1
|
Poliva O, Herrera C, Sugai K, Whittle N, Leek MR, Barnes S, Holshouser B, Yi A, Venezia JH. Additive effects of mild head trauma, blast exposure, and aging within white matter tracts: A novel Diffusion Tensor Imaging analysis approach. J Neuropathol Exp Neurol 2024; 83:853-869. [PMID: 39053000 DOI: 10.1093/jnen/nlae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Existing diffusion tensor imaging (DTI) studies of neurological injury following high-level blast exposure (hlBE) in military personnel have produced widely variable results. This is potentially due to prior studies often not considering the quantity and/or recency of hlBE, as well as co-morbidity with non-blast head trauma (nbHT). Herein, we compare commonly used DTI metrics: fractional anisotropy and mean, axial, and radial diffusivity, in Veterans with and without history of hlBE and/or nbHT. We use both the traditional method of dividing participants into 2 equally weighted groups and an alternative method wherein each participant is weighted by quantity and recency of hlBE and/or nbHT. While no differences were detected using the traditional method, the alternative method revealed diffuse and extensive changes in all DTI metrics. These effects were quantified within 43 anatomically defined white matter tracts, which identified the forceps minor, middle corpus callosum, acoustic and optic radiations, fornix, uncinate, inferior fronto-occipital and inferior longitudinal fasciculi, and cingulum, as the pathways most affected by hlBE and nbHT. Moreover, additive effects of aging were present in many of the same tracts suggesting that these neuroanatomical effects may compound with age.
Collapse
Affiliation(s)
- Oren Poliva
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | | | - Kelli Sugai
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Nicole Whittle
- VA Portland Healthcare System, Portland, OR, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Samuel Barnes
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
2
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2024. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
3
|
Urbanik A, Guz W, Brożyna M, Ostrogórska M. Changes in the central nervous system in football players: an MRI study. Acta Radiol 2024; 65:967-974. [PMID: 38767036 DOI: 10.1177/02841851241248410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Football (soccer) is the world's most popular team sport. PURPOSE To comprehensively examine the brain in football (soccer) players, with the use of magnetic resonance imaging (MRI) techniques. MATERIAL AND METHODS The study involved 65 football players and 62 controls. The MR examinations were performed using MR 1.5-T system (Optima MR 360; GE Medical Systems). The examinations were carried out in the 3D Bravo, CUBE, FSEpropeller, and diffusion-weighted imaging (DWI) sequences. The 1HMRS signal was obtained from the volume of interest in the frontal and occipital lobes on both sides. RESULTS The present study, based on structural MRI, shows some changes in the brains of the group of football players. The findings show asymmetry of the ventricular system in four football players, arachnoid cysts in the parieto-occipital region, and pineal cysts. NAA/Cr concentration in the right frontal lobe was lower in the football players than in the controls, and the Glx/Cr concentration in the right occipital lobe was higher. The apparent diffusion coefficient value is lower in football players in the occipital lobes. CONCLUSION Playing football can cause measurable changes in the brain, known to occur in patients diagnosed with traumatic brain injury. The present findings fill the gap in the literature by contributing evidence showing that playing football may lead to changes in the brain, without clinical symptoms of concussion.
Collapse
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wiesław Guz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Maciej Brożyna
- Institute of Physical Culture Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Monika Ostrogórska
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Weaver C, Xiao L, Wen Q, Wu YC, Harezlak J. Biclustering Multivariate Longitudinal Data with Application to Recovery Trajectories of White Matter After Sport-Related Concussion. DATA SCIENCE IN SCIENCE 2024; 3:2376535. [PMID: 39398101 PMCID: PMC11466369 DOI: 10.1080/26941899.2024.2376535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 10/15/2024]
Abstract
Biclustering is the task of simultaneously clustering the samples and features of a data set. In doing so, subsets of samples that exhibit similar behaviors across subsets of features can be identified. Motivated by a longitudinal diffusion tensor imaging study of sport-related concussion (SRC), we present the problem of biclustering multivariate longitudinal data in which subjects and features are grouped simultaneously based on longitudinal patterns rather than magnitude. We propose a penalized regression based method for solving this problem by exploiting the heterogeneity in the longitudinal patterns within subjects and features. We evaluate the performance of the proposed methods via a simulation study and apply them to the motivating dataset, revealing distinctive patterns of white-matter abnormalities within subgroups of SRC cases.
Collapse
Affiliation(s)
- Caleb Weaver
- Department of Statistics, North Carolina State University
| | - Luo Xiao
- Department of Statistics, North Carolina State University
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University Bloomington
- Department of Mathematics, University of Wrocław, Poland
| |
Collapse
|
5
|
Wu Z, Wang J, Chen Z, Yang Q, Xing Z, Cao D, Bao J, Kang T, Lin J, Cai S, Chen Z, Cai C. FlexDTI: flexible diffusion gradient encoding scheme-based highly efficient diffusion tensor imaging using deep learning. Phys Med Biol 2024; 69:115012. [PMID: 38688288 DOI: 10.1088/1361-6560/ad45a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Objective. Most deep neural network-based diffusion tensor imaging methods require the diffusion gradients' number and directions in the data to be reconstructed to match those in the training data. This work aims to develop and evaluate a novel dynamic-convolution-based method called FlexDTI for highly efficient diffusion tensor reconstruction with flexible diffusion encoding gradient scheme.Approach. FlexDTI was developed to achieve high-quality DTI parametric mapping with flexible number and directions of diffusion encoding gradients. The method used dynamic convolution kernels to embed diffusion gradient direction information into feature maps of the corresponding diffusion signal. Furthermore, it realized the generalization of a flexible number of diffusion gradient directions by setting the maximum number of input channels of the network. The network was trained and tested using datasets from the Human Connectome Project and local hospitals. Results from FlexDTI and other advanced tensor parameter estimation methods were compared.Main results. Compared to other methods, FlexDTI successfully achieves high-quality diffusion tensor-derived parameters even if the number and directions of diffusion encoding gradients change. It reduces normalized root mean squared error by about 50% on fractional anisotropy and 15% on mean diffusivity, compared with the state-of-the-art deep learning method with flexible diffusion encoding gradient scheme.Significance. FlexDTI can well learn diffusion gradient direction information to achieve generalized DTI reconstruction with flexible diffusion gradient scheme. Both flexibility and reconstruction quality can be taken into account in this network.
Collapse
Affiliation(s)
- Zejun Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiechao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zunquan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qinqin Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhen Xing
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Taijiang District, Fuzhou 350005, People's Republic of China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Taijiang District, Fuzhou 350005, People's Republic of China
| | - Jianfeng Bao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Taishan Kang
- Department of MRI, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Jianzhong Lin
- Department of MRI, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
6
|
Dogahe MH, Ramezani S, Reihanian Z, Raminfard S, Feizkhah A, Alijani B, Herfeh SS. Role of brain metabolites during acute phase of mild traumatic brain injury in prognosis of post-concussion syndrome: A 1H-MRS study. Psychiatry Res Neuroimaging 2023; 335:111709. [PMID: 37688998 DOI: 10.1016/j.pscychresns.2023.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
This study has investigated the potency and accuracy of early magnetic resonance spectroscopy (MRS) to predict post-concussion syndrome (PCS) in adult patients with a single mild traumatic brain injury (mTBI) without abnormality on a routine brain scan. A total of 48 eligible mTBI patients and 24 volunteers in the control group participated in this project. Brain MRS over regions of interest (ROI) and signal stop task (SST) were done within the first 72 hours of TBI onset. After six months, PCS appearance and severity were determined. In non-PCS patients, N-acetyl aspartate (NAA) levels significantly increased in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) relative to the control group, however, this increase of NAA levels were recorded in all ROI versus PCS subjects. There were dramatic declines in creatinine (Cr) levels of all ROI and a decrease in choline levels of corpus callosum (CC) in the PCS group versus control and non-PCS ones. NAA and NAA/Cho values in ACC were the main predictors of PCS appearance. The Cho/Cr level in ACC was the first predictor of PCS severity. Predicting accuracy was higher in ACC than in other regions. This study suggested the significance of neuro-markers in ACC for optimal prediction of PCS and rendered a new insight into the biological mechanism of mTBI that underpins PCS.
Collapse
Affiliation(s)
| | - Sara Ramezani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Food Science and Nutrition, California State University, Fresno, CA, USA; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Zoheir Reihanian
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Samira Raminfard
- Neuroimaging and Analysis Group, Research Center of Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Physics, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Alijani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Sedaghat Herfeh
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Thielen H, Tuts N, Lafosse C, Gillebert CR. The Neuroanatomy of Poststroke Subjective Sensory Hypersensitivity. Cogn Behav Neurol 2023; 36:68-84. [PMID: 37026772 DOI: 10.1097/wnn.0000000000000341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2022] [Indexed: 04/08/2023]
Abstract
BACKGROUND Although subjective sensory hypersensitivity is prevalent after stroke, it is rarely recognized by health care providers, and its neural mechanisms are largely unknown. OBJECTIVE To investigate the neuroanatomy of poststroke subjective sensory hypersensitivity as well as the sensory modalities in which subjective sensory hypersensitivity can occur by conducting both a systematic literature review and a multiple case study of patients with subjective sensory hypersensitivity. METHOD For the systematic review, we searched three databases (Web of Science, PubMed, and Scopus) for empirical articles discussing the neuroanatomy of poststroke subjective sensory hypersensitivity in humans. We assessed the methodological quality of the included studies using the case reports critical appraisal tool and summarized the results using a qualitative synthesis. For the multiple case study, we administered a patient-friendly sensory sensitivity questionnaire to three individuals with a subacute right-hemispheric stroke and a matched control group and delineated brain lesions on a clinical brain scan. RESULTS Our systematic literature search resulted in four studies (describing eight stroke patients), all of which linked poststroke subjective sensory hypersensitivity to insular lesions. The results of our multiple case study indicated that all three stroke patients reported an atypically high sensitivity to different sensory modalities. These patients' lesions overlapped with the right anterior insula, the claustrum, and the Rolandic operculum. CONCLUSION Both our systematic literature review and our multiple case study provide preliminary evidence for a role of the insula in poststroke subjective sensory hypersensitivity and suggest that poststroke subjective sensory hypersensitivity can occur in different sensory modalities.
Collapse
Affiliation(s)
- Hella Thielen
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nora Tuts
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Céline Raymond Gillebert
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational Psychological Research, KU Leuven-Hospital East-Limbourgh, Genk, Belgium
| |
Collapse
|
8
|
Xu H, Xu C, Gu P, Hu Y, Guo Y, Bai G. Neuroanatomical restoration of salience network links reduced headache impact to cognitive function improvement in mild traumatic brain injury with posttraumatic headache. J Headache Pain 2023; 24:43. [PMID: 37081382 PMCID: PMC10120179 DOI: 10.1186/s10194-023-01579-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Neuroanatomical alterations have been associated with cognitive deficits in mild traumatic brain injury (MTBI). However, most studies have focused on the abnormal gray matter volume in widespread brain regions using a cross-sectional design in MTBI. This study investigated the neuroanatomical restoration of key regions in salience network and the outcomes in MTBI. METHODS Thirty-six MTBI patients with posttraumatic headache (PTH) and 34 matched healthy controls were enrolled in this study. All participants underwent magnetic resonance imaging scans and were assessed with clinical measures during the acute and subacute phases. Surface-based morphometry was conducted to get cortical thickness (CT) and cortical surface area (CSA) of neuroanatomical regions which were defined by the Desikan atlas. Then mixed analysis of variance models were performed to examine CT and CSA restoration in patients from acute to subacute phase related to controls. Finally, mediation effects models were built to explore the relationships between neuroanatomical restoration and symptomatic improvement in patients. RESULTS MTBI patients with PTH showed reduced headache impact and improved cognitive function from the acute to subacute phase. Moreover, patients experienced restoration of CT of the left caudal anterior cingulate cortex (ACC) and left insula and cortical surface area of the right superior frontal gyrus from acute to subacute phase. Further mediation analysis found that CT restoration of the ACC and insula mediated the relationship between reduced headache impact and improved cognitive function in patients. CONCLUSIONS These results showed that neuroanatomical restoration of key regions in salience network correlated reduced headache impact with cognitive function improvement in MTBI with PTH, which further substantiated the vital role of salience network and provided an alternative clinical target for cognitive improvement in MTBI patients with PTH.
Collapse
Affiliation(s)
- Hui Xu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada.
| | - Cheng Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Pengpeng Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yike Hu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yunyu Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
9
|
Moro F, Lisi I, Tolomeo D, Vegliante G, Pascente R, Mazzone E, Hussain R, Micotti E, Dallmeier J, Pischiutta F, Bianchi E, Chiesa R, Wang KK, Zanier ER. Acute Blood Levels of Neurofilament Light Indicate One-Year White Matter Pathology and Functional Impairment in Repetitive Mild Traumatic Brain Injured Mice. J Neurotrauma 2023. [PMID: 36576018 DOI: 10.1089/neu.2022.0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mild traumatic brain injury (mTBI) mostly causes transient symptoms, but repeated (r)mTBI can lead to neurodegenerative processes. Diagnostic tools to evaluate the presence of ongoing occult neuropathology are lacking. In a mouse model of rmTBI, we investigated MRI and plasma biomarkers of brain damage before chronic functional impairment arose. Anesthetized adult male and female C57BL/6J mice were subjected to rmTBI or a sham procedure. Sensorimotor deficits were evaluated up to 12 months post-injury in SNAP and Neuroscore tests. Cognitive function was assessed in the novel object recognition test at six and 12 months. Diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI) were performed at six and 12 months to examine white matter and structural damage. Plasma levels of neurofilament light (NfL) were assessed longitudinally up to 12 months. Brain histopathology was performed at 12 months. Independent groups of mice were used to examine the effects of 2-, 7- and 14-days inter-injury intervals on acute plasma NfL levels and on hyperactivity. Twelve months after an acute transient impairment, sensorimotor functions declined again in rmTBI mice (p < 0.001 vs sham), but not earlier. Similarly, rmTBI mice showed memory impairment at 12 (p < 0.01 vs sham) but not at 6 months. White matter damage examined by DTI was evident in rmTBI mice at both six and 12 months (p < 0.001 vs sham). This was associated with callosal atrophy (p < 0.001 vs sham) evaluated by structural MRI. Plasma NfL at one week was elevated in rmTBI (p < 0.001 vs sham), and its level correlated with callosal atrophy at 12 months (Pearson r = 0.72, p < 0.01). Histopathology showed thinning of the corpus callosum and marked astrogliosis in rmTBI mice. The NfL levels were higher in mice subjected to short (2 days) compared with longer (7 and 14 days) inter-injury intervals (p < 0.05), and this correlated with hyperactivity in mice (Pearson r = 0.50; p < 0.05). These findings show that rmTBI causes white matter pathology detectable by MRI before chronic functional impairment. Early quantification of plasma NfL correlates with the degree of white matter atrophy one year after rmTBI and can serve to monitor the brain's susceptibility to a second mTBI, supporting its potential clinical application to guide the return to practice in sport-related TBI.
Collapse
Affiliation(s)
- Federico Moro
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gloria Vegliante
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Mazzone
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Riaz Hussain
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Julian Dallmeier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Bianchi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
10
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
11
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
12
|
Stenberg J, Skandsen T, Gøran Moen K, Vik A, Eikenes L, Håberg AK. Diffusion Tensor and Kurtosis Imaging Findings the First Year following Mild Traumatic Brain Injury. J Neurotrauma 2023; 40:457-471. [PMID: 36305387 PMCID: PMC9986024 DOI: 10.1089/neu.2022.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite enormous research interest in diffusion tensor imaging and diffusion kurtosis imaging (DTI; DKI) following mild traumatic brain injury (MTBI), it remains unknown how diffusion in white matter evolves post-injury and relates to acute MTBI characteristics. This prospective cohort study aimed to characterize diffusion changes in white matter the first year after MTBI. Patients with MTBI (n = 193) and matched controls (n = 83) underwent 3T magnetic resonance imaging (MRI) within 72 h and 3- and 12-months post-injury. Diffusion data were analyzed in three steps: 1) voxel-wise comparisons between the MTBI and control group were performed with tract-based spatial statistics at each time-point; 2) clusters of significant voxels identified in step 1 above were evaluated longitudinally with mixed-effect models; 3) the MTBI group was divided into: (A) complicated (with macrostructural findings on MRI) and uncomplicated MTBI; (B) long (1-24 h) and short (< 1 h) post-traumatic amnesia (PTA); and (C) other and no other concurrent injuries to investigate if findings in step 1 were driven mainly by aberrant diffusion in patients with a more severe injury. At 72 h, voxel-wise comparisons revealed significantly lower fractional anisotropy (FA) in one tract and significantly lower mean kurtosis (Kmean) in 11 tracts in the MTBI compared with control group. At 3 months, the MTBI group had significantly higher mean diffusivity in eight tracts compared with controls. At 12 months, FA was significantly lower in four tracts and Kmean in 10 tracts in patients with MTBI compared with controls. There was considerable overlap in affected tracts across time, including the corpus callosum, corona radiata, internal and external capsule, and cerebellar peduncles. Longitudinal analyses revealed that the diffusion metrics remained relatively stable throughout the first year after MTBI. The significant group*time interactions identified were driven by changes in the control rather than the MTBI group. Further, differences identified in step 1 did not result from greater diffusion abnormalities in patients with complicated MTBI, long PTA, or other concurrent injuries, as standardized mean differences in diffusion metrics between the groups were small (0.07 ± 0.11) and non-significant. However, follow-up voxel-wise analyses revealed that other concurrent injuries had effects on diffusion metrics, but predominantly in other metrics and at other time-points than the effects observed in the MTBI versus control group analysis. In conclusion, patients with MTBI differed from controls in white matter integrity already 72 h after injury. Diffusion metrics remained relatively stable throughout the first year after MTBI and were not driven by deviating diffusion in patients with a more severe MTBI.
Collapse
Affiliation(s)
- Jonas Stenberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kent Gøran Moen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology, Vestre Viken Hospital Trust, Drammen Hospital, Drammen, Norway.,Department of Radiology, Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
13
|
Rapid Prediction and Accurate Location Selection of Mild Traumatic Brain Injury (mTBI) by Using Multiple Parameter Analysis of Diffusion Tensor Imaging (DTI): Integrating Correlational and Clinical Approaches. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7467479. [PMID: 36700239 PMCID: PMC9870681 DOI: 10.1155/2023/7467479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Background Mild traumatic brain injury (mTBI) is a widespread and serious public health problem which also causes physical and psychological suffering to patients and their families and imposes a significant economic burden on society. But it is usually very difficult to detect and provide warning of mTBI in early stage. Therefore, a novel method is urgent for the increasing demands on the accurate and rapid prediction and feature selection of mTBI. Objectives To establish a better idea of the performance of neuroimage biomarker in the acute phase of mTBI, our study adopts diffusion tensor imaging (DTI) which could present the pathophysiological changes of white matter through several parameters noninvasively and combined with behavioral experiments such as intelligence quotient test, memory, executive function, and motion function to find the relationship between DTI abnormal brain regions and behavioral abnormalities. Then, provide new method for rapid prediction and feature selection of mTBI. Methods 77 mTBI patients were admitted to the Emergency and Neurosurgery Departments of the Third Xiangya Hospital of Central South University from August 2019 to July 2021; the patients (41 males and 36 females) suffered mTBI because of car accident (36), assault (11), and fall (30). All the mTBI patients were examined through MRI scan and behavioral psychology test within 3 days after injury. MRI images and behavioral psychology tests were also collected; the correlation between the DTI biomarker and the cognitive psychological outcome was analyzed. A series of integration and computational methods were also used for fusion arithmetic and result analysis. Results Compared with the healthy control group, the patients in the acute stage of mTBI presented lower scores in the digit symbol substitution test (DSST), suggesting that mTBI patients in the acute stage had decline in information processing speed and associative learning. The difference of DTI parameters in acute stage mTBI patients was mainly manifested as increased AD and MD values in multiple brain regions, while RD and FA values have no significant difference. The most significant brain regions were bilateral corticospinal tracts (CST), bilateral posterior internal capsule lentiform nucleus, bilateral superior longitudinal fasciculus, left terminal striae, and left sagittal plane with right posterior thalamic radiation. The Pearson correlation coefficient was significantly positive correlation between AD and MD elevation in the left sagittal layer and the results of DSST and digit span in acute stage mTBI patients. Conclusions The acute phase mTBI patients performed lower score on the DSST than those in the normal control group. This neuropsychological change was associated with increased AD value and MD value in the left sagittal layer, which indicated reduction of information processing speed in mTBI patients in the acute phase. It might be related to abnormal AD value and MD value in the upper longitudinal tract, lower longitudinal tract, lower frontal occipital tract, and sagittal layer. In this study, combined with neuropsychological test and increase of the AD value and MD value in certain brain region, neurosurgeon should pay more attention to the abnormal of the upper longitudinal tract and the patients' information processing speed in the diagnosis and treatment of the acute phase mTBI patients. The study offers a much more secure and integrated method for rapid prediction and feature selection of mTBI, which could have broader clinical approaches and application prospects.
Collapse
|
14
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
15
|
Mahoney SO, Chowdhury NF, Ngo V, Imms P, Irimia A. Mild Traumatic Brain Injury Results in Significant and Lasting Cortical Demyelination. Front Neurol 2022; 13:854396. [PMID: 35812106 PMCID: PMC9262516 DOI: 10.3389/fneur.2022.854396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Despite contributing to neurocognitive deficits, intracortical demyelination after traumatic brain injury (TBI) is understudied. This study uses magnetic resonance imaging (MRI) to map intracortical myelin and its change in healthy controls and after mild TBI (mTBI). Acute mTBI involves reductions in relative myelin content primarily in lateral occipital regions. Demyelination mapped ~6 months post-injury is significantly more severe than that observed in typical aging (p < 0.05), with temporal, cingulate, and insular regions losing more myelin (30%, 20%, and 16%, respectively) than most other areas, although occipital regions experience 22% less demyelination. Thus, occipital regions may be more susceptible to primary injury, whereas temporal, cingulate and insular regions may be more susceptible to later manifestations of injury sequelae. The spatial profiles of aging- and mTBI-related chronic demyelination overlap substantially; exceptions include primary motor and somatosensory cortices, where myelin is relatively spared post-mTBI. These features resemble those of white matter demyelination and cortical thinning during Alzheimer's disease, whose risk increases after mTBI.
Collapse
Affiliation(s)
- Sean O. Mahoney
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Nahian F. Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Andrew and Edna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Andrei Irimia
| |
Collapse
|
16
|
Mendoza M, Shotbolt M, Faiq MA, Parra C, Chan KC. Advanced Diffusion MRI of the Visual System in Glaucoma: From Experimental Animal Models to Humans. BIOLOGY 2022; 11:454. [PMID: 35336827 PMCID: PMC8945790 DOI: 10.3390/biology11030454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a group of ophthalmologic conditions characterized by progressive retinal ganglion cell death, optic nerve degeneration, and irreversible vision loss. While intraocular pressure is the only clinically modifiable risk factor, glaucoma may continue to progress at controlled intraocular pressure, indicating other major factors in contributing to the disease mechanisms. Recent studies demonstrated the feasibility of advanced diffusion magnetic resonance imaging (dMRI) in visualizing the microstructural integrity of the visual system, opening new possibilities for non-invasive characterization of glaucomatous brain changes for guiding earlier and targeted intervention besides intraocular pressure lowering. In this review, we discuss dMRI methods currently used in visual system investigations, focusing on the eye, optic nerve, optic tract, subcortical visual brain nuclei, optic radiations, and visual cortex. We evaluate how conventional diffusion tensor imaging, higher-order diffusion kurtosis imaging, and other extended dMRI techniques can assess the neuronal and glial integrity of the visual system in both humans and experimental animal models of glaucoma, among other optic neuropathies or neurodegenerative diseases. We also compare the pros and cons of these methods against other imaging modalities. A growing body of dMRI research indicates that this modality holds promise in characterizing early glaucomatous changes in the visual system, determining the disease severity, and identifying potential neurotherapeutic targets, offering more options to slow glaucoma progression and to reduce the prevalence of this world's leading cause of irreversible but preventable blindness.
Collapse
Affiliation(s)
- Monica Mendoza
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Max Shotbolt
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Kevin C. Chan
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
- Department of Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
| |
Collapse
|
17
|
Mistral T, Roca P, Maggia C, Tucholka A, Forbes F, Doyle S, Krainik A, Galanaud D, Schmitt E, Kremer S, Kastler A, Troprès I, Barbier EL, Payen JF, Dojat M. Automated Quantification of Brain Lesion Volume From Post-trauma MR Diffusion-Weighted Images. Front Neurol 2022; 12:740603. [PMID: 35281992 PMCID: PMC8905597 DOI: 10.3389/fneur.2021.740603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectivesDetermining the volume of brain lesions after trauma is challenging. Manual delineation is observer-dependent and time-consuming and cannot therefore be used in routine practice. The study aimed to evaluate the feasibility of an automated atlas-based quantification procedure (AQP) based on the detection of abnormal mean diffusivity (MD) values computed from diffusion-weighted MR images.MethodsThe performance of AQP was measured against manual delineation consensus by independent raters in two series of experiments based on: (i) realistic trauma phantoms (n = 5) where low and high MD values were assigned to healthy brain images according to the intensity, form and location of lesion observed in real TBI cases; (ii) severe TBI patients (n = 12 patients) who underwent MR imaging within 10 days after injury.ResultsIn realistic TBI phantoms, no statistical differences in Dice similarity coefficient, precision and brain lesion volumes were found between AQP, the rater consensus and the ground truth lesion delineations. Similar findings were obtained when comparing AQP and manual annotations for TBI patients. The intra-class correlation coefficient between AQP and manual delineation was 0.70 in realistic phantoms and 0.92 in TBI patients. The volume of brain lesions detected in TBI patients was 59 ml (19–84 ml) (median; 25–75th centiles).ConclusionsOur results support the feasibility of using an automated quantification procedure to determine, with similar accuracy to manual delineation, the volume of low and high MD brain lesions after trauma, and thus allow the determination of the type and volume of edematous brain lesions. This approach had comparable performance with manual delineation by a panel of experts. It will be tested in a large cohort of patients enrolled in the multicenter OxyTC trial (NCT02754063).
Collapse
Affiliation(s)
- Thomas Mistral
- Univ. Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Christophe Maggia
- Univ. Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Florence Forbes
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
| | | | - Alexandre Krainik
- Univ. Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CNRS, IRMaGe, Grenoble, France
| | | | | | | | - Adrian Kastler
- Univ. Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Irène Troprès
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CNRS, IRMaGe, Grenoble, France
| | - Emmanuel L. Barbier
- Univ. Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CNRS, IRMaGe, Grenoble, France
| | - Jean-François Payen
- Univ. Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Michel Dojat
- Univ. Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- *Correspondence: Michel Dojat
| |
Collapse
|
18
|
Kim E, Yoo RE, Seong MY, Oh BM. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. Eur J Radiol 2021; 147:110117. [PMID: 34973540 DOI: 10.1016/j.ejrad.2021.110117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE This study aimed to review diffusion tensor imaging studies of mild traumatic brain injury (mTBI) in adults with longitudinal acquisition of data and investigate the variability of findings in association with related factors, such as the time post-injury. METHODS Eligible studies from PubMed and EMBASE were searched to identify relevant studies for review. Of the 540 studies, 23 observational studies without intervention and with the following characteristics were included: original research in which adults with mTBI were examined, diffusion tensor imaging was acquired at least twice, white matter integrity was investigated by estimating diffusion metrics, and mode of injury was not restricted to sport- or blast-related mTBI. RESULTS Baseline scans were acquired within 3 weeks post-injury, followed by longitudinal scans within 3 months and at 12 months post-injury. During the acute/subacute period, mixed results (increase, decrease, or no significant change) of fractional anisotropy (FA) were observed compared to those in controls. Some studies reported increased FA during the acute/subacute period compared to controls, followed by normalization of FA. Decreased FA was also reported during the acute/subacute period, which lasted long into the chronic phase. In the acute phase, the mean diffusivity (MD) was greater than that in the controls. Compared to the early phase of injury, MD was reduced in the follow-up phase in most studies in the mTBI group. Insignificant differences in FA and MD have been reported in several studies. Such variability limits the clinical usefulness of diffusion tensor metrics. CONCLUSIONS There was a high variability in reported changes in white matter integrity. Decreased FA not only in acute/subacute but also in long-term period after injury may indicate long-term neurodegenerative processes after mTBI. Nevertheless, longitudinal changes in MD towards normalization suggest possible recovery. Long-term cohort studies with research initiatives should be considered to elucidate brain changes after mTBI.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea.
| |
Collapse
|
19
|
Yeh FC, Irimia A, Bastos DCDA, Golby AJ. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245:118651. [PMID: 34673247 PMCID: PMC8859988 DOI: 10.1016/j.neuroimage.2021.118651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
White matter fiber tracking using diffusion magnetic resonance imaging (dMRI) provides a noninvasive approach to map brain connections, but improving anatomical accuracy has been a significant challenge since the birth of tractography methods. Utilizing tractography in brain studies therefore requires understanding of its technical limitations to avoid shortcomings and pitfalls. This review explores tractography limitations and how different white matter pathways pose different challenges to fiber tracking methodologies. We summarize the pros and cons of commonly-used methods, aiming to inform how tractography and its related analysis may lead to questionable results. Extending these experiences, we review the clinical utilization of tractography in patients with brain tumors and traumatic brain injury, starting from tensor-based tractography to more advanced methods. We discuss current limitations and highlight novel approaches in the context of these two conditions to inform future tractography developments.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Huie JR, Mondello S, Lindsell CJ, Antiga L, Yuh EL, Zanier ER, Masson S, Rosario BL, Ferguson AR. Biomarkers for Traumatic Brain Injury: Data Standards and Statistical Considerations. J Neurotrauma 2021; 38:2514-2529. [PMID: 32046588 PMCID: PMC8403188 DOI: 10.1089/neu.2019.6762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent biomarker innovations hold potential for transforming diagnosis, prognostic modeling, and precision therapeutic targeting of traumatic brain injury (TBI). However, many biomarkers, including brain imaging, genomics, and proteomics, involve vast quantities of high-throughput and high-content data. Management, curation, analysis, and evidence synthesis of these data are not trivial tasks. In this review, we discuss data management concepts and statistical and data sharing strategies when dealing with biomarker data in the context of TBI research. We propose that application of biomarkers involves three distinct steps-discovery, evaluation, and evidence synthesis. First, complex/big data has to be reduced to useful data elements at the stage of biomarker discovery. Second, inferential statistical approaches must be applied to these biomarker data elements for assessment of biomarker clinical utility and validity. Last, synthesis of relevant research is required to support practice guidelines and enable health decisions informed by the highest quality, up-to-date evidence available. We focus our discussion around recent experiences from the International Traumatic Brain Injury Research (InTBIR) initiative, with a specific focus on four major clinical projects (Transforming Research and Clinical Knowledge in TBI, Collaborative European NeuroTrauma Effectiveness Research in TBI, Collaborative Research on Acute Traumatic Brain Injury in Intensive Care Medicine in Europe, and Approaches and Decisions in Acute Pediatric TBI Trial), which are currently enrolling subjects in North America and Europe. We discuss common data elements, data collection efforts, data-sharing opportunities, and challenges, as well as examine the statistical techniques required to realize successful adoption and use of biomarkers in the clinic as a foundation for precision medicine in TBI.
Collapse
Affiliation(s)
- J. Russell Huie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Christopher J. Lindsell
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Esther L. Yuh
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Elisa R. Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Serge Masson
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Bedda L. Rosario
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- San Francisco Veterans Affairs Medical Center (SFVAMC), San Francisco, California, USA
| |
Collapse
|
21
|
Sung D, Smith JL, Yarabarla S, Prasad O, Owusu-Ansah M, Ekici S, Allen JW, Mines B, Fleischer CC. Changes in brain metabolites and resting-state connectivity in collegiate basketball players as a function of play time. J Neuroimaging 2021; 31:1146-1155. [PMID: 34288203 DOI: 10.1111/jon.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance (MR) biomarkers are emerging for sports-related traumatic brain injury (TBI), but the effect of play time has not been characterized. Our goal was to characterize brain and inflammatory marker changes as a function of play time. METHODS Nine male players (21±2 years old) from a single collegiate basketball team were included. MR imaging (MRI), MR spectroscopy, and plasma were collected pre, mid, and postseason. Game time played was calculated for each subject. Changes in brain volume, diffusion tensor imaging (DTI), metabolites (normalized to total creatine, tCr), temperature, structural and functional connectivity, and inflammatory markers were quantified. RESULTS Myo-inositol/tCr in the left frontal white matter and brain temperature in the left frontal lobe varied significantly between time points. Glutamate (Glu/tCr) in the right frontal white matter and N-acetylaspartate in the posterior cingulate cortex (PCC) were negatively associated with minutes played. Midseason play time was associated with stronger blood-oxygen-level-dependent correlations between PCC and occipital areas, and weaker correlations between PCC and superior frontal connectivity. PCC Glu/tCr was positively associated with connectivity between the PCC and posterior supramarginal gyrus at preseason and with connectivity across time points among several right hemisphere regions. Volume, DTI, and inflammatory markers did not vary significantly. CONCLUSION Given that MR parameters vary with game play time in the absence of diagnosed injury, play time should be considered as a factor in sports-related TBI research.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Jeremy L Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Suma Yarabarla
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ojaswa Prasad
- Department of Medicine, Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, USA
| | - Maame Owusu-Ansah
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Selin Ekici
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason W Allen
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brandon Mines
- Department of Orthopedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Candace C Fleischer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Validating a Short Conners CPT 3 as a Screener: Predicting Self-reported CDC Concussion Symptoms in Children, Adolescents, and Adults. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2021. [DOI: 10.1007/s40817-021-00107-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Abstract
Supplemental digital content is available in the text. Objective The aims of this study were to investigate changes in regional brain volume after concussion (mild traumatic brain injury) and to examine the relationship between change in brain volume and cognitive deficits. Design Twenty-eight patients with mild traumatic brain injury and 27 age-matched controls were included in this study. Magnetic resonance imaging (3 T) data were obtained from the participants. Structural brain volume changes were examined using tensor-based morphometry, which identifies regional structural differences in the whole brain, including cerebrospinal fluid, gray matter, and white matter. Volume contraction and expansion were compared between groups using a two-sample t test. The association between time post-injury or neurocognitive function and volumetric changes was examined using regression analysis. Results Individuals with mild traumatic brain injury exhibited volume reduction in the brainstem, including the pontine reticular formation. Regional cerebral volume changes were not associated with time post-injury but were significantly associated with neurocognitive function, especially with executive card sorting test, forward digit span test, and performance on verbal learning test. The greater regional cerebral volume was associated with better cognitive performance after mild traumatic brain injury. Conclusion Decreased brainstem volume may indicate its vulnerability to traumatic injury, and cerebral volume in specific regions was positively associated with patients’ cognitive function after injury.
Collapse
|
24
|
Almeida MF, Piehler T, Carstens KE, Zhao M, Samadi M, Dudek SM, Norton CJ, Parisian CM, Farizatto KL, Bahr BA. Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures. Brain Pathol 2021; 31:e12936. [PMID: 33629462 PMCID: PMC8412116 DOI: 10.1111/bpa.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.
Collapse
Affiliation(s)
- Michael F. Almeida
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Thuvan Piehler
- U.S. Army Research LaboratoryAberdeen Proving GroundMDUSA
| | - Kelly E. Carstens
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Center for Computational Toxicology and ExposureU.S. Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - Meilan Zhao
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Mahsa Samadi
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Faculty of Medicine CentreImperial College LondonLondonUK
| | - Serena M. Dudek
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Christopher J. Norton
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Catherine M. Parisian
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Karen L.G. Farizatto
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Ben A. Bahr
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| |
Collapse
|
25
|
Elevated and Slowed EEG Oscillations in Patients with Post-Concussive Syndrome and Chronic Pain Following a Motor Vehicle Collision. Brain Sci 2021; 11:brainsci11050537. [PMID: 33923286 PMCID: PMC8145977 DOI: 10.3390/brainsci11050537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Mild traumatic brain injury produces significant changes in neurotransmission including brain oscillations. We investigated potential quantitative electroencephalography biomarkers in 57 patients with post-concussive syndrome and chronic pain following motor vehicle collision, and 54 healthy nearly age- and sex-matched controls. (2) Methods: Electroencephalography processing was completed in MATLAB, statistical modeling in SPSS, and machine learning modeling in Rapid Miner. Group differences were calculated using current-source density estimation, yielding whole-brain topographical distributions of absolute power, relative power and phase-locking functional connectivity. Groups were compared using independent sample Mann–Whitney U tests. Effect sizes and Pearson correlations were also computed. Machine learning analysis leveraged a post hoc supervised learning support vector non-probabilistic binary linear kernel classification to generate predictive models from the derived EEG signatures. (3) Results: Patients displayed significantly elevated and slowed power compared to controls: delta (p = 0.000000, r = 0.6) and theta power (p < 0.0001, r = 0.4), and relative delta power (p < 0.00001) and decreased relative alpha power (p < 0.001). Absolute delta and theta power together yielded the strongest machine learning classification accuracy (87.6%). Changes in absolute power were moderately correlated with duration and persistence of symptoms in the slow wave frequency spectrum (<15 Hz). (4) Conclusions: Distributed increases in slow wave oscillatory power are concurrent with post-concussive syndrome and chronic pain.
Collapse
|
26
|
Russell-Schulz B, Vavasour IM, Zhang J, MacKay AL, Purcell V, Muller AM, Brucar LR, Torres IJ, Panenka WJ, Virji-Babul N. Myelin water fraction decrease in individuals with chronic mild traumatic brain injury and persistent symptoms. Heliyon 2021; 7:e06709. [PMID: 33898831 PMCID: PMC8056430 DOI: 10.1016/j.heliyon.2021.e06709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
The diffuse and continually evolving secondary changes after mild traumatic brain injury (mTBI) make it challenging to assess alterations in brain-behaviour relationships. In this study we used myelin water imaging to evaluate changes in myelin water fraction (MWF) in individuals with chronic mTBI and persistent symptoms and measured their cognitive status using the NIH Toolbox Cognitive Battery. Fifteen adults with mTBI with persistent symptoms and twelve age, gender and education matched healthy controls took part in this study. We found a significant decrease in global white matter MWF in patients compared to the healthy controls. Significantly lower MWF was evident in most white matter region of interest (ROIs) examined including the corpus callosum (separated into genu, body and splenium), minor forceps, right anterior thalamic radiation, left inferior longitudinal fasciculus; and right and left superior longitudinal fasciculus and corticospinal tract. Although patients showed lower cognitive functioning, no significant correlations were found between MWF and cognitive measures. These results suggest that individuals with chronic mTBI who have persistent symptoms have reduced MWF.
Collapse
Affiliation(s)
- Bretta Russell-Schulz
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Irene M. Vavasour
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Zhang
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Alex L. MacKay
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Victoria Purcell
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Angela M. Muller
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leyla R. Brucar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ivan J. Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - William J. Panenka
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Naznin Virji-Babul
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Richter S, Winzeck S, Kornaropoulos EN, Das T, Vande Vyvere T, Verheyden J, Williams GB, Correia MM, Menon DK, Newcombe VFJ. Neuroanatomical Substrates and Symptoms Associated With Magnetic Resonance Imaging of Patients With Mild Traumatic Brain Injury. JAMA Netw Open 2021; 4:e210994. [PMID: 33734414 PMCID: PMC7974642 DOI: 10.1001/jamanetworkopen.2021.0994] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Importance Persistent symptoms after mild traumatic brain injury (mTBI) represent a major public health problem. Objective To identify neuroanatomical substrates of mTBI and the optimal timing for magnetic resonance imaging (MRI). Design, Setting, and Participants This prospective multicenter cohort study encompassed all eligible patients from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study (December 19, 2014, to December 17, 2017) and a local cohort (November 20, 2012, to December 19, 2013). Patients presented to the hospital within 24 hours of an mTBI (Glasgow Coma Score, 13-15), satisfied local criteria for computed tomographic scanning, and underwent MRI scanning less than 72 hours (MR1) and 2 to 3 weeks (MR2) after injury. In addition, 104 control participants were enrolled across all sites. Data were analyzed from January 1, 2019, to December 31, 2020. Exposure Mild TBI. Main Outcomes and Measures Volumes and diffusion parameters were extracted via automated bespoke pipelines. Symptoms were measured using the Rivermead Post Concussion Symptoms Questionnaire in the short term and the extended Glasgow Outcome Scale at 3 months. Results Among the 81 patients included in the analysis (73 CENTER-TBI and 8 local), the median age was 45 (interquartile range [IQR], 24-59; range, 14-85) years, and 57 (70.4%) were male. Structural sequences were available for all scans; diffusion data, for 73 MR1 and 79 MR2 scans. After adjustment for multiple comparisons between scans, visible lesions did not differ significantly, but cerebral white matter volume decreased (MR2:MR1 ratio, 0.98; 95% CI, 0.96-0.99) and ventricular volume increased (MR2:MR1 ratio, 1.06; 95% CI, 1.02-1.10). White matter volume was within reference limits on MR1 scans (patient to control ratio, 0.99; 95% CI, 0.97-1.01) and reduced on MR2 scans (patient to control ratio, 0.97; 95% CI, 0.95-0.99). Diffusion parameters changed significantly between scans in 13 tracts, following 1 of 3 trajectories. Symptoms measured by Rivermead Post Concussion Symptoms Questionnaire scores worsened in the progressive injury phenotype (median, +5.00; IQR, +2.00 to +5.00]), improved in the minimal change phenotype (median, -4.50; IQR, -9.25 to +1.75), and were variable in the pseudonormalization phenotype (median, 0.00; IQR, -6.25 to +9.00) (P = .02). Recovery was favorable for 33 of 65 patients (51%) and was more closely associated with MR1 than MR2 (area under the curve, 0.87 [95% CI, 0.78-0.96] vs 0.75 [95% CI, 0.62-0.87]; P = .009). Conclusions and Relevance These findings suggest that advanced MRI reveals potential neuroanatomical substrates of mTBI in white matter and is most strongly associated with odds of recovery if performed within 72 hours, although future validation is required.
Collapse
Affiliation(s)
- Sophie Richter
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Stefan Winzeck
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- BioMedIA, Department of Computing, Imperial College London, London, United Kingdom
| | - Evgenios N. Kornaropoulos
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Tilak Das
- Department of Radiology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Thijs Vande Vyvere
- Department of Radiology, University Hospital and University of Antwerp, Antwerp, Belgium
- Research and Development, icometrix, Leuven, Belgium
| | - Jan Verheyden
- Research and Development, icometrix, Leuven, Belgium
| | - Guy B. Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marta M. Correia
- MRC (Medical Research Council) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Virginia F. J. Newcombe
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
29
|
Mahan MY, Samadani U. Editorial. Lessons from the failure of diffusion tensor imaging to differentiate concussed from nonconcussed NFL players. J Neurosurg 2020; 133:1059-1062. [PMID: 31491767 DOI: 10.3171/2019.5.jns19892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Uzma Samadani
- Departments of1Bioinformatics and Computational Biology
- 2Neurosurgery, and
- 3Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
30
|
Menshchikov P, Ivantsova A, Manzhurtsev A, Ublinskiy M, Yakovlev A, Melnikov I, Kupriyanov D, Akhadov T, Semenova N. Separate N-acetyl aspartyl glutamate, N-acetyl aspartate, aspartate, and glutamate quantification after pediatric mild traumatic brain injury in the acute phase. Magn Reson Med 2020; 84:2918-2931. [PMID: 32544309 DOI: 10.1002/mrm.28332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To separately measure N-acetyl aspartul glutamate (NAAG), N-acetyl aspartate (NAA), aspartate (Asp), and glutamate (Glu) concentrations in white matter (WM) using J-editing techniques in patients with mild traumatic brain injury (mTBI) in the acute phase. METHODS Twenty-four patients with closed concussive head injury and 29 healthy volunteers were enrolled in the current study. For extended 1 H MRS examination, patients and controls were equally divided into two subgroups. In subgroup 1 (12 patients/15 controls), NAAG and NAA concentrations were measured in WM separately with MEGA-PRESS (echo time/repetition time [TE/TR] = 140/2000 ms; δ ON NAA / δ OFF NAA = 4.84/4.38 ppm, δ ON NAAG / δ OFF NAAG = 4.61/4.15 ppm). In subgroup 2 (12 patients/14 controls), Asp and Glu concentrations were acquired with MEGA-PRESS (TE/TR = 90/2000 ms; δ ON Asp / δ OFF Asp = 3.89/5.21 ppm) and TE-averaged PRESS (TE from 35 ms to 185 ms with 2.5-ms increments; TR = 2000 ms) pulse sequences, respectively. RESULTS tNAA and NAAG concentrations were found to be reduced, while NAA concentrations were unchanged, after mild mTBI. Reduced Asp and elevated myo-inositol (mI) concentrations were also found. CONCLUSION The main finding of the study is that the tNAA signal reduction in WM after mTBI is associated with a decrease in the NAAG concentration rather than a decrease in the NAA concentration, as was thought previously. This finding highlights the importance of separating these signals, at least for WM studies, to avoid misinterpretation of the results. NAAG plays an important role in selectively activating mGluR3 receptors, thus providing neuroprotective and neuroreparative functions immediately after mTBI. NAAG shows potential for the development of new therapeutic strategies for patients with injuries of varying severity.
Collapse
Affiliation(s)
- Petr Menshchikov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Anna Ivantsova
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Andrei Manzhurtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Maxim Ublinskiy
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Alexey Yakovlev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Ilya Melnikov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | | | - Tolib Akhadov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Natalia Semenova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| |
Collapse
|
31
|
Wallace EJ, Mathias JL, Ward L. Diffusion tensor imaging changes following mild, moderate and severe adult traumatic brain injury: a meta-analysis. Brain Imaging Behav 2019; 12:1607-1621. [PMID: 29383621 DOI: 10.1007/s11682-018-9823-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging quantifies the asymmetry (fractional anisotropy; FA) and amount of water diffusion (mean diffusivity/apparent diffusion coefficient; MD/ADC) and has been used to assess white matter damage following traumatic brain injury (TBI). In healthy brains, diffusion is constrained by the organization of axons, resulting in high FA and low MD/ADC. Following a TBI, diffusion may be altered; however the exact nature of these changes has yet to be determined. A meta-analysis was therefore conducted to determine the location and extent of changes in DTI following adult TBI. The data from 44 studies that compared the FA and/or MD/ADC data from TBI and Control participants in different regions of interest (ROIs) were analyzed. The impact of injury severity, post-injury interval (acute: ≤ 1 week, subacute: 1 week-3 months, chronic: > 3 months), scanner details and acquisition parameters were investigated in subgroup analyses, with the findings indicating that mild TBI should be examined separately to that of moderate to severe injuries. Lower FA values were found in 88% of brain regions following mild TBI and 92% following moderate-severe TBI, compared to Controls. MD/ADC was higher in 95% and 100% of brain regions following mild and moderate-severe TBI, respectively. Moderate to severe TBI resulted in larger changes in FA and MD/ADC than mild TBI. Overall, changes to FA and MD/ADC were widespread, reflecting more symmetric and a higher amount of diffusion, indicative of white matter damage.
Collapse
Affiliation(s)
- Erica J Wallace
- School of Psychology, Faculty of Medical & Health Sciences, University of Adelaide, Adelaide, Australia
| | - Jane L Mathias
- School of Psychology, Faculty of Medical & Health Sciences, University of Adelaide, Adelaide, Australia.
| | - Lynn Ward
- School of Psychology, Faculty of Medical & Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
32
|
Lawrence TP, Steel A, Ezra M, Speirs M, Pretorius PM, Douaud G, Sotiropoulos S, Cadoux-Hudson T, Emir UE, Voets NL. MRS and DTI evidence of progressive posterior cingulate cortex and corpus callosum injury in the hyper-acute phase after Traumatic Brain Injury. Brain Inj 2019; 33:854-868. [PMID: 30848964 PMCID: PMC6619394 DOI: 10.1080/02699052.2019.1584332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The posterior cingulate cortex (PCC) and corpus callosum (CC) are susceptible to trauma, but injury often evades detection. PCC Metabolic disruption may predict CC white matter tract injury and the secondary cascade responsible for progression. While the time frame for the secondary cascade remains unclear in humans, the first 24 h (hyper-acute phase) are crucial for life-saving interventions. Objectives: To test whether Magnetic Resonance Imaging (MRI) markers are detectable in the hyper-acute phase and progress after traumatic brain injury (TBI) and whether alterations in these parameters reflect injury severity. Methods: Spectroscopic and diffusion-weighted MRI data were collected in 18 patients with TBI (within 24 h and repeated 7–15 days following injury) and 18 healthy controls (scanned once). Results: Within 24 h of TBI N-acetylaspartate was reduced (F = 11.43, p = 0.002) and choline increased (F = 10.67, p = 0.003), the latter driven by moderate-severe injury (F = 5.54, p = 0.03). Alterations in fractional anisotropy (FA) and axial diffusivity (AD) progressed between the two time-points in the splenium of the CC (p = 0.029 and p = 0.013). Gradual reductions in FA correlated with progressive increases in choline (p = 0.029). Conclusions: Metabolic disruption and structural injury can be detected within hours of trauma. Metabolic and diffusion parameters allow identification of severity and provide evidence of injury progression.
Collapse
Affiliation(s)
- Tim P Lawrence
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Adam Steel
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,c Laboratory of Brain and Cognition , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Martyn Ezra
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Mhairi Speirs
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Pieter M Pretorius
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Gwenaelle Douaud
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Stamatios Sotiropoulos
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,d Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham , Nottingham , UK.,e National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre , Nottingham , UK
| | - Tom Cadoux-Hudson
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Uzay E Emir
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,f School of Health Sciences , Purdue University , West Lafayette , IN , USA
| | - Natalie L Voets
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| |
Collapse
|
33
|
Neuroanatomical and functional alterations of insula in mild traumatic brain injury patients at the acute stage. Brain Imaging Behav 2019; 14:907-916. [PMID: 30734204 DOI: 10.1007/s11682-019-00053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cognitive impairment is a major cause of disability and decline in quality of life in mild traumatic brain injury (mTBI) survivors, but the underlying pathophysiology is still poorly understood. The insula has extensive connections to other cortex and is believed to responsible for integrating external and internal processes and controlling cognitive functions. To explore this hypothesis, we investigated early alterations in the gray matter volume (GMV) and brain functional connectivity (FC) of insula in mTBI patients within 7 days after injury and any possible correlations with cognitive function. A total of 58 mTBI patients at the acute stage and 32 matched healthy controls were recruited and underwentT1-weighted magnetic resonance imaging (MRI)andresting-state functional MRI scans within 7 days of injury. FC was characterized using seed-based region of interest analysis method. The patients' cognitive function was evaluated with Montreal Cognitive Assessment (MoCA) score. The resulting of GMV and FC of insula were correlated with cognitive alterations. We found that the GMV was significantly reduced only in the right insula in mTBI patients and no significant GMV increase was observed in either hemisphere. mTBI patients demonstrated decreased FC in the right parahippocampal gyrus and increased FC in the right supramargianl gyrus. In addition, compared to the healthy controls, the mTBI patients in the acute stage presented a decline in the visuospatial/executive (p = 0.013) and attention (p = 0.038) subcategories. In the mTBI group, the changes in GMV in the right insula were positively correlated with poor attention performance (r = 0.316, p = 0.016). Our data demonstrated alterations of the GMV and resting-stateFC of the right insula in mTBI patients at the acute stage. These early changes in GMV and resting-state FC perhaps serve as a potential biomarker for improving the understanding of cognitive decline for mTBI in the acute setting.
Collapse
|
34
|
Myer GD, Barber Foss K, Thomas S, Galloway R, DiCesare CA, Dudley J, Gadd B, Leach J, Smith D, Gubanich P, Meehan Iii WP, Altaye M, Lavin P, Yuan W. Altered brain microstructure in association with repetitive subconcussive head impacts and the potential protective effect of jugular vein compression: a longitudinal study of female soccer athletes. Br J Sports Med 2018; 53:1539-1551. [PMID: 30323056 DOI: 10.1136/bjsports-2018-099571] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE To (1) quantify white matter (WM) alterations in female high school athletes during a soccer season and characterise the potential for normalisation during the off-season rest period, (2) determine the association between WM alterations and exposure to repetitive subconcussive head impacts, and (3) evaluate the efficacy of a jugular vein compression collar to prevent WM alterations associated with head impact exposure. METHODS Diffusion tensor imaging (DTI) data were prospectively collected from high school female soccer participants (14-18 years) at up to three time points over 9 months. Head impacts were monitored using accelerometers during all practices and games. Participants were assigned to a collar (n=24) or non-collar group (n=22). The Tract-Based Spatial Statistics approach was used in the analysis of within-group longitudinal change and between-group comparisons. RESULTS DTI analyses revealed significant pre-season to post-season WM changes in the non-collar group in mean diffusivity (2.83%±2.46%), axial diffusivity (2.58%±2.34%) and radial diffusivity (3.52%±2.60%), but there was no significant change in the collar group despite similar head impact exposure. Significant correlation was found between head impact exposure and pre-season to post-season DTI changes in the non-collar group. WM changes in the non-collar group partially resolved at 3 months off-season follow-up. DISCUSSION Microstructural changes in WM occurred during a season of female high school soccer among athletes who did not wear the collar device. In comparison, there were no changes in players who wore the collar, suggesting a potential prophylactic effect of the collar device in preventing changes associated with repetitive head impacts. In those without collar use, the microstructural changes showed a reversal towards normal over time in the off-season follow-up period.
Collapse
Affiliation(s)
- Gregory D Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA.,Duke University School of Medicine, Durham, North Carolina, USA
| | - Kim Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Staci Thomas
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ryan Galloway
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christopher A DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brooke Gadd
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David Smith
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul Gubanich
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Philip Lavin
- Boston Biostatistics Research Foundation, Framingham, Massachusetts, USA
| | - Weihong Yuan
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
35
|
Ware AL, Biekman B, Hachey R, MacLeod M, Bird W, Pathak S, Clarke E, Borrasso A, Puccio AM, Glavin K, Pomiecko K, Moretti P, Beers SR, Levin HS, Schneider W, Okonkwo DO, Wilde EA. A Preliminary High-Definition Fiber Tracking Study of the Executive Control Network in Blast-Induced Traumatic Brain Injury. J Neurotrauma 2018; 36:686-701. [PMID: 30070176 DOI: 10.1089/neu.2018.5725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is common in veterans of the Iraq- and Afghanistan-era conflicts. However, the typical subtlety of neural alterations and absence of definitive biomarkers impede clinical detection on conventional imaging. This preliminary study examined the structure and functional correlates of executive control network (ECN) white matter in veterans to investigate the clinical utility of using high-definition fiber tracking (HDFT) to detect chronic bTBI. Demographically similar male veterans (N = 38) with and without bTBI (ages 24 to 50 years) completed standardized neuropsychological testing and magnetic resonance imaging. Quantitative HDFT metrics of subcortical-dorsolateral prefrontal cortex (DLPFC) tracts were derived. Moderate-to-large group effects were observed on HDFT metrics. Relative to comparisons, bTBI demonstrated elevated quantitative anisotropy (QA) and reduced right hemisphere volume of all examined tracts, and reduced fiber count and increased generalized fractional anisotropy in the right DLPFC-putamen tract and DLPFC-thalamus, respectively. The Group × Age interaction effect on DLPFC-caudate tract volume was large; age negatively related to volume in the bTBI group, but not comparison group. Groups performed similarly on the response inhibition measure. Performance (reaction time and commission errors) robustly correlated with HDFT tract metrics (QA and tract volume) in the comparison group, but not bTBI group. Results support anomalous density and integrity of ECN connectivity, particularly of the right DLPFC-putamen pathway, in bTBI. Results also support exacerbated aging in veterans with bTBI. Similar ECN function despite anomalous microstructure could reflect functional compensation in bTBI, although alternate interpretations are explored.
Collapse
Affiliation(s)
- Ashley L Ware
- 1 Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston , Houston, Texas.,2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas
| | - Brian Biekman
- 1 Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston , Houston, Texas.,2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas
| | - Rebecca Hachey
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Marianne MacLeod
- 2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas
| | - William Bird
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sudhir Pathak
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Emily Clarke
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Allison Borrasso
- 4 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ava M Puccio
- 4 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kelly Glavin
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kristopher Pomiecko
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Paolo Moretti
- 5 Department of Neurology, Baylor College of Medicine , Houston, Texas.,6 Neurology Service, Michael E. DeBakey VA Medical Center , Houston, Texas.,7 Department of Neurology, University of Utah School of Health Sciences , Salt Lake City, Utah.,8 Department of Human and Molecular Genetics, University of Utah School of Health Sciences , Salt Lake City, Utah.,9 Neurology Service, George E. Wahlen VA Medical Center , Salt Lake City, Utah
| | - Sue R Beers
- 10 Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, PA
| | - Harvey S Levin
- 2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas.,11 Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Walter Schneider
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,12 Department of Psychology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David O Okonkwo
- 4 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Elisabeth A Wilde
- 2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas.,5 Department of Neurology, Baylor College of Medicine , Houston, Texas.,6 Neurology Service, Michael E. DeBakey VA Medical Center , Houston, Texas.,7 Department of Neurology, University of Utah School of Health Sciences , Salt Lake City, Utah.,9 Neurology Service, George E. Wahlen VA Medical Center , Salt Lake City, Utah.,13 Department of Radiology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
36
|
Bigler ED. Structural neuroimaging in sport-related concussion. Int J Psychophysiol 2018; 132:105-123. [DOI: 10.1016/j.ijpsycho.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
37
|
Studerus-Germann AM, Gautschi OP, Bontempi P, Thiran JP, Daducci A, Romascano D, von Ow D, Hildebrandt G, von Hessling A, Engel DC. Central nervous system microbleeds in the acute phase are associated with structural integrity by DTI one year after mild traumatic brain injury: A longitudinal study. Neurol Neurochir Pol 2018; 52:710-719. [PMID: 30245171 DOI: 10.1016/j.pjnns.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Several imaging modalities are under investigation to unravel the pathophysiological mystery of delayed performance deficits in patients after mild traumatic brain injury (mTBI). Although both imaging and neuropsychological studies have been conducted, only few data on longitudinal correlations of diffusion tensor imaging (DTI), susceptibility weighted imaging (SWI) and extensive neuropsychological testing exist. METHODS MRI with T1- and T2-weighted, SWI and DTI sequences at baseline and 12 months of 30 mTBI patients were compared with 20 healthy controls. Multiparametric assessment included neuropsychological testing of cognitive performance and post-concussion syndrome (PCS) at baseline, 3 and 12 months post-injury. Data analysis encompassed assessment of cerebral microbleeds (Mb) in SWI, tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM) of DTI (VBM-DTI). Imaging markers were correlated with neuropsychological testing to evaluate sensitivity to cognitive performance and post-concussive symptoms. RESULTS Patients with Mb in SWI in the acute phase showed worse performance in several cognitive tests at baseline and in the follow-ups during the chronic phase and higher symptom severity in the post concussion symptom scale (PCSS) at twelve months post-injury. In the acute phase there was no statistical difference in structural integrity as measured with DTI between mTBI patients and healthy controls. At twelve months post-injury, loss of structural integrity in mTBI patients was found in nearly all DTI indices compared to healthy controls. CONCLUSIONS Presence of Mb detected by SWI was associated with worse cognitive outcome and persistent PCS in mTBI patients, while DTI did not prove to predict neuropsychological outcome in the acute phase.
Collapse
Affiliation(s)
- Aline M Studerus-Germann
- Division of Neuropsychology, Department of Neurology, Cantonal Hospital, St. Gallen, Switzerland; Department of Psychopathology and Clinical Intervention, University of Zurich, Switzerland
| | - Oliver P Gautschi
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; Department of Neurosurgery, Geneva University Medical Center, Faculty of Medicine, University of Geneva, Switzerland
| | | | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alessandro Daducci
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Romascano
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dieter von Ow
- Emergency Department, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Gerhard Hildebrandt
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Alexander von Hessling
- Department of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; Department of Radiology and Nuclear Medicine, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Doortje C Engel
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
38
|
Mustafi SM, Harezlak J, Koch KM, Nencka AS, Meier TB, West JD, Giza CC, DiFiori JP, Guskiewicz KM, Mihalik JP, LaConte SM, Duma SM, Broglio SP, Saykin AJ, McCrea M, McAllister TW, Wu YC. Acute White-Matter Abnormalities in Sports-Related Concussion: A Diffusion Tensor Imaging Study from the NCAA-DoD CARE Consortium. J Neurotrauma 2018; 35:2653-2664. [PMID: 29065805 DOI: 10.1089/neu.2017.5158] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sports-related concussion (SRC) is an important public health issue. Although standardized assessment tools are useful in the clinical management of acute concussion, the underlying pathophysiology of SRC and the time course of physiological recovery after injury remain unclear. In this study, we used diffusion tensor imaging (DTI) to detect white matter alterations in football players within 48 h after SRC. As part of the NCAA-DoD CARE Consortium study of SRC, 30 American football players diagnosed with acute concussion and 28 matched controls received clinical assessments and underwent advanced magnetic resonance imaging scans. To avoid selection bias and partial volume effects, whole-brain skeletonized white matter was examined by tract-based spatial statistics to investigate between-group differences in DTI metrics and their associations with clinical outcome measures. Mean diffusivity was significantly higher in brain white matter of concussed athletes, particularly in frontal and subfrontal long white matter tracts. In the concussed group, axial diffusivity was significantly correlated with the Brief Symptom Inventory and there was a similar trend with the symptom severity score of the Sport Concussion Assessment Tool. In addition, concussed athletes with higher fractional anisotropy performed better on the cognitive component of the Standardized Assessment of Concussion. Overall, the results of this study are consistent with the hypothesis that SRC is associated with changes in white matter tracts shortly after injury, and these differences are correlated clinically with acute symptoms and functional impairments.
Collapse
Affiliation(s)
- Sourajit Mitra Mustafi
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jaroslaw Harezlak
- 2 Department of Epidemiology and Biostatistics, School of Public Health, Indiana University , Bloomington, Indiana
| | - Kevin M Koch
- 3 Department of Radiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrew S Nencka
- 3 Department of Radiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Timothy B Meier
- 4 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - John D West
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Christopher C Giza
- 5 Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles, Division of Pediatric Neurology, Mattel Children's Hospital-UCLA Los Angeles , California
| | - John P DiFiori
- 6 Division of Sports Medicine, Departments of Family Medicine and Orthopedics, University of California Los Angeles , Los Angeles, California
| | - Kevin M Guskiewicz
- 7 Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Jason P Mihalik
- 7 Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Stephen M LaConte
- 8 School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University , Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | - Stefan M Duma
- 9 School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University , Blacksburg, Virginia
| | - Steven P Broglio
- 10 NeuroTrauma Research Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Andrew J Saykin
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael McCrea
- 4 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Thomas W McAllister
- 11 Department of Psychology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yu-Chien Wu
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
39
|
Budde MD, Skinner NP. Diffusion MRI in acute nervous system injury. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:137-148. [PMID: 29773299 DOI: 10.1016/j.jmr.2018.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Diffusion weighted magnetic resonance imaging (DWI) and related techniques such as diffusion tensor imaging (DTI) are uniquely sensitive to the microstructure of the brain and spinal cord. In the acute aftermath of nervous system injury, for example, DWI reveals changes caused by injury that remains invisible on other MRI contrasts such as T2-weighted imaging. This ability has led to a demonstrated clinical utility in cerebral ischemia. However, despite strong promise in preclinical models and research settings, DWI has not been as readily adopted for other acute injuries such as traumatic spinal cord, brain, or peripheral nerve injury. Furthermore, the precise biophysical mechanisms that underlie DWI and DTI changes are not fully understood. In this report, we review the DWI and DTI changes that occur in acute neurological injury of cerebral ischemia, spinal cord injury, traumatic brain injury, and peripheral nerve injury. Their associations with the underlying biology are examined with an emphasis on the role of acute axon and dendrite beading. Lastly, emerging DWI techniques to overcome the limitations of DTI are discussed as these may offer the needed improvements to translate to clinical settings.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
40
|
|
41
|
Wang H, Ren L, Zhao Z, Wang J, Chen H. Fast localization method of an anomaly in tissue based on differential optical density. BIOMEDICAL OPTICS EXPRESS 2018; 9:2018-2026. [PMID: 29760966 PMCID: PMC5946767 DOI: 10.1364/boe.9.002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 05/07/2023]
Abstract
The position of the source-detector (S-D) relative to an anomaly has an important influence on the detection effect in non-invasive near-infrared spectroscopy-based methods. In this study, a single-source multi-detector structure was designed in order to realize the rapid localization of anomalies within tissue. This method uses finite element analysis of the optical density distribution for different horizontal positions, depths and diameters of anomalies. The difference in optical density between the detectors was then calculated. The simulation results show that the horizontal position of the anomaly in the tissue can be quickly located according to the differential optical density difference curves formed by the multiple detectors. The Gaussian fitting feature of these curves shows strong correlation with the horizontal positions, depths and diameters of the anomaly. Through the differential optical density difference curves, rapid localization within the region of interest can be achieved. This method provides an important reference for sources and detectors location for tumor detection, brain function optical imaging and other fields using near infrared spectroscopy, and improves its detection accuracy.
Collapse
Affiliation(s)
- Huiquan Wang
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
- Tianjin Photoelectric Detection Technology and Systems Key Laboratory, Tianjin 300387, China
| | - Lina Ren
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Zhe Zhao
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
- Tianjin Photoelectric Detection Technology and Systems Key Laboratory, Tianjin 300387, China
| | - Jinhai Wang
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
- Tianjin Photoelectric Detection Technology and Systems Key Laboratory, Tianjin 300387, China
| | - Hongli Chen
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
- Tianjin Photoelectric Detection Technology and Systems Key Laboratory, Tianjin 300387, China
| |
Collapse
|
42
|
Vergara VM, Mayer AR, Kiehl KA, Calhoun VD. Dynamic functional network connectivity discriminates mild traumatic brain injury through machine learning. NEUROIMAGE-CLINICAL 2018; 19:30-37. [PMID: 30034999 PMCID: PMC6051314 DOI: 10.1016/j.nicl.2018.03.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 02/22/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Mild traumatic brain injury (mTBI) can result in symptoms that affect a person's cognitive and social abilities. Improvements in diagnostic methodologies are necessary given that current clinical techniques have limited accuracy and are solely based on self-reports. Recently, resting state functional network connectivity (FNC) has shown potential as an important imaging modality for the development of mTBI biomarkers. The present work explores the use of dynamic functional network connectivity (dFNC) for mTBI detection. Forty eight mTBI patients (24 males) and age-gender matched healthy controls were recruited. We identified a set of dFNC states and looked at the possibility of using each state to classify subjects in mTBI patients and healthy controls. A linear support vector machine was used for classification and validated using leave-one-out cross validation. One of the dFNC states achieved a high classification performance of 92% using the area under the curve method. A series of t-test analysis revealed significant dFNC increases between cerebellum and sensorimotor networks. This significant increase was detected in the same dFNC state useful for classification. Results suggest that dFNC can be used to identify optimal dFNC states for classification excluding those that does not contain useful features. Dynamic functional connectivity and support vector machine classified traumatic brain injury patients and healthy controls. Out of 4 dynamic brain states, we identified 1 state useful for classification. Classification performance of the dynamic state of interest achieved a performance of 92% area under the curve method.
Collapse
Affiliation(s)
- Victor M Vergara
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States.
| | - Andrew R Mayer
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, United States; Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States.
| | - Kent A Kiehl
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Dept of ECE, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
43
|
O'Phelan KH, Otoshi CK, Ernst T, Chang L. Common Patterns of Regional Brain Injury Detectable by Diffusion Tensor Imaging in Otherwise Normal-Appearing White Matter in Patients with Early Moderate to Severe Traumatic Brain Injury. J Neurotrauma 2018; 35:739-749. [PMID: 29228858 PMCID: PMC5831746 DOI: 10.1089/neu.2016.4944] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) alters the lives of millions of people every year. Although mortality rates have improved, attributed to better pre-hospital care and reduction of secondary injury in the critical care setting, improvements in functional outcomes post-TBI have been difficult to achieve. Diffusion-tensor imaging (DTI) allows detailed measurement of microstructural damage in regional brain tissue post-TBI, thus improving our understanding of the extent and severity of TBI. Twenty subjects were recruited from a neurological intensive care unit and compared to 18 healthy control subjects. Magnetic resonance imaging (MRI) scanning was performed on a 3.0-Tesla Siemens TIM Trio Scanner (Siemens Medical Solutions, Erlangen, Germany) including T1- and T2-weighted sequences and DTI. Images were processed using DTIStudio software. SAS (SAS Institute Inc., Cary, NC) was used for statistical analysis of group differences in 14 brain regions (25 regions of interests [ROIs]). Seventeen TBI subjects completed scanning. TBI and control subjects did not differ in age or sex. All TBI subjects had visible lesions on structural MRI. TBI subjects had seven brain regions (nine ROIs) that showed significant group differences on DTI metrics (fractional anisotropy, radial diffusion, or mean diffusion) compared to noninjured subjects, including the corpus callosum (genu and splenium), superior longitudinal fasciculus, internal capsule, right retrolenticular internal capsule, posterior corona radiata, and thalamus. However, 16 ROIs showed relatively normal DTI measures. Quantitative DTI demonstrates multiple areas of microstructual injury in specific normal-appearing white matter brain regions. DTI may be useful for assessing the extent of brain injury in patients with early moderate to severe TBI.
Collapse
Affiliation(s)
- Kristine H. O'Phelan
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Chad K. Otoshi
- Department of Medicine, Neuroscience and MRI Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Thomas Ernst
- Department of Medicine, Neuroscience and MRI Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Linda Chang
- Department of Medicine, Neuroscience and MRI Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
|
45
|
Kirov II, Whitlow CT, Zamora C. Susceptibility-Weighted Imaging and Magnetic Resonance Spectroscopy in Concussion. Neuroimaging Clin N Am 2018; 28:91-105. [DOI: 10.1016/j.nic.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Lancaster MA, Olson DV, McCrea MA, Nelson LD, LaRoche AA, Muftuler LT. Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study. Hum Brain Mapp 2018; 37:3821-3834. [PMID: 27237455 DOI: 10.1002/hbm.23278] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 01/23/2023] Open
Abstract
Recent neuroimaging studies have suggested that following sport-related concussion (SRC) physiological brain alterations may persist after an athlete has shown full symptom recovery. Diffusion MRI is a versatile technique to study white matter injury following SRC, yet serial follow-up studies in the very acute stages following SRC utilizing a comprehensive set of diffusion metrics are lacking. The aim of the current study was to characterize white matter changes within 24 hours of concussion in a group of high school and collegiate athletes, using Diffusion Tensor and Diffusion Kurtosis Tensor metrics. Participants were reassessed a week later. At 24 hours post-injury, the concussed group reported significantly more concussion symptoms than a well-matched control group and demonstrated poorer performance on a cognitive screening measure, yet these differences were nonsignificant at the 8-day follow-up. Similarly, within 24-hours after injury, the concussed group exhibited a widespread decrease in mean diffusivity, increased axial kurtosis and, to a lesser extent, decreased axial and radial diffusivities compared with control subjects. At 8 days post injury, the differences in these diffusion metrics were even more widespread in the injured athletes, despite improvement of symptoms and cognitive performance. These MRI findings suggest that the athletes might not have reached full physiological recovery a week after the injury. These findings have significant implications for the management of SRC because allowing an athlete to return to play before the brain has fully recovered from injury may have negative consequences. Hum Brain Mapp 37:3821-3834, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa A Lancaster
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Daniel V Olson
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Michael A McCrea
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Lindsay D Nelson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Ashley A LaRoche
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.
| |
Collapse
|
47
|
Zafonte RD, Shih SL, Iaccarino MA, Tan CO. Neurologic benefits of sports and exercise. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:463-471. [PMID: 30482373 DOI: 10.1016/b978-0-444-63954-7.00042-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traumatic brain injury (TBI) is associated with several pathophysiologic changes, including: neurostructural alterations; molecular changes with shifts in circulating neurotrophins; impaired neural metabolism; changes in cerebrovascular autoregulation, vasoreactivity, and neurovascular coupling; and alterations in functional brain connectivity. In animal models of TBI, aerobic exercise reduces neuronal injury, promotes neuronal survival, and enhances the production of neuroprotective trophic factors. However, the timing of exercise initiation is an important consideration as early exercise in the acute postinjury period may impede recovery mechanisms, although evidence for this in humans is lacking. Though human clinical studies are limited, aerobic exercise post-TBI engages cerebrovascular mechanisms and may impart neurophysiologic benefits to mitigate post-TBI pathophysiologic changes. Additionally, subsymptom threshold exercise in humans has been demonstrated to be safe, feasible, and effective in decreasing symptom burden in individuals with mild TBI, and to counteract the detrimental effects of prolonged inactivity, subsequent physical deconditioning, and its negative emotional sequelae. This chapter will explore the potential role of aerobic exercise in neurorecovery after TBI.
Collapse
Affiliation(s)
- Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Shirley L Shih
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mary Alexis Iaccarino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Can Ozan Tan
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Fidan E, Foley LM, New LA, Alexander H, Kochanek PM, Hitchens TK, Bayır H. Metabolic and Structural Imaging at 7 Tesla After Repetitive Mild Traumatic Brain Injury in Immature Rats. ASN Neuro 2018; 10:1759091418770543. [PMID: 29741097 PMCID: PMC5944144 DOI: 10.1177/1759091418770543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/03/2018] [Accepted: 03/20/2018] [Indexed: 11/15/2022] Open
Abstract
Mild traumatic brain injury (mTBI) in children is a common and serious public health problem. Traditional neuroimaging findings in children who sustain mTBI are often normal, putting them at risk for repeated mTBI (rmTBI). There is a need for more sensitive imaging techniques capable of detecting subtle neurophysiological alterations after injury. We examined neurochemical and white matter changes using diffusion tensor imaging of the whole brain and proton magnetic resonance spectroscopy of the hippocampi at 7 Tesla in 18-day-old male rats at 7 days after mTBI and rmTBI. Traumatic axonal injury was assessed by beta-amyloid precursor protein accumulation using immunohistochemistry. A significant decrease in fractional anisotropy and increase in axial and radial diffusivity were observed in several brain regions, especially in white matter regions, after a single mTBI versus sham and more prominently after rmTBI. In addition, we observed accumulation of beta-amyloid precursor protein in the external capsule after mTBI and rmTBI. mTBI and rmTBI reduced the N-acetylaspartate/creatine ratio (NAA/Cr) and increased the myoinositol/creatine ratio (Ins/Cr) versus sham. rmTBI exacerbated the reduction in NAA/Cr versus mTBI. The choline/creatine (Cho/Cr) and (lipid/Macro Molecule 1)/creatine (Lip/Cr) ratios were also decreased after rmTBI versus sham. Diffusion tensor imaging findings along with the decrease in Cho and Lip after rmTBI may reflect damage to axonal membrane. NAA and Ins are altered at 7 days after mTBI and rmTBI likely reflecting neuro-axonal damage and glial response, respectively. These findings may be relevant to understanding the extent of disability following mTBI and rmTBI in the immature brain and may identify possible therapeutic targets.
Collapse
Affiliation(s)
- Emin Fidan
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, PA, USA
- Animal Imaging Center, University of Pittsburgh, PA, USA
| | - Lee Ann New
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Henry Alexander
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, PA, USA
- Animal Imaging Center, University of Pittsburgh, PA, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
- Children's Neuroscience Institute
| |
Collapse
|
49
|
Ghosh N, Holshouser B, Oyoyo U, Barnes S, Tong K, Ashwal S. Combined Diffusion Tensor and Magnetic Resonance Spectroscopic Imaging Methodology for Automated Regional Brain Analysis: Application in a Normal Pediatric Population. Dev Neurosci 2017. [PMID: 28651252 DOI: 10.1159/000475545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During human brain development, anatomic regions mature at different rates. Quantitative anatomy-specific analysis of longitudinal diffusion tensor imaging (DTI) and magnetic resonance spectroscopic imaging (MRSI) data may improve our ability to quantify and categorize these maturational changes. Computational tools designed to quickly fuse and analyze imaging information from multiple, technically different datasets would facilitate research on changes during normal brain maturation and for comparison to disease states. In the current study, we developed a complete battery of computational tools to execute such data analyses that include data preprocessing, tract-based statistical analysis from DTI data, automated brain anatomy parsing from T1-weighted MR images, assignment of metabolite information from MRSI data, and co-alignment of these multimodality data streams for reporting of region-specific indices. We present statistical analyses of regional DTI and MRSI data in a cohort of normal pediatric subjects (n = 72; age range: 5-18 years; mean 12.7 ± 3.3 years) to establish normative data and evaluate maturational trends. Several regions showed significant maturational changes for several DTI parameters and MRSI ratios, but the percent change over the age range tended to be small. In the subcortical region (combined basal ganglia [BG], thalami [TH], and corpus callosum [CC]), the largest combined percent change was a 10% increase in fractional anisotropy (FA) primarily due to increases in the BG (12.7%) and TH (9%). The largest significant percent increase in N-acetylaspartate (NAA)/creatine (Cr) ratio was seen in the brain stem (BS) (18.8%) followed by the subcortical regions in the BG (11.9%), CC (8.9%), and TH (6.0%). We found consistent, significant (p < 0.01), but weakly positive correlations (r = 0.228-0.329) between NAA/Cr ratios and mean FA in the BS, BG, and CC regions. Age- and region-specific normative MR diffusion and spectroscopic metabolite ranges show brain maturation changes and are requisite for detecting abnormalities in an injured or diseased population.
Collapse
Affiliation(s)
- Nirmalya Ghosh
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
50
|
Sun MY, Lü JQ, Ma ZC, Lü JJ, Huang Q, Sun YN, Liu Y. Effects of the Inertia Barbell Training on Lumbar Muscle T2 Relaxation Time. J Strength Cond Res 2017; 34:3454-3462. [PMID: 28475549 DOI: 10.1519/jsc.0000000000001974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sun, M-Y, Lu, J-Q, Ma, Z-C, Lü, J-J, Huang, Q, Sun, Y-N, and Liü, Y. Effects of the inertia barbell training on lumbar muscle T2 relaxation time. J Strength Cond Res 34(12): 3454-3462, 2020-The purpose of this study was to investigate variations in T2 relaxation time in normal human lumbar muscles caused by inertia barbell training. Thirty undergraduate healthy men (mean age = 19 ± 1.2 years, body mass = 72 ± 10.0 kg, and height = 1.78 ± 0.1 m) were recruited to participate in this study. Subjects were randomly assigned into 2 groups: an inertia barbell training group (IBTG) (n = 15) and a normal barbell-training group (NBTG) (n = 15). All subjects participated in lumbar flexion and extension muscle strength training for 1 hour per time, 3 times per week for a total of 8 weeks. The lumbar area of each subject was scanned before and after the experiment using a 3.0T superconductive magnetic resonance imaging system. The T2 values measured after intervention were significantly different compared with the T2 values measured before the experiment in both the IBTG and NBTG groups (p < 0.001). After intervention, there was no significant difference in T2 values between the IBTG and NBTG groups (p = 0.17). The ([INCREMENT]T2)/T2 percentage was significantly different in the IBTG group (p < 0.01). This study demonstrated that 8 weeks of strength training led to significant improvements in the values for T2 relaxation time of the lumbar muscles. Furthermore, the ([INCREMENT]T2)/T2 percentage for IBTG was higher than that for NBTG, which suggested that lumbar muscle activity increased more with inertial barbell training.
Collapse
Affiliation(s)
- Ming-Yun Sun
- Institute of Physical Education, Anqing Normal University, Anqing, China.,Institute and Intelligent of Machines, Chinese Academy of Sciences, Hefei, China; and
| | - Jian-Qiang Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zu-Chang Ma
- Institute and Intelligent of Machines, Chinese Academy of Sciences, Hefei, China; and
| | - Jiao-Jiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Qing Huang
- Institute of Physical Education, Anqing Normal University, Anqing, China
| | - Yi-Ning Sun
- Institute and Intelligent of Machines, Chinese Academy of Sciences, Hefei, China; and
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|