1
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Chen X, Zhang J, Shen LS, Chen YP, Yang JQ, Tang WJ, Guo RM. Bibliometric analysis of myelin imaging studies of patients with multiple sclerosis (2000-2022). Quant Imaging Med Surg 2024; 14:837-851. [PMID: 38223029 PMCID: PMC10784065 DOI: 10.21037/qims-23-1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Background Multiple sclerosis (MS) is a condition that can impact the central nervous system (CNS) and cause damage to the myelin, which is responsible for facilitating the normal transmission of electrical impulses along the nerves. We performed a bibliometric analysis of the scientific publications on myelin imaging in MS to reveal the development trends in this field and to evaluate research trends in myelin imaging in MS. Methods The Web of Science Core Collection was searched for articles related to myelin imaging in MS published between January 2000 and December 2022. CiteSpace, VOSviewer, and R language were used to evaluate and visualize contributions by and co-occurrence relationships among countries and institutions, authors, journals, citations, keywords, and so on. Results A total of 1,639 articles addressed the topic of myelin imaging in MS. The United States had the largest number of annual publications. The University of London was the institution with the highest number of publications (n=118) and citations (n=9,885). The top 3 productive authors were all from the University of British Columbia in Canada. An article published by Mackay et al. in 1994 had the most citations (n=272). Neuroimage [impact factor (IF) =7.40, Journal Citation Reports quartile 1 (Q1)] was the most productive journal in terms of the number of articles relating to myelin imaging in MS (n=149). In recent years, myelin water imaging, synthetic magnetic resonance imaging (SyMRI), inhomogeneous magnetization, positron emission tomography (PET) imaging, and aquaporin-4 (AQP4) have been researched hotspots of myelin imaging in MS. Conclusions With advancements in the pathophysiological research on myelin changes in MS, myelin imaging is playing an important role in the diagnosis and treatment of MS. In addition, the use of new sequences of myelin imaging to distinguish MS from other inflammatory demyelinating diseases is a future development trend in this field.
Collapse
Affiliation(s)
| | | | - Li-Shan Shen
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao-Ping Chen
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin-Quan Yang
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | |
Collapse
|
3
|
Jankowska A, Chwojnicki K, Grzywińska M, Trzonkowski P, Szurowska E. Choroid Plexus Volume Change-A Candidate for a New Radiological Marker of MS Progression. Diagnostics (Basel) 2023; 13:2668. [PMID: 37627928 PMCID: PMC10453931 DOI: 10.3390/diagnostics13162668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an auto-immune, chronic, neuroinflammatory, demyelinating disease that affects mainly young patients. This progressive inflammatory process causes the chronic loss of brain tissue and results in a deterioration in quality of life. To monitor neuroinflammatory process activity and predict the further development of disease, it is necessary to find a suitable biomarker that could easily be used. In this research, we verify the usability of choroid plexus (CP) volume, a new MS biomarker, in the monitoring of the progression of multiple sclerosis disease. (2) Methods: A single-center, prospective study with three groups of patients was conducted based on the following groups: MS patients who received experimental cellular therapy (Treg), treatment-naïve MS patients and healthy controls. (3) Results: This study concludes that there is a correlation between the CPV/TIV (choroid plexus/total intracranial volume) ratio and the progress of multiple sclerosis disease-patients with MS (MS + Treg) had larger volumes of choroid plexuses. CPV/TIV ratios in MS groups were constantly and significantly growing. In the Treg group, patients with relapses had larger plexuses in comparison to the group with no relapses of MS. A similar correlation was observed for the GD+ group (patients with postcontrast enhancing plaques) compared against the non-GD group (patients without postcontrast enhancing plaques). (4) Conclusion: Choroid plexus volume, due to its immunological function, correlates with the inflammatory process in the central nervous system. We consider it to become a valuable radiological biomarker of MS activity.
Collapse
Affiliation(s)
- Anna Jankowska
- 2nd Department of Radiology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Kamil Chwojnicki
- Department of Anesthesiology and Intensive Care, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Małgorzata Grzywińska
- Neuroinformatics and Artificial Intelligence Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| |
Collapse
|
4
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
5
|
Prajjwal P, Marsool MDM, Asharaf S, Inban P, Gadam S, Yadav R, Vora N, Nandwana V, Marsool ADM, Amir O. Comparison of recent updates in genetics, immunology, biomarkers, and neuroimaging of primary-progressive and relapsing-remitting multiple sclerosis and the role of ocrelizumab in the management of their refractory cases. Health Sci Rep 2023; 6:e1422. [PMID: 37448727 PMCID: PMC10337274 DOI: 10.1002/hsr2.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Background Primary-progressive multiple sclerosis (PPMS) and relapsing-remitting multiple sclerosis (RRMS) are two frequent multiple sclerosis (MS) subtypes that involve 10%-15% of patients. PPMS progresses slowly and is diagnosed later in life. Both subtypes are influenced by genetic and environmental factors such as smoking, obesity, and vitamin D insufficiency. Although there is no cure, ocrelizumab can reduce symptoms and delay disease development. RRMS is an autoimmune disease that causes inflammation, demyelination, and disability. Early detection, therapy, and lifestyle changes are critical. This study delves into genetics, immunology, biomarkers, neuroimaging, and the usefulness of ocrelizumab in the treatment of refractory patients of PPMS. Method In search of published literature providing up-to-date information on PPMS and RRMS, this review conducted numerous searches in databases such as PubMed, Google Scholar, MEDLINE, and Scopus. We looked into genetics, immunology, biomarkers, current breakthroughs in neuroimaging, and the role of ocrelizumab in refractory cases. Results Our comprehensive analysis found considerable advances in genetics, immunology, biomarkers, neuroimaging, and the efficacy of ocrelizumab in the treatment of refractory patients. Conclusion Early detection, timely intervention, and the adoption of lifestyle modifications play pivotal roles in enhancing treatment outcomes. Notably, ocrelizumab has demonstrated potential in symptom control and mitigating the rate of disease advancement, further underscoring its clinical significance in the management of MS.
Collapse
Affiliation(s)
- Priyadarshi Prajjwal
- Department of NeurologyBharati Vidyapeeth University Medical College PunePuneIndia
| | | | | | | | | | - Rukesh Yadav
- Internal Medicine, Maharajgunj Medical CampusTribhuvan UniversityKathmanduNepal
| | - Neel Vora
- Internal Medicine, B.J. Medical CollegeAhmedabadIndia
| | - Varsha Nandwana
- Department of NeurologyVirginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| | | | - Omniat Amir
- Internal Medicine, Al Manhal AcademyKhartoumSudan
| |
Collapse
|
6
|
Siger M. Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients : Review. Clin Neuroradiol 2022; 32:625-641. [PMID: 35258820 PMCID: PMC9424179 DOI: 10.1007/s00062-022-01144-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
The recently developed effective treatment of primary progressive multiple sclerosis (PPMS) requires the accurate diagnosis of patients with this type of disease. Currently, the diagnosis of PPMS is based on the 2017 McDonald criteria, although the contribution of magnetic resonance imaging (MRI) to this process is fundamental. PPMS, one of the clinical types of MS, represents 10%-15% of all MS patients. Compared to relapsing-remitting MS (RRMS), PPMS differs in terms of pathology, clinical presentation and MRI features. Regarding conventional MRI, focal lesions on T2-weighted images and acute inflammatory lesions with contrast enhancement are less common in PPMS than in RRMS. On the other hand, MRI features of chronic inflammation, such as slowly evolving/expanding lesions (SELs) and leptomeningeal enhancement (LME), and brain and spinal cord atrophy are more common MRI characteristics in PPMS than RRMS. Nonconventional MRI also shows differences in subtle white and grey matter damage between PPMS and other clinical types of disease. In this review, we present separate diagnostic criteria, conventional and nonconventional MRI specificity for PPMS, which may support and simplify the diagnosis of this type of MS in daily clinical practice.
Collapse
Affiliation(s)
- Malgorzata Siger
- Department of Neurology, Medical University of Łódź, 22 Kopcinskiego Str., 90-153, Łódź, Poland.
| |
Collapse
|
7
|
French H, Fontes-Villalba A, Maharaj M, Naidoo CSY, Bhatia K, Paterson A, Cook R, Parratt J. Tumefactive multiple sclerosis versus high grade glioma: A diagnostic dilemma. Surg Neurol Int 2022; 13:146. [PMID: 35509579 PMCID: PMC9062904 DOI: 10.25259/sni_239_2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
Tumefactive demyelinating lesions (TDL) share similar clinical features and magnetic resonance imaging (MRI) characteristics with high grade glioma (HGG). This study develops an approach to navigating this diagnostic dilemma, with significant treatment implications as the management of both entities is drastically different.
Methods:
A retrospective analysis of 41 TDLs and 91 HGG with respect to demographics, presentation and classical MRI characteristics was performed. A diagnostic pathway was then developed to help diagnose TDLs based on whole neuraxis MRI and cerebrospinal fluid (CSF) examination.
Results:
The diagnosis of TDL is more likely than HGG in younger females who present with subacute or chronic symptoms. MRI characteristics favoring TDL over HGG include smaller size, open rim enhancement, little or no associated edema or mass effect and the presence of a T2 hypointense rim. MRI of the whole neuraxis for detection of other lesions typical of multiple sclerosis (MS), in combination with a lumbar puncture (LP) showing positive CSF-specific oligoclonal bands (OCB), was positive in 90% of the TDL cohort.
Conclusion:
The diagnostic pathway, proposed on the basis of specific clinicoradiological features, should be followed in patients with suspected TDL. If MRI demonstrates other lesions typical of MS and LP demonstrates positive CSF-specific OCBs, then patients should undergo a short course of IV steroids to look for clinical improvement. Patients, who continue to deteriorate, do not demonstrate other lesions on MRI or where the LP is negative for CSF-specific OCB, should be considered for biopsy if safe to do so. This pathway will give the patients the best chance at neurological preservation.
Collapse
Affiliation(s)
- Heath French
- Departments of Neurosurgery, Royal North Shore Hospital, St. Leonards, New South Wales, Australia,
| | | | - Monish Maharaj
- Department of Neurosurgery, Waikato Hospital, Hamilton, New Zealand,
| | | | - Kartik Bhatia
- Department of Radiology, Children’s Hospital, Westmead,
| | - Amanda Paterson
- Department of Neurosurgery, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Raymond Cook
- Departments of Neurosurgery, Royal North Shore Hospital, St. Leonards, New South Wales, Australia,
| | - John Parratt
- Neurology, Royal North Shore Hospital, St. Leonards, New South Wales, Australia,
| |
Collapse
|
8
|
Baranovicova E, Hnilicova P, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Tomascova A, Lehotsky J. Metabolic Changes Induced by Cerebral Ischemia, the Effect of Ischemic Preconditioning, and Hyperhomocysteinemia. Biomolecules 2022; 12:554. [PMID: 35454143 PMCID: PMC9032340 DOI: 10.3390/biom12040554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
1H Nuclear Magnetic Resonance (NMR) metabolomics is one of the fundamental tools in the fast-developing metabolomics field. It identifies and quantifies the most abundant metabolites, alterations of which can describe energy metabolism, activated immune response, protein synthesis and catabolism, neurotransmission, and many other factors. This paper summarizes our results of the 1H NMR metabolomics approach to characterize the distribution of relevant metabolites and their alterations induced by cerebral ischemic injury or its combination with hyperhomocysteinemia in the affected tissue and blood plasma in rodents. A decrease in the neurotransmitter pool in the brain tissue likely follows the disordered feasibility of post-ischemic neurotransmission. This decline is balanced by the increased tissue glutamine level with the detected impact on neuronal health. The ischemic injury was also manifested in the metabolomic alterations in blood plasma with the decreased levels of glycolytic intermediates, as well as a post-ischemically induced ketosis-like state with increased plasma ketone bodies. As the 3-hydroxybutyrate can act as a likely neuroprotectant, its post-ischemic increase can suggest its supporting role in balancing ischemic metabolic dysregulation. Furthermore, the 1H NMR approach revealed post-ischemically increased 3-hydroxybutyrate in the remote organs, such as the liver and heart, as well as decreased myocardial glutamate. Ischemic preconditioning, as a proposed protective strategy, was manifested in a lower extent of metabolomic changes and/or their faster recovery in a longitudinal study. The paper also summarizes the pre- and post-ischemic metabolomic changes in the rat hyperhomocysteinemic models. Animals are challenged with hyperglycemia and ketosis-like state. A decrease in several amino acids in plasma follows the onset and progression of hippocampal neuropathology when combined with ischemic injury. The 1H NMR metabolomics approach also offers a high potential for metabolites in discriminatory analysis in the search for potential biomarkers of ischemic injury. Based on our results and the literature data, this paper presents valuable findings applicable in clinical studies and suggests the precaution of a high protein diet, especially foods which are high in Met content and low in B vitamins, in the possible risk of human cerebrovascular neuropathology.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Petra Hnilicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| | - Anna Tomascova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| |
Collapse
|
9
|
Predictive MRI Biomarkers in MS—A Critical Review. Medicina (B Aires) 2022; 58:medicina58030377. [PMID: 35334554 PMCID: PMC8949449 DOI: 10.3390/medicina58030377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: In this critical review, we explore the potential use of MRI measurements as prognostic biomarkers in multiple sclerosis (MS) patients, for both conventional measurements and more novel techniques such as magnetization transfer, diffusion tensor, and proton spectroscopy MRI. Materials and Methods: All authors individually and comprehensively reviewed each of the aspects listed below in PubMed, Medline, and Google Scholar. Results: There are numerous MRI metrics that have been proven by clinical studies to hold important prognostic value for MS patients, most of which can be readily obtained from standard 1.5T MRI scans. Conclusions: While some of these parameters have passed the test of time and seem to be associated with a reliable predictive power, some are still better interpreted with caution. We hope this will serve as a reminder of how vast a resource we have on our hands in this versatile tool—it is up to us to make use of it.
Collapse
|
10
|
Mueller C, Baird JF, Motl RW. Whole-Brain Metabolic Abnormalities Are Associated With Mobility in Older Adults With Multiple Sclerosis. Neurorehabil Neural Repair 2022; 36:286-297. [PMID: 35164595 DOI: 10.1177/15459683221076461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Older adults with multiple sclerosis (MS) experience mobility impairments, but conventional brain imaging is a poor predictor of walking abilities in this population. OBJECTIVE To test whether brain metabolites measured with Magnetic Resonance Spectroscopy (MRS) are associated with walking performance in older adults with MS. METHODS Fifteen older adults with MS (mean age: 60.9, SD: 5.1) and 22 age-matched healthy controls (mean age: 64.2, SD: 5.7) underwent whole-brain MRS and mobility testing. Levels of N-acetylaspartate (NAA), myo-inositol (MI), choline (CHO), and temperature in 47 brain regions were compared between groups and correlated with walking speed (Timed 25 Foot Walk) and walking endurance (Six-Minute Walk). RESULTS Older adults with MS had higher MI in 23 areas, including the bilateral frontal (right: t (21.449) = -2.605, P = .016; left: t (35) = -2.434, P = .020), temporal (right: t (35) = -3.063, P = .004; left: t (35) = -3.026, P = .005), and parietal lobes (right: t (21.100) = -2.886, P = .009; left: t (35) = -2.507, P = .017), and right thalamus (t (35) = -2.840, P = .007). MI in eleven regions correlated with walking speed, and MI in twelve regions correlated with walking endurance. NAA was lower in MS in the bilateral thalami (right: t (35) = 3.449, P < .001; left: t (35) = 2.061, P = .047), caudate nuclei (right: t (33) = 2.828, P = .008; left: t (32) = 2.132, P = .041), and posterior cingulum (right: t (35) = 3.077, P = .004; left: t (35) = 2.972, P = .005). NAA in four regions correlated with walking speed and endurance. Brain temperature was higher in MS patients in four regions, but did not correlate with mobility measures. There were no group differences in CHO. CONCLUSION MI and NAA may be useful imaging end-points for walking ability as a clinical outcome in older adults with MS.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, 9967University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica F Baird
- Department of Physical Therapy, 9968University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert W Motl
- Department of Physical Therapy, 9968University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Mohamed AAB, Algahalan HA, Thabit MN. Correlation between functional MRI techniques and early disability in ambulatory patients with relapsing–remitting MS. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Background
Multiple sclerosis (MS) is a common neurological disorder which can lead to an occasional damage to the central nervous system. Conventional magnetic resonance imaging (cMRI) is an important modality in the diagnosis of MS; however, correlation between cMRI findings and clinical impairment is weak. Non-conventional MRI techniques including apparent diffusion coefficient (ADC) and magnetic resonance spectroscopy (MRS) investigate the metabolic changes over the course of MS and overcome the limits of cMRI.
A total of 80 patients with MS and 20 age and sex-matched healthy control subjects were enrolled in this cross-sectional study. Ambulatory patients with relapsing–remitting MS (RRMS) were recruited. Expanded Disability Status Scale (EDSS) was used to assess the disability and the patients were categorized into three groups “no disability”, “minimal disability” and “moderate disability”. All patients underwent cMRI techniques. ADC was measured in MS plaques and in normal appearing white matter (NAWM) adjacent and around the plaque. All metabolites concentrations were expressed as ratios including N-acetyl-aspartate/creatine (NAA/Cr), choline/N-acetyl-aspartate (Cho/NAA) and choline/creatine (Cho/Cr). ADC and metabolite concentrations were measured in the normal white matter of 20 healthy control subjects.
Results
The study was carried on 80 MS patients [36 males (45%) and 44 females (55%)] and 20 healthy control [8 males (40%) and 12 females (60%)]. The ADC values and MRS parameters in NAWM of patients with MS were significantly different from those of the control group. The number of the plaques on T2 images and black holes were significantly higher at “Minimal disability” group. Most of the enhanced plaques were at the “Moderate disability” group with P value < 0.001. The mean of ADC in the group 1, 2 and 3 of disability was 1.12 ± 0.19, 1.50 ± 0.35, 1.51 ± 0.36, respectively, with P value < 0. 001. In the group 1, 2 and 3 of disability, the mean of NAA/Cr ratio at the plaque was 1.34 ± 0.44, 1.59 ± 0.51 and 1.11 ± 0.15, respectively, with P value equal 0.001.
Conclusion
The non-conventional quantitative MRI techniques are useful tools for detection of early disability in MS patients.
Collapse
|
12
|
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010474. [PMID: 35008899 PMCID: PMC8745199 DOI: 10.3390/ijms23010474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.
Collapse
|
13
|
Zacharopoulos G, Sella F, Cohen Kadosh R. The impact of a lack of mathematical education on brain development and future attainment. Proc Natl Acad Sci U S A 2021; 118:e2013155118. [PMID: 34099561 PMCID: PMC8214709 DOI: 10.1073/pnas.2013155118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Formal education has a long-term impact on an individual's life. However, our knowledge of the effect of a specific lack of education, such as in mathematics, is currently poor but is highly relevant given the extant differences between countries in their educational curricula and the differences in opportunities to access education. Here we examined whether neurotransmitter concentrations in the adolescent brain could classify whether a student is lacking mathematical education. Decreased γ-aminobutyric acid (GABA) concentration within the middle frontal gyrus (MFG) successfully classified whether an adolescent studies math and was negatively associated with frontoparietal connectivity. In a second experiment, we uncovered that our findings were not due to preexisting differences before a mathematical education ceased. Furthermore, we showed that MFG GABA not only classifies whether an adolescent is studying math or not, but it also predicts the changes in mathematical reasoning ∼19 mo later. The present results extend previous work in animals that has emphasized the role of GABA neurotransmission in synaptic and network plasticity and highlight the effect of a specific lack of education on MFG GABA concentration and learning-dependent plasticity. Our findings reveal the reciprocal effect between brain development and education and demonstrate the negative consequences of a specific lack of education during adolescence on brain plasticity and cognitive functions.
Collapse
Affiliation(s)
- George Zacharopoulos
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom;
| | - Francesco Sella
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Centre for Mathematical Cognition, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom;
| |
Collapse
|
14
|
Kahovec C, Saini A, Levin MC. Diagnostic Dilemma: An Atypical Case of Astrocytoma in a Patient with Relapsing-Remitting Multiple Sclerosis. Neurol Int 2021; 13:240-251. [PMID: 34204935 PMCID: PMC8293366 DOI: 10.3390/neurolint13020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Distinguishing between tumefactive demyelinating lesions (TDLs) and brain tumors in multiple sclerosis (MS) can be challenging. A progressive course is highly common with brain tumors in MS and no single neuroimaging technique is foolproof when distinguishing between the two. We report a case of a 41-year-old female with relapsing–remitting multiple sclerosis, who had a suspicious lesion within the left frontal hemisphere, without a progressive course. The patient experienced paresthesias primarily to her right hand but remained stable without any functional decline and new neurological symptoms over the four years she was followed. The lesion was followed with brain magnetic resonance imaging (MRI) scans, positron emission tomography–computed tomography scans, and magnetic resonance spectroscopy. Together, these scans favored the diagnosis of a TDL, but a low-grade tumor was difficult to rule out. Examination of serial brain MRI scans showed an enlarging lesion in the left middle frontal gyrus involving the deep white matter. Neurosurgery was consulted and an elective left frontal awake craniotomy was performed. Histopathology revealed a grade II astrocytoma. This case emphasizes the importance of thorough and continuous evaluation of atypical MRI lesions in MS and contributes important features to the literature for timely diagnosis and treatment of similar cases.
Collapse
Affiliation(s)
- Chantal Kahovec
- Saskatoon Multiple Sclerosis Clinic, Saskatchewan Health Authority, Saskatoon, SK S7K 0M7, Canada;
| | - Aman Saini
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
| | - Michael C. Levin
- Saskatoon Multiple Sclerosis Clinic, Saskatchewan Health Authority, Saskatoon, SK S7K 0M7, Canada;
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence: ; Tel.: +1-(306)-655-8350
| |
Collapse
|
15
|
French HD. Tumefactive multiple sclerosis versus high-grade glioma: A diagnostic dilemma. Surg Neurol Int 2021; 12:199. [PMID: 34084626 PMCID: PMC8168700 DOI: 10.25259/sni_901_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Tumefactive demyelinating lesions (TDLs) share similar clinical features and MRI characteristics with high-grade glioma (HGG). This study develops an approach to navigating this diagnostic dilemma, with significant treatment implications as the management of both entities is drastically different. Methods: A retrospective analysis of 41 TDLs and 91 HGG with respect to demographics, presentation, and classical MRI characteristics was performed. A diagnostic pathway was then developed to help diagnose TDLs based on whole neuraxis MRI and cerebrospinal fluid (CSF) examination. Results: The diagnosis of TDL is more likely than HGG in younger females who present with subacute or chronic symptoms. MRI characteristics favoring TDL over HGG include smaller size, open rim enhancement, little or no associated edema or mass effect, and the presence of a T2 hypointense rim. MRI of the whole neuraxis for detection of other lesions typical of multiple sclerosis (MS), in combination with a lumbar puncture (LP) showing positive CSF-specific oligoclonal bands (OCB), was positive in 90% of the TDL cohort. Conclusion: The diagnostic pathway, proposed on the basis of specific clinicoradiological features, should be followed in patients with suspected TDL. If MRI demonstrates other lesions typical of MS and LP demonstrates positive CSF-specific OCBs, then patients should undergo a short course of IV steroids to look for clinical improvement. Patients who continue to deteriorate, do not demonstrate other lesions on MRI or where the LP is negative for CSF-specific OCB, should be considered for biopsy if safe to do so. This pathway will give the patients the best chance at neurological preservation.
Collapse
Affiliation(s)
- Heath David French
- Department of Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
16
|
Genovese G, Palombo M, Santin MD, Valette J, Ligneul C, Aigrot MS, Abdoulkader N, Langui D, Millecamps A, Baron-Van Evercooren A, Stankoff B, Lehericy S, Petiet A, Branzoli F. Inflammation-driven glial alterations in the cuprizone mouse model probed with diffusion-weighted magnetic resonance spectroscopy at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4480. [PMID: 33480101 DOI: 10.1002/nbm.4480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Inflammation of brain tissue is a complex response of the immune system to the presence of toxic compounds or to cell injury, leading to a cascade of pathological processes that include glial cell activation. Noninvasive MRI markers of glial reactivity would be very useful for in vivo detection and monitoring of inflammation processes in the brain, as well as for evaluating the efficacy of personalized treatments. Due to their specific location in glial cells, myo-inositol (mIns) and choline compounds (tCho) seem to be the best candidates for probing glial-specific intra-cellular compartments. However, their concentrations quantified using conventional proton MRS are not specific for inflammation. In contrast, it has been recently suggested that mIns intra-cellular diffusion, measured using diffusion-weighted MRS (DW-MRS) in a mouse model of reactive astrocytes, could be a specific marker of astrocytic hypertrophy. In order to evaluate the specificity of both mIns and tCho diffusion to inflammation-driven glial alterations, we performed DW-MRS in a volume of interest containing the corpus callosum and surrounding tissue of cuprizone-fed mice after 6 weeks of intoxication, and evaluated the extent of astrocytic and microglial alterations using immunohistochemistry. Both mIns and tCho apparent diffusion coefficients were significantly elevated in cuprizone-fed mice compared with control mice, and histologic evaluation confirmed the presence of severe inflammation. Additionally, mIns and tCho diffusion showed, respectively, strong and moderate correlations with histological measures of astrocytic and microglial area fractions, confirming DW-MRS as a promising tool for specific detection of glial changes under pathological conditions.
Collapse
Affiliation(s)
- Guglielmo Genovese
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Marco Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| | - Mathieu D Santin
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Clémence Ligneul
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Marie-Stéphane Aigrot
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
- Core Facility ICM Quant, Institut du Cerveau-ICM, Paris, France
| | - Nasteho Abdoulkader
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
| | - Dominique Langui
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
- Core Facility ICM Quant, Institut du Cerveau-ICM, Paris, France
| | | | | | - Bruno Stankoff
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Stéphane Lehericy
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Alexandra Petiet
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Francesca Branzoli
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
17
|
Pediatric inflammatory demyelinating disorders and mimickers: How to differentiate with MRI? Autoimmun Rev 2021; 20:102801. [PMID: 33727154 DOI: 10.1016/j.autrev.2021.102801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, neurodegenerative disorder of the central nervous system (CNS).While the clinical symptoms of MS most commonly manifest between 20 and 40 years of age, approximately 3 to 10% of all MS patients report that their first inaugural events can occur earlier in life, even in childhood, and thus include the pediatric population. The prevalence of MS onset in childhood/adolescence varies between 2.0% and 4.0% of all MS cases according to several extensive studies. The main imaging patterns of pediatric inflammatory demyelinating disorders and mimicking entities, including multiple sclerosis, neuromyelitis optica spectrum disorders, acute disseminated encephalomyelitis, MOG (myelin oligodendrocyte glycoprotein) antibody-related disorders and differential diagnoses will be addressed in this article, highlighting key points to the differential diagnosis.
Collapse
|
18
|
EkŞİ Z, ÇakiroĞlu M, Öz C, AralaŞmak A, Karadelİ HH, Özcan ME. Differentiation of relapsing-remitting and secondary progressive multiple sclerosis: a magnetic resonance spectroscopy study based on machine learning. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:789-796. [PMID: 33331515 DOI: 10.1590/0004-282x20200094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. OBJECTIVE This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. METHODS MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. RESULTS RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. CONCLUSIONS A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
Collapse
Affiliation(s)
- Ziya EkŞİ
- Sakarya University, Department of Computer Engineering, Sakarya, Turkey
| | - Murat ÇakiroĞlu
- Sakarya University, Department of Mechatronic Engineering, Sakarya, Turkey
| | - Cemil Öz
- Sakarya University, Department of Computer Engineering, Sakarya, Turkey
| | - Ayse AralaŞmak
- Memorial Bahçelievler Hospital, Department of Radiology, Istanbul, Turkey
| | | | | |
Collapse
|
19
|
Zacharzewska-Gondek A, Pokryszko-Dragan A, Sąsiadek M, Zimny A, Bladowska J. Magnetic resonance spectroscopy of the normal appearing grey matter in the posterior cingulate gyrus in the prognosis and monitoring of disease activity in MS patients treated with interferon-β in a 3-year follow-up. J Clin Neurosci 2020; 79:205-214. [PMID: 33070897 DOI: 10.1016/j.jocn.2020.07.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022]
Abstract
Several predictors of non-response to interferon-β (IFN-β) treatment have been proposed. The aim of the study was to identify metabolite changes in the normal-appearing cortex of the posterior cingulate gyrus (PCG) using MRS (magnetic resonance spectroscopy) and to investigate their usefulness in prognosis of NEDA (no evidence of disease activity) in the 3-year follow-up and in monitoring treatment effects during IFN-β therapy in the parallel period of time in multiple sclerosis (MS) patients. Forty-one relapsing-remitting MS patients and 41 sex- and age-matched healthy subjects underwent routine MRI protocol with MRS sequence with the use of a 1.5 T magnet. A single voxel size of 2x2x2cm was inserted in the cortex of PCG region. Associations between baseline metabolic ratios, conventional MRI findings, demographic and clinical factors, and NEDA status were evaluated using logistic, Cox, and multinomial logistic regression models. MS patients in the initial scan showed a statistically significant decline in NAA/Cr ratio (p < 0.0001) and an increase in Cho/Cr ratio (p = 0.016) compared to the control group. None of the MRS parameters predicted NEDA maintenance or the time to loss of NEDA. In treatment monitoring only an improvement in the combination of NAA/Cr + Cho/Cr ratio between the 1st and 2nd year of treatment was connected with a 6.27-fold chance (p = 0.025) of having simultaneous NEDA maintenance. To conclude, metabolite alterations in the PCG region did not predict NEDA maintenance, but they seem to be useful in treatment monitoring.
Collapse
Affiliation(s)
- Anna Zacharzewska-Gondek
- Department of General and Intervantional Radiology and Neuroradiology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland.
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Marek Sąsiadek
- Department of General and Intervantional Radiology and Neuroradiology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Anna Zimny
- Department of General and Intervantional Radiology and Neuroradiology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Joanna Bladowska
- Department of General and Intervantional Radiology and Neuroradiology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
20
|
Ye H, Shaghaghi M, Chen Q, Zhang Y, Lutz SE, Chen W, Cai K. In Vivo Proton Exchange Rate (k ex ) MRI for the Characterization of Multiple Sclerosis Lesions in Patients. J Magn Reson Imaging 2020; 53:408-415. [PMID: 32975008 DOI: 10.1002/jmri.27363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Currently available radiological methods do not completely capture the diversity of multiple sclerosis (MS) lesion subtypes. This lack of information hampers the understanding of disease progression and potential treatment stratification. For example, inflammation persists in some lesions after gadolinium (Gd) enhancement resolves. Novel metabolic and molecular imaging methods may improve the current assessments of MS pathophysiology. PURPOSE To compare the in vivo proton exchange rate (kex ) MRI with Gd-enhanced MRI for characterizing MS lesions. STUDY TYPE Retrospective. SUBJECTS Sixteen consecutively diagnosed relapsing-remitting multiple sclerosis (RRMS) patients. FIELD STRENGTH/SEQUENCE 3.0T MRI with T2 -weighted imaging, postcontrast T1 -weighted imaging, and single-slice chemical exchange saturation transfer imaging. ASSESSMENT MS lesions in white matter were assessed for Gd enhancement and kex elevation compared to normal-appearing white matter (NAWM). STATISTICAL TESTS Student's t-test was used for analyzing the difference of kex values between lesions and NAWM, with statistical significance set at 0.05. RESULTS Of all 153 MS lesions, 78 (51%) lesions were Gd-enhancing and 75 (49%) were Gd-negative. Without exception, all 78 Gd-enhancing lesions showed significantly elevated kex values compared to NAWM (924 ± 130 s-1 vs. 735 ± 61 s-1 , P < 0.05). Of 75 Gd-negative lesions, 18 lesions (24%) showed no kex elevation (762 ± 29 s-1 vs. 755 ± 28 s-1 , P = 0.47) and 57 (76%) showed significant kex elevation (950 ± 124 s-1 vs. 759 ± 48 s-1 , P < 0.05) compared to NAWM. MS lesions with kex elevation appeared nodular (118, 87.4%), ring-like (15, 11.1%), or irregular-shaped (2, 1.5%). DATA CONCLUSION For Gd-enhancing lesions, kex MRI is highly consistent with Gd-enhanced images by showing 100% of elevated kex . For all Gd-negative lesions, the discrepancy on kex MRI may further differentiate active slowly expanding lesions or chronic inactive lesions, supporting kex as an imaging biomarker for tissue oxidative stress and inflammation. Level of Evidence 2 Technical Efficacy Stage 3 J. MAGN. RESON. IMAGING 2021;53:408-415.
Collapse
Affiliation(s)
- Haiqi Ye
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mehran Shaghaghi
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qianlan Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kejia Cai
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA.,Center for MR Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Al-Iedani O, Ribbons K, Gholizadeh N, Lechner-Scott J, Quadrelli S, Lea R, Andronesi O, Ramadan S. Spiral MRSI and tissue segmentation of normal-appearing white matter and white matter lesions in relapsing remitting multiple sclerosis patients ☆. Magn Reson Imaging 2020; 74:21-30. [PMID: 32898652 DOI: 10.1016/j.mri.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the performance of novel spiral MRSI and tissue segmentation pipeline of the brain, to investigate neurometabolic changes in normal-appearing white matter (NAWM) and white matter lesions (WML) of stable relapsing remitting multiple sclerosis (RRMS) compared to healthy controls (HCs). METHODS Spiral 3D MRSI using LASER-GOIA-W [16,4] was undertaken on 16 RRMS patients and 9 HCs, to acquire MRSI data from a large volume of interest (VOI) 320 cm3 and analyzed using LCModel. MRSI data and voxel tissue segmentation were compared between the two cohorts using t-tests. Support vector machine (SVM) was used to classify tissue types and assessed by accuracy, sensitivity and specificity. RESULTS Compared to HCs, RRMS demonstrated a statistically significant reduction in all mean brain tissues and increase in CSF volume. Within VOI, WM decreased (-10%) and CSF increased (41%) in RRMS compared to HCs (p < 0.001). MRSI revealed that total creatine (tCr) ratios of N-acetylaspartate and glutamate+glutamine in WML were significantly lower than NAWM-MS (-9%, -8%) and HCs (-14%, -10%), respectively. Myo-inositol/tCr in WML was significantly higher than NAWM-MS (14%) and HCs (10%). SVM of MRSI yielded accuracy, sensitivity and specificity of 86%, 95%, and 70%, respectively for HCs vs WML, which were higher than HC vs NAWM and WML vs NAWM models. CONCLUSION This study demonstrates the benefit of MRSI in evaluating MS neurometabolic changes in NAWM. SVM of MRSI data in the MS brain may be suited for clinical monitoring and progression of MS patients. Longitudinal MRSI studies are warranted.
Collapse
Affiliation(s)
- Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Karen Ribbons
- Hunter Medical Research Institute, Newcastle, Australia
| | - Neda Gholizadeh
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, Newcastle, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2305, Australia
| | - Scott Quadrelli
- Princess Alexandra Hospital, Radiology Department, Woolloongabba. QLD 4102, Australia; Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Rodney Lea
- Hunter Medical Research Institute, Newcastle, Australia
| | - Ovidiu Andronesi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, Newcastle, Australia.
| |
Collapse
|
22
|
Hnilicová P, Štrbák O, Kolisek M, Kurča E, Zeleňák K, Sivák Š, Kantorová E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int J Mol Sci 2020; 21:E6117. [PMID: 32854318 PMCID: PMC7504207 DOI: 10.3390/ijms21176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with expanding axonal and neuronal degeneration in the central nervous system leading to motoric dysfunctions, psychical disability, and cognitive impairment during MS progression. The exact cascade of pathological processes (inflammation, demyelination, excitotoxicity, diffuse neuro-axonal degeneration, oxidative and metabolic stress, etc.) causing MS onset is still not fully understood, although several accompanying biomarkers are particularly suitable for the detection of early subclinical changes. Magnetic resonance (MR) methods are generally considered to be the most sensitive diagnostic tools. Their advantages include their noninvasive nature and their ability to image tissue in vivo. In particular, MR spectroscopy (proton 1H and phosphorus 31P MRS) is a powerful analytical tool for the detection and analysis of biomedically relevant metabolites, amino acids, and bioelements, and thus for providing information about neuro-axonal degradation, demyelination, reactive gliosis, mitochondrial and neurotransmitter failure, cellular energetic and membrane alternation, and the imbalance of magnesium homeostasis in specific tissues. Furthermore, the MR relaxometry-based detection of accumulated biogenic iron in the brain tissue is useful in disease evaluation. The early description and understanding of the developing pathological process might be critical for establishing clinically effective MS-modifying therapies.
Collapse
Affiliation(s)
- Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Oliver Štrbák
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Štefan Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| |
Collapse
|
23
|
Phosphorus magnetic resonance spectroscopy and fatigue in multiple sclerosis. J Neural Transm (Vienna) 2020; 127:1177-1183. [DOI: 10.1007/s00702-020-02221-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 02/03/2023]
|
24
|
Nandy A, Nielsen M, Hilt C, Mogensen PH, Yavarian Y. A case report revealing acute onset psychosis and cognitive impairment as primary manifestation in relapsing-remitting multiple sclerosis. Clin Case Rep 2020; 8:833-836. [PMID: 32477527 PMCID: PMC7250979 DOI: 10.1002/ccr3.2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Acute psychosis and cognitive impairment is a significant problem in RRMS. As it concerns in relatively young age group, our case report underscores the importance of early recognition which could impose diagnostic challenge in multiple sclerosis.
Collapse
Affiliation(s)
- Anirban Nandy
- Department of NeurologyAalborg University HospitalAalborgDenmark
| | - Michael Nielsen
- Department of NeurologyAalborg University HospitalAalborgDenmark
| | - Claudia Hilt
- Department of NeurologyAalborg University HospitalAalborgDenmark
| | | | - Yousef Yavarian
- Department of RadiologyAalborg University HospitalAalborgDenmark
| |
Collapse
|
25
|
Kovalska M, Hnilicova P, Kalenska D, Tothova B, Adamkov M, Lehotsky J. Effect of Methionine Diet on Metabolic and Histopathological Changes of Rat Hippocampus. Int J Mol Sci 2019; 20:ijms20246234. [PMID: 31835644 PMCID: PMC6941024 DOI: 10.3390/ijms20246234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) is regarded as an independent and strong risk factor for cerebrovascular diseases, stroke, and dementias. The hippocampus has a crucial role in spatial navigation and memory processes and is being constantly studied for neurodegenerative disorders. We used a moderate methionine (Met) diet at a dose of 2 g/kg of animal weight/day in duration of four weeks to induce mild hHcy in adult male Wistar rats. A novel approach has been used to explore the hippocampal metabolic changes using proton magnetic resonance spectroscopy (1H MRS), involving a 7T MR scanner in combination with histochemical and immunofluorescence analysis. We found alterations in the metabolic profile, as well as remarkable histo-morphological changes such as an increase of hippocampal volume, alterations in number and morphology of astrocytes, neurons, and their processes in the selective vulnerable brain area of animals treated with a Met-enriched diet. Results of both methodologies suggest that the mild hHcy induced by Met-enriched diet alters volume, histo-morphological pattern, and metabolic profile of hippocampal brain area, which might eventually endorse the neurodegenerative processes.
Collapse
Affiliation(s)
- Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Petra Hnilicova
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Barbara Tothova
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Jan Lehotsky
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence: ; Tel.: +421-43-2633-821
| |
Collapse
|
26
|
Altered hypothalamic metabolism in early multiple sclerosis – MR spectroscopy study. J Neurol Sci 2019; 407:116458. [DOI: 10.1016/j.jns.2019.116458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
27
|
MacMillan EL, Schubert JJ, Vavasour IM, Tam R, Rauscher A, Taylor C, White R, Garren H, Clayton D, Levesque V, Li DK, Kolind SH, Traboulsee AL. Magnetic resonance spectroscopy evidence for declining gliosis in MS patients treated with ocrelizumab versus interferon beta-1a. Mult Scler J Exp Transl Clin 2019; 5:2055217319879952. [PMID: 31662881 PMCID: PMC6796216 DOI: 10.1177/2055217319879952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Background Magnetic resonance spectroscopy quantitatively monitors biomarkers of
neuron-myelin coupling (N-acetylaspartate (NAA)), and inflammation (total
creatine (tCr), total choline (tCho), myo-inositol (mI)) in the brain. Objective This study aims to investigate how ocrelizumab and interferon beta-1a
differentially affects imaging biomarkers of neuronal-myelin coupling and
inflammation in patients with relapsing multiple sclerosis (MS). Methods Forty patients with relapsing MS randomized to either treatment were scanned
at 3T at baseline and weeks 24, 48, and 96 follow-up. Twenty-four healthy
controls were scanned at weeks 0, 48, and 96. NAA, tCr, tCho, mI, and
NAA/tCr were measured in a single large supra-ventricular voxel. Results There was a time × treatment interaction in NAA/tCr
(p = 0.04), primarily driven by opposing tCr trends between
treatment groups after 48 weeks of treatment. Patients treated with
ocrelizumab showed a possible decline in mI after week 48 week, and stable
tCr and tCho levels. Conversely, the interferon beta-1a treated group showed
possible increases in mI, tCr, and tCho over 96 weeks. Conclusions Results from this exploratory study suggest that over 2 years, ocrelizumab
reduces gliosis compared with interferon beta-1a, demonstrated by declining
ml, and stable tCr and tCho. Ocrelizumab may improve the physiologic milieu
by decreasing neurotoxic factors that are generated by inflammatory
processes.
Collapse
Affiliation(s)
| | | | | | - Roger Tam
- Department of Medicine, University of British Columbia
| | | | | | - Rick White
- Statistics, University of British Columbia
| | | | | | | | - David Kb Li
- Department of Radiology, University of British Columbia
| | | | | |
Collapse
|
28
|
Kokhan VS, Anokhin PK, Belov OV, Gulyaev MV. Cortical Glutamate/GABA Imbalance after Combined Radiation Exposure: Relevance to Human Deep-Space Missions. Neuroscience 2019; 416:295-308. [DOI: 10.1016/j.neuroscience.2019.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/01/2019] [Accepted: 08/03/2019] [Indexed: 12/22/2022]
|
29
|
Baldassari LE, Feng J, Clayton BLL, Oh SH, Sakaie K, Tesar PJ, Wang Y, Cohen JA. Developing therapeutic strategies to promote myelin repair in multiple sclerosis. Expert Rev Neurother 2019; 19:997-1013. [PMID: 31215271 DOI: 10.1080/14737175.2019.1632192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Approved disease-modifying therapies for multiple sclerosis (MS) lessen inflammatory disease activity that causes relapses and MRI lesions. However, chronic inflammation and demyelination lead to axonal degeneration and neuronal loss, for which there currently is no effective treatment. There has been increasing interest in developing repair-promoting strategies, but there are important unanswered questions regarding the mechanisms and appropriate methods to evaluate these treatments. Areas covered: The rationale for remyelinating agents in MS is discussed, with an overview of both myelin physiology and endogenous repair mechanisms. This is followed by a discussion of the identification and development of potential remyelinating drugs. Potential biomarkers of remyelination are reviewed, including considerations regarding measuring remyelination in clinical trials. Information and data were obtained from a search of recent literature through PubMed. Peer-reviewed original articles and review articles were included. Expert opinion: There are several obstacles to the translation of potential remyelinating agents to clinical trials, particularly uncertainty regarding the most appropriate study population and method to monitor remyelination. Refinements in clinical trial design and outcome measurement, potentially via advanced imaging techniques, are needed to optimize detection of repair in patients with MS.
Collapse
Affiliation(s)
- Laura E Baldassari
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| | - Jenny Feng
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Se-Hong Oh
- Department of Biomedical Engineering, Hankuk University of Foreign Studies , Yongin , Republic of Korea
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Yanming Wang
- Department of Radiology, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
30
|
Arm J, Ribbons K, Lechner-Scott J, Ramadan S. Evaluation of MS related central fatigue using MR neuroimaging methods: Scoping review. J Neurol Sci 2019; 400:52-71. [PMID: 30903860 DOI: 10.1016/j.jns.2019.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/17/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fatigue is a common and debilitating symptom in multiple sclerosis (MS). Over the past decade, a growing body of research has focussed on the pathophysiological mechanisms underlying central (cognitive and physical) fatigue in MS. The precise mechanisms causing fatigue in MS patients are complex and poorly understood, and may differ between patients. Advanced quantitative magnetic resonance imaging (MRI) techniques allow for objective assessment of disease pathology and have been used to characterise the pathophysiology of central fatigue in MS. OBJECTIVE To systematically review the existing literature of MRI-based studies assessing the pathophysiological mechanisms of MS-related central fatigue. METHODS A systematic literature search of four major databases (PubMed, Medline, Embase, Scopus and Google Scholar) was conducted to identify MRI-based studies of MS-related fatigue published in the past 20 years. Studies using the following MRI-based methods were included: structural (lesion load/atrophy), T1 relaxation time/magnetisation transfer ratio (MTR), diffusion tensor imaging (DTI), functional MRI (fMRI) and magnetic resonance spectroscopy (MRS). RESULTS A total of 92 studies were identified as meeting the search criteria and included for review. Structurally, regional gray/white matter atrophy, cortical thinning, decreased T1 relaxation times and reduced fractional anisotropy were associated with central fatigue in MS. Functionally, hyperactivity and reduced functional connectivity in several regional areas of frontal, parietal, occipital, temporal and cerebellum were suggested as causes of central fatigue. Biochemically, a reduction in N-acetyl aspartate/creatine and increased (glutamine+glutamate)/creatine ratios were correlated with fatigue severity in MS. CONCLUSION Several advanced quantitative MRI methods have been employed in the study of central fatigue in MS. Central fatigue in MS is associated with macro/microstructural and functional changes within specific brain regions (frontal, parietal, temporal and deep gray matter) and specific pathways/networks (cortico-cortical and cortico-subcortical). Alternations in the cortico-striatal-thalamocortical (CSTC) loop are correlated with the development of fatigue in MS patients.
Collapse
Affiliation(s)
- Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Karen Ribbons
- Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton Heights, NSW 2305, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton Heights, NSW 2305, Australia; Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
31
|
De Santis S, Granberg T, Ouellette R, Treaba CA, Herranz E, Fan Q, Mainero C, Toschi N. Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI. Neuroimage Clin 2019; 22:101699. [PMID: 30739842 PMCID: PMC6370560 DOI: 10.1016/j.nicl.2019.101699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/07/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022]
Abstract
Irreversible white matter (WM) damage, including severe demyelination and axonal loss, is a main determinant of long-term disability in multiple sclerosis (MS). Non-invasive detection of changes in microstructural WM integrity in the disease is challenging since commonly used imaging metrics lack the necessary sensitivity, especially in the early phase of the disease. This study aims at assessing microstructural WM abnormalities in early-stage MS by using ultra-high gradient strength multi-shell diffusion MRI and the restricted signal fraction (FR) from the Composite Hindered and Restricted Model of Diffusion (CHARMED), a metric sensitive to the volume fraction of axons. In 22 early MS subjects (disease duration ≤5 years) and 15 age-matched healthy controls, restricted fraction estimates were obtained through the CHARMED model along with conventional Diffusion Tensor Imaging (DTI) metrics. All imaging parameters were compared cross-sectionally between the MS subjects and controls both in WM lesions and normal-appearing white matter (NAWM). We found a significant reduction in FR focally in WM lesions and widespread in the NAWM in MS patients relative to controls (corrected p < .05). Signal fraction changes in NAWM were not driven by perilesional tissue, nor were they influenced by proximity to the ventricles, challenging the hypothesis of an outside-in pathological process driven by CSF-mediated immune cytotoxic factors. No significant differences were found in conventional DTI parameters. In a cross-validated classification task, FR showed the largest effect size and outperformed all other diffusion imaging metrics in discerning lesions from contralateral NAWM. Taken together, our data provide evidence for the presence of widespread microstructural changes in the NAWM in early MS stages that are, at least in part, unrelated to focal demyelinating lesions. Interestingly, these pathological changes were not yet detectable by conventional diffusion imaging at this early disease stage, highlighting the sensitivity and value of multi-shell diffusion imaging for better characterizing axonal microstructure in MS.
Collapse
Affiliation(s)
- Silvia De Santis
- Instituto de Neurociencias de Alicante (CSIC-UMH), San Juan de Alicante, Spain; Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden; Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA.; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
32
|
Toschi N, De Santis S, Granberg T, Ouellette R, Treaba CA, Herranz E, Mainero C. Evidence for Progressive Microstructural Damage in Early Multiple Sclerosis by Multi-Shell Diffusion Magnetic Resonance Imaging. Neuroscience 2019; 403:27-34. [PMID: 30708049 DOI: 10.1016/j.neuroscience.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
In multiple sclerosis (MS), it would be of clinical value to be able to track the progression of axonal pathology, especially before the manifestation of clinical disability. However, non-invasive evaluation of short-term longitudinal progression of white matter integrity is challenging. This study aims at assessing longitudinal changes in the restricted (i.e. intracellular) diffusion signal fraction (FR) in early-stage MS by using ultra-high gradient strength multi-shell diffusion magnetic resonance imaging. In 11 early MS subjects (disease duration ≤5 years), FR was obtained at two timepoints (one year apart) through the Composite Hindered and Restricted Model of Diffusion, along with conventional Diffusion Tensor Imaging metrics. At follow-up, no statistically significant change was detected in clinical variables, while all imaging metrics showed statistically significant longitudinal changes (p < 0.01, corrected for multiple comparisons) in widespread regions in normal-appearing white matter (NAWM). The most extensive longitudinal changes were observed in FR, including areas known to include a large fraction of crossing fibers. Furthermore, FR was also the only metric showing significant longitudinal changes in lesions that were present at both time points (p = 0.007), with no significant differences found for conventional diffusion metrics. Finally, FR was the only diffusion metric (as compared to Diffusion Tensor Imaging) that revealed pre-lesional changes already present at baseline. Taken together, our data provide evidence for progressive microstructural damage in the NAWM of early MS cases detectable already at 1-year follow-up. Our study highlights the value of multi-shell diffusion imaging for sensitive tracking of disease evolution in MS before any clinical changes are observed. This article is part of a Special Issue entitled: SI: MRI and Neuroinflammation.
Collapse
Affiliation(s)
- Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Silvia De Santis
- Instituto de Neurociencias de Alicante (CSIC-UMH), San Juan de Alicante, Spain; Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Tobias Granberg
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Shedko ED, Tyumentseva MA. Cerebrospinal fluid molecular biomarkers of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:95-102. [DOI: 10.17116/jnevro201911907195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Vertinsky AT, Li DK, Vavasour IM, Miropolsky V, Zhao G, Zhao Y, Riddehough A, Moore GW, Traboulsee A, Laule C. Diffusely Abnormal White Matter, T2
Burden of Disease, and Brain Volume in Relapsing-Remitting Multiple Sclerosis. J Neuroimaging 2018; 29:151-159. [DOI: 10.1111/jon.12574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alexandra T. Vertinsky
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
| | - David K.B. Li
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
| | - Irene M. Vavasour
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
| | - Vladislav Miropolsky
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
| | - Guojun Zhao
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
| | - Yinshan Zhao
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
| | - Andrew Riddehough
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
| | - G.R. Wayne Moore
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver British Columbia Canada
| | - Anthony Traboulsee
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
| | - Cornelia Laule
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver British Columbia Canada
- Department of Physics and Astronomy; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
35
|
Abstract
Since its technical development in the early 1980s, magnetic resonance imaging (MRI) has quickly been adopted as an essential tool in supporting the diagnosis, longitudinal monitoring, evaluation of therapeutic response, and scientific investigations in multiple sclerosis (MS). The clinical usage of MRI has increased in parallel with technical innovations in the technique itself; the widespread adoption of clinically routine MRI at 1.5T has allowed sensitive qualitative and quantitative assessments of macroscopic central nervous system (CNS) inflammatory demyelinating lesions and tissue atrophy. However, conventional MRI lesion measures lack specificity for the underlying MS pathology and only weakly correlate with clinical status. Higher field strength units and newer, advanced MRI techniques offer increased sensitivity and specificity in the detection of disease activity and disease severity. This review summarizes the current status and future prospects regarding the role of MRI in the characterization of MS-related brain and spinal cord involvement.
Collapse
Affiliation(s)
- Christopher C Hemond
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rohit Bakshi
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
36
|
Abstract
In vivo Magnetic Resonance Spectroscopy (MRS) allows the non-invasive detection and quantification of a number of metabolites from localized volumes within a living organism. MRS localization techniques can be divided into two main groups, single voxel and multi-voxel. Single voxel techniques provide the metabolic profile from a specific small volume, whereas multi-voxel techniques are used to obtain the spatial distribution of metabolites throughout a large volume subdivided into small contiguous voxels. This chapter describes standard protocols for the acquisition and processing of in vivo single voxel1H MRS data from the rodent brain.
Collapse
Affiliation(s)
- M Carmen Muñoz-Hernández
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - María Luisa García-Martín
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
37
|
Mormina E, Petracca M, Bommarito G, Piaggio N, Cocozza S, Inglese M. Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging. World J Radiol 2017; 9:371-388. [PMID: 29104740 PMCID: PMC5661166 DOI: 10.4329/wjr.v9.i10.371] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique’s advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, 98100 Messina, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80138 Naples, Italy
| | - Giulia Bommarito
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Department of Neuroradiology, San Martino Hospital, 16132 Genoa, Italy
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
38
|
Kocevar G, Stamile C, Hannoun S, Roch JA, Durand-Dubief F, Vukusic S, Cotton F, Sappey-Marinier D. Weekly follow up of acute lesions in three early multiple sclerosis patients using MR spectroscopy and diffusion. J Neuroradiol 2017; 45:108-113. [PMID: 29032126 DOI: 10.1016/j.neurad.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 01/06/2017] [Accepted: 06/24/2017] [Indexed: 11/19/2022]
Abstract
OBJECT Pathophysiological mechanisms underlying multiple sclerosis (MS) lesion formation, including inflammation, demyelination/remyelination and axonal damage, and their temporal evolution are still not clearly understood. To this end, three acute white matter lesions were monitored using a weekly multimodal magnetic resonance (MR) protocol. MATERIALS AND METHODS Three untreated patients with early relapsing-remitting MS and one healthy control subject were followed weekly for two months. MR protocol included conventional MR imaging (MRI), diffusion tensor imaging (DTI), and localized MR spectroscopy (MRS), performed on the largest gadolinium-enhancing lesion, selected at the first exam. RESULTS Mean diffusivity increased and fractional anisotropy decreased in lesions compared to healthy control. Cho/Cr ratios remained elevated in lesions throughout the follow-up. In contrast, temporal profiles of mI/Cr ratios varied between patients' lesions. For patient 1, mI/Cr ratios were already elevated at the beginning of the follow-up. Patients 2 and 3 ratios increase was delayed by two and five weeks. Blood-brain barrier (BBB) recovery occurred after three weeks. CONCLUSION This multimodal MR follow-up highlighted the complementary role of DTI and MRS in identifying temporal relationships between BBB disruption, inflammation, and demyelination. Diffusion metrics showed high sensitivity to detect inflammatory processes. The different temporal profiles of mI suggested a potential better specificity to monitor pathological mechanisms occurring after lesion formation, such as glial proliferation and remyelination.
Collapse
Affiliation(s)
- Gabriel Kocevar
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France
| | - Claudio Stamile
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon
| | - Jean-Amédée Roch
- Service de radiologie, centre hospitalier Lyon-Sud, hospices civils de Lyon, 69495 Lyon, France
| | - Françoise Durand-Dubief
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; Service de neurologie A, hôpital neurologique de Lyon, hospices civils de Lyon, 69677 Lyon, France
| | - Sandra Vukusic
- Service de neurologie A, hôpital neurologique de Lyon, hospices civils de Lyon, 69677 Lyon, France
| | - François Cotton
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; Service de radiologie, centre hospitalier Lyon-Sud, hospices civils de Lyon, 69495 Lyon, France
| | - Dominique Sappey-Marinier
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; CERMEP, Imagerie-du-Vivant, université de Lyon, 69677 Lyon, France.
| |
Collapse
|
39
|
Schneider R, Bellenberg B, Hoepner R, Ellrichmann G, Gold R, Lukas C. Insight into Metabolic 1H-MRS Changes in Natalizumab Induced Progressive Multifocal Leukoencephalopathy Brain Lesions. Front Neurol 2017; 8:454. [PMID: 28928709 PMCID: PMC5591840 DOI: 10.3389/fneur.2017.00454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background Progressive multifocal leukoencephalopathy (PML) is a severe complication of immunosuppressive therapies, especially of natalizumab in relapsing–remitting multiple sclerosis (MS). Metabolic changes within PML lesions have not yet been described in natalizumab-associated PML in MS patients. Objective To study metabolic profiles in natalizumab-associated PML lesions of MS patients by 1H magnetic resonance spectroscopy (1H-MRS) at different stages during the PML course. To assess changes associated with the occurrence of the immune reconstitution inflammatory syndrome (IRIS). Methods 20 patients received 1H-MRS and imaging at 3 T either in the pre-IRIS, IRIS, early-post-PML, or late post-PML setting. Five of these patients received individual follow-up examinations, including the pre-IRIS or IRIS phase. Clinical worsening was described by changes in the Karnofsky Performance Scale (KPS) and the expanded disability status scale (EDSS) 1 year before PML and scoring at the time of 1H-MRS. Results In PML lesions, increased levels of the Lip/Cr ratio, driven by rising of lipid and reduction of Creatine, were found before the occurrence of IRIS (p = 0.014) with a maximum in the PML–IRIS group (p = 0.004). By contrast, marked rises of Cho/Cr in PML lesions were detected exclusively during the IRIS phase (p = 0.003). The Lip/Cr ratio decreased to above-normal levels in early-post-PML (p = 0.007, compared to normal appearing white matter (NAWM)) and to normal levels in the late-post-PML group. NAA/Cho was reduced compared to NAWM in the pre-IRIS, IRIS, and early-post-PML group. In NAA/Cr, the same effect was seen in the pre-IRIS and early-post-PML group. These cross-sectional results were confirmed by the individual follow-up examinations of four patients. NAA/Cho, Cho/Cr, and the lipid rise relative to NAWM in PML lesions were significantly correlated with the residual clinical worsening (KPS change) in post-PML patients (Spearman correlations ρ = 0.481, p = 0.018; ρ = −0.505, p = 0.014; and ρ = −0.488, p = 0.020). Conclusion 1H-MRS detected clinically significant dynamic changes of metabolic patterns in PML lesions during the course of natalizumab-associated PML in MS patients. Lip/Cr and Cho/Cr may provide additional information for detecting the onset of the IRIS phase in the course of the PML disease.
Collapse
Affiliation(s)
- Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Barbara Bellenberg
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Robert Hoepner
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carsten Lukas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
40
|
Ion-Mărgineanu A, Kocevar G, Stamile C, Sima DM, Durand-Dubief F, Van Huffel S, Sappey-Marinier D. Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features. Front Neurosci 2017; 11:398. [PMID: 28744195 PMCID: PMC5504183 DOI: 10.3389/fnins.2017.00398] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome (CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data available for each MS patient included clinical (e.g., age, disease duration, Expanded Disability Status Scale), conventional magnetic resonance imaging and spectroscopic imaging. We extract N-acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre) concentrations, and we compute three features for each spectroscopic grid by averaging metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear mixed-effects models to test for statistically significant differences between MS forms. We test nine binary classification tasks on clinical data, lesion loads, and metabolic features, using a leave-one-patient-out cross-validation method based on 100 random patient-based bootstrap selections. We compute F1-scores and BAR values after tuning Linear Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf), and Random Forests. Results: Statistically significant differences were found between the disease starting points of each MS form using four different response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and lesion loads yields F1-scores of 71–72% for CIS vs. RR and CIS vs. RR+SP, respectively. For RR vs. PP we obtained good classification results (maximum F1-score of 85%) after training LDA on clinical and metabolic features, while for RR vs. SP we obtained slightly higher classification results (maximum F1-score of 87%) after training LDA and SVM-rbf on clinical, lesion loads and metabolic features. Conclusions: Our results suggest that metabolic features are better at differentiating between relapsing-remitting and primary progressive forms, while lesion loads are better at differentiating between relapsing-remitting and secondary progressive forms. Therefore, combining clinical data with magnetic resonance lesion loads and metabolic features can improve the discrimination between relapsing-remitting and progressive forms.
Collapse
Affiliation(s)
- Adrian Ion-Mărgineanu
- CREATIS Centre National de la Recherche Scientifique UMR5220 & Institut National de la Santé et de la Recherche Médicale, U1206, Université de Lyon, Université Claude Bernard-Lyon 1, INSA-LyonVilleurbanne, France.,Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU LeuvenLeuven, Belgium.,imecLeuven, Belgium
| | - Gabriel Kocevar
- CREATIS Centre National de la Recherche Scientifique UMR5220 & Institut National de la Santé et de la Recherche Médicale, U1206, Université de Lyon, Université Claude Bernard-Lyon 1, INSA-LyonVilleurbanne, France
| | - Claudio Stamile
- CREATIS Centre National de la Recherche Scientifique UMR5220 & Institut National de la Santé et de la Recherche Médicale, U1206, Université de Lyon, Université Claude Bernard-Lyon 1, INSA-LyonVilleurbanne, France.,Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU LeuvenLeuven, Belgium.,imecLeuven, Belgium
| | - Diana M Sima
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU LeuvenLeuven, Belgium.,imecLeuven, Belgium.,R&D Department, icometrixLeuven, Belgium
| | - Françoise Durand-Dubief
- CREATIS Centre National de la Recherche Scientifique UMR5220 & Institut National de la Santé et de la Recherche Médicale, U1206, Université de Lyon, Université Claude Bernard-Lyon 1, INSA-LyonVilleurbanne, France.,Service de Neurologie A, Hôpital Neurologique, Hospices Civils de LyonBron, France
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU LeuvenLeuven, Belgium.,imecLeuven, Belgium
| | - Dominique Sappey-Marinier
- CREATIS Centre National de la Recherche Scientifique UMR5220 & Institut National de la Santé et de la Recherche Médicale, U1206, Université de Lyon, Université Claude Bernard-Lyon 1, INSA-LyonVilleurbanne, France.,CERMEP - Imagerie du Vivant, Université de LyonBron, France
| |
Collapse
|
41
|
Kirov II, Liu S, Tal A, Wu WE, Davitz MS, Babb JS, Rusinek H, Herbert J, Gonen O. Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steady-state metabolism and its relationship to conventional imaging. Hum Brain Mapp 2017; 38:4047-4063. [PMID: 28523763 DOI: 10.1002/hbm.23647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/17/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047-4063, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ivan I Kirov
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Shu Liu
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Assaf Tal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - William E Wu
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Matthew S Davitz
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - James S Babb
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Henry Rusinek
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Joseph Herbert
- Multiple Sclerosis Comprehensive Care Center, New York University Langone Medical Center, New York, New York
| | - Oded Gonen
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
42
|
Al-Iedani O, Lechner-Scott J, Ribbons K, Ramadan S. Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis. J Biomed Sci 2017; 24:17. [PMID: 28245815 PMCID: PMC5331701 DOI: 10.1186/s12929-017-0323-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/08/2017] [Indexed: 01/04/2023] Open
Abstract
Multi voxel magnetic resonance spectroscopic imaging (MRSI) is an important imaging tool that combines imaging and spectroscopic techniques. MRSI of the human brain has been beneficially applied to different clinical applications in neurology, particularly in neurooncology but also in multiple sclerosis, stroke and epilepsy. However, a major challenge in conventional MRSI is the longer acquisition time required for adequate signal to be collected. Fast MRSI of the brain in vivo is an alternative approach to reduce scanning time and make MRSI more clinically suitable.Fast MRSI can be categorised into spiral, echo-planar, parallel and turbo imaging techniques, each with its own strengths. After a brief introduction on the basics of non-invasive examination (1H-MRS) and localization techniques principles, different fast MRSI techniques will be discussed from their initial development to the recent innovations with particular emphasis on their capacity to record neurochemical changes in the brain in a variety of pathologies.The clinical applications of whole brain fast spectroscopic techniques, can assist in the assessment of neurochemical changes in the human brain and help in understanding the roles they play in disease. To give a good example of the utilities of these techniques in clinical context, MRSI application in multiple sclerosis was chosen. The available up to date and relevant literature is discussed and an outline of future research is presented.
Collapse
Affiliation(s)
- Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton, NSW 2305, Australia
| | - Karen Ribbons
- Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
43
|
Jain S, Sima DM, Sanaei Nezhad F, Hangel G, Bogner W, Williams S, Van Huffel S, Maes F, Smeets D. Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis. Front Neurosci 2017; 11:13. [PMID: 28197066 PMCID: PMC5281632 DOI: 10.3389/fnins.2017.00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/09/2017] [Indexed: 01/16/2023] Open
Abstract
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications.
Collapse
Affiliation(s)
| | - Diana M Sima
- icometrix, R&DLeuven, Belgium; Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU LeuvenLeuven, Belgium
| | | | - Gilbert Hangel
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of ViennaVienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR ImagingVienna, Austria
| | - Stephen Williams
- Centre for Imaging Sciences, University of Manchester Manchester, UK
| | - Sabine Van Huffel
- Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU LeuvenLeuven, Belgium; ImecLeuven, Belgium
| | - Frederik Maes
- Department of Electrical Engineering-ESAT, PSI Medical Image Computing, KU Leuven Leuven, Belgium
| | - Dirk Smeets
- icometrix, R&DLeuven, Belgium; BioImaging Lab, Universiteit AntwerpenAntwerp, Belgium
| |
Collapse
|
44
|
Yetkin MF, Mirza M, Dönmez H. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis. Medicine (Baltimore) 2016; 95:e4782. [PMID: 27603381 PMCID: PMC5023904 DOI: 10.1097/md.0000000000004782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS.
Collapse
Affiliation(s)
- Mehmet Fatih Yetkin
- Department of Neurology, Faculty of Medicine, Erciyes University
- Correspondence: Mehmet Fatih Yetkin, Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey (e-mail: )
| | - Meral Mirza
- Department of Neurology, Faculty of Medicine, Erciyes University
| | - Halil Dönmez
- Department of Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
45
|
Moghieb A, Bramlett HM, Das JH, Yang Z, Selig T, Yost RA, Wang MS, Dietrich WD, Wang KKW. Differential Neuroproteomic and Systems Biology Analysis of Spinal Cord Injury. Mol Cell Proteomics 2016; 15:2379-95. [PMID: 27150525 PMCID: PMC4937511 DOI: 10.1074/mcp.m116.058115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
Acute spinal cord injury (SCI) is a devastating condition with many consequences and no known effective treatment. Although it is quite easy to diagnose traumatic SCI, the assessment of injury severity and projection of disease progression or recovery are often challenging, as no consensus biomarkers have been clearly identified. Here rats were subjected to experimental moderate or severe thoracic SCI. At 24h and 7d postinjury, spinal cord segment caudal to injury center versus sham samples was harvested and subjected to differential proteomic analysis. Cationic/anionic-exchange chromatography, followed by 1D polyacrylamide gel electrophoresis, was used to reduce protein complexity. A reverse phase liquid chromatography-tandem mass spectrometry proteomic platform was then utilized to identify proteome changes associated with SCI. Twenty-two and 22 proteins were up-regulated at 24 h and 7 day after SCI, respectively; whereas 19 and 16 proteins are down-regulated at 24 h and 7 day after SCI, respectively, when compared with sham control. A subset of 12 proteins were identified as candidate SCI biomarkers - TF (Transferrin), FASN (Fatty acid synthase), NME1 (Nucleoside diphosphate kinase 1), STMN1 (Stathmin 1), EEF2 (Eukaryotic translation elongation factor 2), CTSD (Cathepsin D), ANXA1 (Annexin A1), ANXA2 (Annexin A2), PGM1 (Phosphoglucomutase 1), PEA15 (Phosphoprotein enriched in astrocytes 15), GOT2 (Glutamic-oxaloacetic transaminase 2), and TPI-1 (Triosephosphate isomerase 1), data are available via ProteomeXchange with identifier PXD003473. In addition, Transferrin, Cathepsin D, and TPI-1 and PEA15 were further verified in rat spinal cord tissue and/or CSF samples after SCI and in human CSF samples from moderate/severe SCI patients. Lastly, a systems biology approach was utilized to determine the critical biochemical pathways and interactome in the pathogenesis of SCI. Thus, SCI candidate biomarkers identified can be used to correlate with disease progression or to identify potential SCI therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Moghieb
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §The Departments of Psychiatry, and ‖Chemistry, University of Florida, Gainesville, Florida 32611
| | - Helen M Bramlett
- **Department of Neurological Surgery, ‡‡The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace LPLC 3-18, Miami, Florida, 33136
| | - Jyotirmoy H Das
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §§Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhihui Yang
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §The Departments of Psychiatry, and
| | - Tyler Selig
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research
| | - Richard A Yost
- ‖Chemistry, University of Florida, Gainesville, Florida 32611
| | - Michael S Wang
- **Department of Neurological Surgery, ‡‡The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace LPLC 3-18, Miami, Florida, 33136
| | - W Dalton Dietrich
- **Department of Neurological Surgery, ‡‡The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace LPLC 3-18, Miami, Florida, 33136
| | - Kevin K W Wang
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §The Departments of Psychiatry, and ¶Neuroscience,
| |
Collapse
|
46
|
Fatigue in Multiple Sclerosis: Assessing Pontine Involvement Using Proton MR Spectroscopic Imaging. PLoS One 2016; 11:e0149622. [PMID: 26895076 PMCID: PMC4760929 DOI: 10.1371/journal.pone.0149622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022] Open
Abstract
Background/Objective The underlying mechanism of fatigue in multiple sclerosis (MS) remains poorly understood. Our study investigates the involvement of the ascending reticular activating system (ARAS), originating in the pontine brainstem, in MS patients with symptoms of fatigue. Methods Female relapsing-remitting MS patients (n = 17) and controls (n = 15) underwent a magnetic resonance spectroscopic imaging protocol at 1.5T. Fatigue was assessed in every subject using the Fatigue Severity Scale (FSS). Using an FSS cut-off of 36, patients were categorized into a low (n = 9, 22 ± 10) or high (n = 10, 52 ± 6) fatigue group. The brain metabolites N-acetylaspartate (NAA) and total creatine (tCr) were measured from sixteen 5x5x10 mm3 spectroscopic imaging voxels in the rostral pons. Results MS patients with high fatigue had lower NAA/tCr concentration in the tegmental pons compared to control subjects. By using NAA and Cr values in the cerebellum for comparison, these NAA/tCr changes in the pons were driven by higher tCr concentration, and that these changes were focused in the WM regions. Discussion/Conclusion Since there were no changes in NAA concentration, the increase in tCr may be suggestive of gliosis, or an imbalanced equilibrium of the creatine and phosphocreatine ratio in the pons of relapsing-remitting MS patients with fatigue.
Collapse
|
47
|
Abstract
Due to its sensitivity to the different multiple sclerosis (MS)-related abnormalities, magnetic resonance imaging (MRI) has become an established tool to diagnose MS and to monitor its evolution. MRI has been included in the diagnostic workup of patients with clinically isolated syndromes suggestive of MS, and ad hoc criteria have been proposed and are regularly updated. In patients with definite MS, the ability of conventional MRI techniques to explain patients' clinical status and progression of disability is still suboptimal. Several advanced MRI-based technologies have been applied to estimate overall MS burden in the different phases of the disease. Their use has allowed the heterogeneity of MS pathology in focal lesions, normal-appearing white matter and gray matter to be graded in vivo. Recently, additional features of MS pathology, including macrophage infiltration and abnormal iron deposition, have become quantifiable. All of this, combined with functional imaging techniques, is improving our understanding of the mechanisms associated with MS evolution. In the near future, the use of ultrahigh-field systems is likely to provide additional insight into disease pathophysiology. However, the utility of advanced MRI techniques in clinical trial monitoring and in assessing individual patients' response to treatment still needs to be assessed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
48
|
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system characterised by immune-mediated demyelination, and is a leading cause of neurological disability worldwide. It has a wide spectrum of clinical presentations which overlap with other neurological conditions many times. Further, the radiological array of findings in MS can also be confused for multiple other conditions, leading to the need to look for the more typical findings, and interpret these in close conjunction with the clinical picture including temporal evolution. This review aims to revisit the MRI findings in MS, including recent innovations in imaging, and to help distinguish MS from its mimics.
Collapse
Affiliation(s)
- Aparna Katdare
- Department of Neuroradiology, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India
| | - Meher Ursekar
- Department of Neuroradiology, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
49
|
Wattjes MP, Rovira À, Miller D, Yousry TA, Sormani MP, de Stefano MP, Tintoré M, Auger C, Tur C, Filippi M, Rocca MA, Fazekas F, Kappos L, Polman C, Frederik Barkhof, Xavier Montalban. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nat Rev Neurol 2015; 11:597-606. [PMID: 26369511 DOI: 10.1038/nrneurol.2015.157] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of MRI in the assessment of multiple sclerosis (MS) goes far beyond the diagnostic process. MRI techniques can be used as regular monitoring to help stage patients with MS and measure disease progression. MRI can also be used to measure lesion burden, thus providing useful information for the prediction of long-term disability. With the introduction of a new generation of immunomodulatory and/or immunosuppressive drugs for the treatment of MS, MRI also makes an important contribution to the monitoring of treatment, and can be used to determine baseline tissue damage and detect subsequent repair. This use of MRI can help predict treatment response and assess the efficacy and safety of new therapies. In the second part of the MAGNIMS (Magnetic Resonance Imaging in MS) network's guidelines on the use of MRI in MS, we focus on the implementation of this technique in prognostic and monitoring tasks. We present recommendations on how and when to use MRI for disease monitoring, and discuss some promising MRI approaches that may be introduced into clinical practice in the near future.
Collapse
|
50
|
MacMillan EL, Tam R, Zhao Y, Vavasour IM, Li DKB, Oger J, Freedman MS, Kolind SH, Traboulsee AL. Progressive multiple sclerosis exhibits decreasing glutamate and glutamine over two years. Mult Scler 2015; 22:112-6. [DOI: 10.1177/1352458515586086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
Background: Few biomarkers of progressive multiple sclerosis (MS) are sensitive to change within the two-year time frame of a clinical trial. Objective: To identify biomarkers of MS disease progression with magnetic resonance spectroscopy (MRS) in secondary progressive MS (SPMS). Methods: Forty-seven SPMS subjects were scanned at baseline and annually for two years. Concentrations of N-acetylaspartate, total creatine, total choline, myo-inositol, glutamate, glutamine, and the sum glutamate+glutamine were measured in a single white matter voxel. Results: Glutamate and glutamine were the only metabolites to show an effect with time: with annual declines of (95% confidence interval): glutamate −4.2% (−6.2% to −2.2%, p < 10−4), glutamine −7.3% (−11.8% to −2.9%, p = 0.003), and glutamate+glutamine −5.2% (−7.6% to −2.8%, p < 10−4). Metabolite rates of change were more apparent than changes in clinical scores or brain atrophy measures. Conclusions: The high rates of change of both glutamate and glutamine over two years suggest they are promising new biomarkers of MS disease progression.
Collapse
Affiliation(s)
- EL MacMillan
- Division of Neurology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - R Tam
- Department of Radiology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada/UBC MS/MRI Research Group, The University of British Columbia, Vancouver, Canada
| | - Y Zhao
- UBC MS/MRI Research Group, The University of British Columbia, Vancouver, Canada
| | - IM Vavasour
- Department of Radiology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - DKB Li
- Department of Radiology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada/UBC MS/MRI Research Group, The University of British Columbia, Vancouver, Canada
| | - J Oger
- Division of Neurology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - MS Freedman
- Department of Neurology, Faculty of Medicine, The University of Ottawa, Canada
| | - SH Kolind
- Division of Neurology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - AL Traboulsee
- Division of Neurology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|