. Responses to milkshake taste receipt (compared to water) differed from HW in frontal, motor, and supramarginal regions where OW showed more similar response to water. One year post-surgery, responses to high-fat milkshake cues normalized in frontal, motor, and somatosensory regions. This change in brain response was related to scores on a composite health index. We found no correlation between baseline response to milkshake cues or tastes and%TWL at 1-yr post-surgery. In RYGB participants only, a stronger response to low-fat milkshake and water cues (compared to high-fat) in supramarginal and cuneal regions respectively was associated with more weight loss. A stronger cerebellar response to high-fat vs low-fat milkshake receipt was also associated with more weight loss. We confirm differential responses to anticipatory milkshake cues in participants with severe obesity and HW in the largest adult cohort to date. Our brain wide results emphasizes the need to look beyond reward and cognitive control regions. Despite the lack of a correlation with post-surgical weight loss in the entire surgical group, participants who underwent RYGB showed predictive power in several regions and contrasts. Our findings may help in understanding the neuronal mechanisms associated with obesity.
Collapse
Affiliation(s)
- Marinka M G Koenis
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06102, United States.
| | - Pavlos K Papasavas
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, United States
| | - Ronald J Janssen
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06102, United States
| | - Darren S Tishler
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, United States
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06102, United States; Department of Psychiatry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| |
Collapse
|
7
|
Healthy decisions in the cued-attribute food choice paradigm have high test-retest reliability. Sci Rep 2021; 11:12844. [PMID: 34145325 PMCID: PMC8213742 DOI: 10.1038/s41598-021-91933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022] Open
Abstract
Food choice paradigms are commonly used to study decision mechanisms, individual differences, and intervention efficacy. Here, we measured behavior from twenty-three healthy young adults who completed five repetitions of a cued-attribute food choice paradigm over two weeks. This task includes cues prompting participants to explicitly consider the healthiness of the food items before making a selection, or to choose naturally based on whatever freely comes to mind. We found that the average patterns of food choices following both cue types and ratings about the palatability (i.e. taste) and healthiness of the food items were similar across all five repetitions. At the individual level, the test-retest reliability for choices in both conditions and healthiness ratings was excellent. However, test-retest reliability for taste ratings was only fair, suggesting that estimates about palatability may vary more from day to day for the same individual.
Collapse
|
8
|
Peng-Li D, Mathiesen SL, Chan RCK, Byrne DV, Wang QJ. Sounds Healthy: Modelling sound-evoked consumer food choice through visual attention. Appetite 2021; 164:105264. [PMID: 33865905 DOI: 10.1016/j.appet.2021.105264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Food choice is a multifaceted construct that is not solely guided by our internal incentives. In fact, sensory scientist, consumer psychologists, and marketers have demonstrated that external ambient cues, including background music, can influence myriads of subconscious consumer behaviors, effectively leading to increased sales of food and beverages. However, the vast majority of literature in on this topic has thus far been confined to monocultural field studies in which the underlying mechanisms of food choice are unexplored. We therefore studied the explicit and implicit effects of custom-composed soundtracks on food choices and eye-movements in consumers from both 'East' and 'West'. Firstly, based on the results from a pre-study (N = 396), we composed a 'healthy' and 'unhealthy' soundtrack. Subsequently, we recruited 215 participants from China (n = 114) and Denmark (n = 101) respectively for in an in-laboratory eye-tracking food choice paradigm. For each culture, half of the participants listened to the 'healthy' soundtrack and the other half to the 'unhealthy' soundtrack during the experiment. Chi-square tests of independence revealed that across cultures, the healthy (vs. unhealthy) soundtrack led to more healthy food choices. Similarly, the generalized linear mixed models showed that the healthy soundtrack induced more and longer fixations on healthy (vs. unhealthy) food. Finally, a multiple mediation analysis signified a partial mediation effect of sound on food choice through the mediators of fixation duration, fixation count, and revisit count. Our results indicate that, with strategically chosen soundscapes, it is possible to influence consumers' decision-making processes and guide their attention towards healthier foods, providing valuable knowledge for local as well as global food business.
Collapse
Affiliation(s)
- Danni Peng-Li
- Food Quality Perception & Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | - Signe L Mathiesen
- Food Quality Perception & Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Derek V Byrne
- Food Quality Perception & Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Qian Janice Wang
- Food Quality Perception & Society Team, iSENSE Lab, Department of Food Science, Aarhus University, Aarhus, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|