1
|
Nurmi EL, Laughlin CP, de Wit H, Palmer AA, MacKillop J, Cannon TD, Bilder RM, Congdon E, Sabb FW, Seaman LC, McElroy JJ, Libowitz MR, Weafer J, Gray J, Dean AC, Hellemann GS, London ED. Polygenic contributions to performance on the Balloon Analogue Risk Task. Mol Psychiatry 2023; 28:3524-3530. [PMID: 37582857 PMCID: PMC10618088 DOI: 10.1038/s41380-023-02123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 08/17/2023]
Abstract
Risky decision-making is a common, heritable endophenotype seen across many psychiatric disorders. Its underlying genetic architecture is incompletely explored. We examined behavior in the Balloon Analogue Risk Task (BART), which tests risky decision-making, in two independent samples of European ancestry. One sample (n = 1138) comprised healthy participants and some psychiatric patients (53 schizophrenia, 42 bipolar disorder, 47 ADHD); the other (n = 911) excluded for recent treatment of various psychiatric disorders but not ADHD. Participants provided DNA and performed the BART, indexed by mean adjusted pumps. We constructed a polygenic risk score (PRS) for discovery in each dataset and tested it in the other as replication. Subsequently, a genome-wide MEGA-analysis, combining both samples, tested genetic correlation with risk-taking self-report in the UK Biobank sample and psychiatric phenotypes characterized by risk-taking (ADHD, Bipolar Disorder, Alcohol Use Disorder, prior cannabis use) in the Psychiatric Genomics Consortium. The PRS for BART performance in one dataset predicted task performance in the replication sample (r = 0.13, p = 0.000012, pFDR = 0.000052), as did the reciprocal analysis (r = 0.09, p = 0.0083, pFDR=0.04). Excluding participants with psychiatric diagnoses produced similar results. The MEGA-GWAS identified a single SNP (rs12023073; p = 3.24 × 10-8) near IGSF21, a protein involved in inhibitory brain synapses; replication samples are needed to validate this result. A PRS for self-reported cannabis use (p = 0.00047, pFDR = 0.0053), but not self-reported risk-taking or psychiatric disorder status, predicted behavior on the BART in our MEGA-GWAS sample. The findings reveal polygenic architecture of risky decision-making as measured by the BART and highlight its overlap with cannabis use.
Collapse
Affiliation(s)
- E L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA.
| | - C P Laughlin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - H de Wit
- Department of Psychiatry, University of Chicago, Chicago, IL, 60637, USA
| | - A A Palmer
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - J MacKillop
- Peter Boris Centre for Addictions Research, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, ON, L8S4L8, Canada
| | - T D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, 06520, USA
| | - R M Bilder
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - E Congdon
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - F W Sabb
- Prevention Science Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - L C Seaman
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - J J McElroy
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - M R Libowitz
- Department of Neurobiology, University of Kentucky, Lexington, KY, 40506, USA
| | - J Weafer
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - J Gray
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - A C Dean
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - G S Hellemann
- Department of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - E D London
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
2
|
Chelban V, Breza M, Szaruga M, Vandrovcova J, Murphy D, Lee C, Alikhwan S, Bourinaris T, Vavougios G, Ilyas M, Halim SA, Al‐Harrasi A, Kartanou C, Ronald C, Blumcke I, Alexoudi A, Gatzonis S, Stefanis L, Karadima G, Wood NW, Chávez‐Gutiérrez L, Hardy J, Houlden H, Koutsis G. Spastic paraplegia preceding PSEN1-related familial Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12186. [PMID: 33969176 PMCID: PMC8088589 DOI: 10.1002/dad2.12186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). METHODS We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. RESULTS We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aβn) interactions during proteolysis, enhancing the production of longer Aβ peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. DISCUSSION We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurology and NeurosurgeryInstitute of Emergency MedicineToma Ciorbă 1ChisinauRepublic of Moldova
| | - Marianthi Breza
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Maria Szaruga
- KU Leuven‐VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Institute for Neuroscience and Disease (LIND)KU LeuvenLeuvenBelgium
- Neurobiology DivisionMRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeCB2 0QHUK
| | - Jana Vandrovcova
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - David Murphy
- Department of Clinical and Movement NeurosciencesQueen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Chia‐Ju Lee
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sondos Alikhwan
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Thomas Bourinaris
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | - Muhammad Ilyas
- Centre for Omic ScienceIslamia College PeshawarPeshawarPakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research CenterUniversity of NizwaPakistan
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research CenterUniversity of NizwaPakistan
| | - Chrisoula Kartanou
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Coras Ronald
- Institute of NeuropathologyUniversitätsklinikum ErlangenErlangenGermany
| | - Ingmar Blumcke
- Institute of NeuropathologyUniversitätsklinikum ErlangenErlangenGermany
| | - Athanasia Alexoudi
- Department of NeurosurgeryEvangelismos HospitalUniversity of AthensGreece
| | - Stylianos Gatzonis
- Department of NeurosurgeryEvangelismos HospitalUniversity of AthensGreece
| | - Leonidas Stefanis
- 1st Department of NeurologySchool of MedicineEginition HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Georgia Karadima
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Nicholas W. Wood
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryQueen SquareLondonUK
| | - Lucía Chávez‐Gutiérrez
- KU Leuven‐VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Institute for Neuroscience and Disease (LIND)KU LeuvenLeuvenBelgium
| | - John Hardy
- Department of Neurodegenerative DiseaseReta Lila Weston LaboratoriesQueen Square GenomicsUCL Dementia Research InstituteLondonUK
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryQueen SquareLondonUK
| | - Georgios Koutsis
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
3
|
Kolodny T, Mevorach C, Stern P, Biderman N, Ankaoua M, Tsafrir S, Shalev L. Fronto-parietal engagement in response inhibition is inversely scaled with attention-deficit/hyperactivity disorder symptom severity. NEUROIMAGE-CLINICAL 2019; 25:102119. [PMID: 31865022 PMCID: PMC6928458 DOI: 10.1016/j.nicl.2019.102119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 12/25/2022]
Abstract
A novel Go/No-go task points to a critical role for the IPS in response inhibition. IPS engagement in response inhibition is scaled back with ADHD symptom severity. Fronto-parietal connectivity increases when response inhibition is challenging. Connectivity modulation is also scaled back with ADHD symptom severity.
Background Impaired response inhibition is one of the most consistent findings in attention deficit hyperactivity disorder (ADHD). However, the underlying brain mechanisms are not clear. This study aimed to underpin atypical inhibition-related brain activation and connectivity patterns in ADHD using a novel Go/No-go task design, and to determine its association with clinical symptoms of the disorder. Methods Forty-eight adults with ADHD performed a Go/No-go task in which target frequency was manipulated during functional MRI. Specific inhibition-related brain activation was correlated with ADHD symptom severity, to assess the relationship of individual differences in engagement of inhibition-related brain circuits with the magnitude of every-day functioning impairments. Finally, generalized psychophysical interaction analyses were carried out to examine whether not only engagement but also functional connectivity between regions implicated in response inhibition is related to symptom severity. Results We found no evidence for the expected parietal modulation by increased demand for inhibition at the group-level results. However, this lack of modulation was mediated by individual differences in ADHD symptom severity – increased engagement of the intraparietal sulcus (IPS) in inhibition-demanding events was evident in individuals with less severe symptoms but dissipated with increase in symptomatology. Similarly, functional connectivity between the IPS and the right inferior frontal gyrus (rIFG) was elevated under high inhibitory demand conditions, but this effect diminished with increased symptom severity. Conclusions The results highlight the importance of IPS engagement in response inhibition and suggest that IPS modulation may be driven by top-down control from the IFG. Moreover, the current findings force the point of treating ADHD as a continuum whereby brain correlates are scaled with severity of the disorder, and point to the potential use of individual differences in the modulation of IPS activation and connectivity as a neuromarker of ADHD.
Collapse
Affiliation(s)
- Tamar Kolodny
- Department of Cognitive Science, The Hebrew University, Jerusalem, Israel.
| | - Carmel Mevorach
- School of Psychology and the Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Pnina Stern
- Constantiner School of Education, Tel-Aviv University, Tel-Aviv, Israel
| | - Natalie Biderman
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Ankaoua
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Lilach Shalev
- Constantiner School of Education, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
A phenome-wide examination of neural and cognitive function. Sci Data 2016; 3:160110. [PMID: 27922632 PMCID: PMC5139672 DOI: 10.1038/sdata.2016.110] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022] Open
Abstract
This data descriptor outlines a shared neuroimaging dataset from the UCLA Consortium for Neuropsychiatric Phenomics, which focused on understanding the dimensional structure of memory and cognitive control (response inhibition) functions in both healthy individuals (130 subjects) and individuals with neuropsychiatric disorders including schizophrenia (50 subjects), bipolar disorder (49 subjects), and attention deficit/hyperactivity disorder (43 subjects). The dataset includes an extensive set of task-based fMRI assessments, resting fMRI, structural MRI, and high angular resolution diffusion MRI. The dataset is shared through the OpenfMRI project, and is formatted according to the Brain Imaging Data Structure (BIDS) standard.
Collapse
|