1
|
Scholten C, Ghasoub M, Geeraert B, Joshi S, Wedderburn CJ, Roos A, Subramoney S, Hoffman N, Narr K, Woods R, Zar HJ, Stein DJ, Donald K, Lebel C. Prenatal tobacco and alcohol exposure, white matter microstructure, and early language skills in toddlers from a South African birth cohort. Front Integr Neurosci 2024; 18:1438888. [PMID: 39286039 PMCID: PMC11402807 DOI: 10.3389/fnint.2024.1438888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Tobacco and alcohol are the two most common substances used during pregnancy, and both can disrupt neurodevelopment, resulting in cognitive and behavioral deficits including language difficulties. Previous studies show that children with prenatal substance exposure exhibit microstructural alterations in major white matter pathways, though few studies have investigated the impact of prenatal substance exposure on white matter microstructure and language skills during the toddler years. Methods In this study, 93 children (34 exposed to alcohol and/or tobacco) aged 23 years from the Drakenstein Child Health Study, South Africa, completed Expressive and Receptive Communication assessments from the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) and underwent diffusion MRI scans. Diffusion images were preprocessed, and 11 major white matter tracts were isolated. Fractional anisotropy (FA) and mean diffusivity (MD) were extracted for each white matter tract. Linear regression was used to examine differences between the tobacco/alcohol exposed group and unexposed controls for FA, MD, and language scores, as well as relationships between brain metrics and language. There were no significant group differences in language scores or FA. Results Children with alcohol or tobacco exposure had lower average MD in the splenium of the corpus callosum compared to unexposed controls. Significant interactions between prenatal substance exposure and language scores were seen in 7 tracts but did not survive multiple comparisons correction. Discussion Our findings show that prenatal alcohol and/or tobacco exposure appear to alter the relationship between white matter microstructure and early language skills in this population of toddlers, potentially laying the basis of language deficits observed later in older children with prenatal substance exposure, which may have implications for learning and interventions.
Collapse
Affiliation(s)
- Chloe Scholten
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mohammad Ghasoub
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Bryce Geeraert
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Shantanu Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine J Wedderburn
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit of Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Sivenesi Subramoney
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katherine Narr
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger Woods
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- The Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit of Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Bjork J, Kenley JK, Gardner C, Latham A, Smyser TA, Miller JP, Shimony JJ, Neil JJ, Warner B, Luby J, Barch DM, Rogers CE, Smyser CD, Lean RE. Associations between prenatal adversity and neonatal white matter microstructure on language outcomes at age 2 years. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311434. [PMID: 39211873 PMCID: PMC11361255 DOI: 10.1101/2024.08.02.24311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Early life adversity is associated with microstructural alterations in white matter regions that subserve language. However, the mediating and moderating pathways between adversities experienced in utero and key neonatal white matter tracts including the corpus callosum (CC), superior longitudinal fasciculus (SLF), arcuate fasciculus (AF), inferior fronto- occipital fasciculus (IFOF), and uncinate on early language outcomes remains unknown. Methods This longitudinal study includes 160 neonates, oversampled for prenatal exposure to adversity, who underwent diffusion MRI (dMRI) in the first weeks of life. dMRI parameters were obtained using probabilistic tractography in FSL. Maternal Social Disadvantage and Psychosocial Stress was assessed throughout pregnancy. At age 2 years, the Bayley Scales of Infant and Toddler Development-III evaluated language outcomes. Linear regression, mediation, and moderation assessed associations between prenatal adversities and neonatal white matter on language outcomes. Results Prenatal exposure to Social Disadvantage (p<.001) and Maternal Psychosocial Stress (p<.001) were correlated with poorer language outcomes. When Social Disadvantage and maternal Psychosocial Stress were modeled simultaneously in relation to language outcomes, only Social Disadvantage was significant (p<.001). Independent of Social Disadvantage (p<.001), lower neonatal CC fractional anisotropy (FA) was related to poorer global (p=.02) and receptive (p=.02) language outcomes. CC FA did not mediate the association between Social Disadvantage and language outcomes (indirect effect 95% CIs -0.96-0.15), and there was no interaction between Social Disadvantage and CC FA on language outcomes (p>.05). Bilateral SLF/AF, IFOF, and uncinate were not significant (p>.05). Conclusions Prenatal exposure to Social Disadvantage and neonatal CC FA were independently related to language problems by age 2, with no evidence of mediating or moderating associations with language outcomes. These findings elucidate the early neural underpinnings of language development and suggest that the prenatal period may be an important time to provide poverty- reducing support to expectant mothers to promote offspring neurodevelopmental outcomes.
Collapse
|
3
|
Kato S, Kurokawa R, Suzuki F, Amemiya S, Shinozaki T, Takanezawa D, Kohashi R, Abe O. White and Gray Matter Abnormality in Burning Mouth Syndrome Evaluated with Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging. Magn Reson Med Sci 2024; 23:204-213. [PMID: 36990741 PMCID: PMC11024709 DOI: 10.2463/mrms.mp.2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Burning mouth syndrome (BMS) is defined by a burning sensation or pain in the tongue or other oral sites despite the presence of normal mucosa on inspection. Both psychiatric and neuroimaging investigations have examined BMS; however, there have been no analyses using the neurite orientation dispersion and density imaging (NODDI) model, which provides detailed information of intra- and extracellular microstructures. Therefore, we performed voxel-wise analyses using both NODDI and diffusion tensor imaging (DTI) models and compared the results to better comprehend the pathology of BMS. METHODS Fourteen patients with BMS and 11 age- and sex-matched healthy control subjects were prospectively scanned using a 3T-MRI machine using 2-shell diffusion imaging. Diffusion tensor metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) and neurite orientation and dispersion index metrics (intracellular volume fraction [ICVF], isotropic volume fraction [ISO], and orientation dispersion index [ODI]) were retrieved from diffusion MRI data. These data were analyzed using tract-based spatial statistics (TBSS) and gray matter-based spatial statistics (GBSS). RESULTS TBSS analysis showed that patients with BMS had significantly higher FA and ICVF and lower MD and RD than the healthy control subjects (family-wise error [FWE] corrected P < 0.05). Changes in ICVF, MD, and RD were observed in widespread white matter areas. Fairly small areas with different FA were included. GBSS analysis showed that patients with BMS had significantly higher ISO and lower MD and RD than the healthy control subjects (FWE-corrected P < 0.05), mainly limited to the amygdala. CONCLUSION The increased ICVF in the BMS group may represent myelination and/or astrocytic hypertrophy, and microstructural changes in the amygdala in GBSS analysis indicate the emotional-affective profile of BMS.
Collapse
Affiliation(s)
- Shimpei Kato
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Fumio Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Shinozaki
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Daiki Takanezawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kohashi
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Wedderburn CJ, Yeung S, Subramoney S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Gibb DM, Zar HJ, Stein DJ, Donald KA. Association of in utero HIV exposure with child brain structure and language development: a South African birth cohort study. BMC Med 2024; 22:129. [PMID: 38519887 PMCID: PMC10960435 DOI: 10.1186/s12916-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND There is a growing population of children with in utero HIV exposure who are at risk of poor neurodevelopmental outcomes despite avoiding HIV infection. However, the underlying neurobiological pathways are not understood and neuroimaging studies are lacking. We aimed to investigate the cortical brain structure of children who are HIV-exposed and uninfected (HEU) compared to HIV-unexposed (HU) children and to examine the relationship with neurodevelopment. METHODS The Drakenstein Child Health birth cohort study enrolled pregnant women from a high HIV prevalence area in South Africa with longitudinal follow-up of mother-child pairs. High-resolution magnetic resonance imaging scans from 162 children (70 HEU; 92 HU) were acquired at 2-3 years of age. All HEU children were born to mothers taking antiretroviral therapy. Measures of brain structure (cortical thickness and surface area) in the prefrontal cortex regions were extracted from T1-weighted images and compared between groups using multivariate analysis of variance and linear regression. Child development, assessed using the Bayley Scales of Infant and Toddler Development-III, was correlated with cortical structure, and mediation analyses were performed. RESULTS Analyses demonstrated an association between HIV exposure and cortical thickness across the prefrontal cortex (p = 0.035). Children who were HEU had thicker cortices in prefrontal regions, with significantly greater cortical thickness in the medial orbitofrontal cortex (mOFC) bilaterally compared to HU children (3.21 mm versus 3.14 mm, p = 0.009, adjusted effect size 0.44 [95% CI 0.12 to 0.75]). Estimates held across multiple sensitivity analyses. There were no group differences in cortical surface area. Language scores, which were lower in HEU versus HU children (81.82 versus 86.25, p = 0.011, effect size - 0.44 [95% CI - 0.78 to - 0.09]), negatively correlated with prefrontal cortical thickness in both groups. Cortical thickness in the mOFC mediated the relationship between HIV exposure and poor language outcomes (Sobel test p = 0.032). CONCLUSIONS In this cohort study, exposure to HIV during pregnancy was associated with altered cortical structure in early life. Our findings indicate that differences in cortical thickness development in the prefrontal region in children who are HEU may be a pathway leading to language impairment. Longitudinal studies are needed to determine the lasting impact.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Dubner SE, Rickerich L, Bruckert L, Poblaciones RV, Sproul D, Scala M, Feldman HM, Travis KE. Early, low-dose hydrocortisone and near-term brain connectivity in extremely preterm infants. Pediatr Res 2024; 95:1028-1034. [PMID: 38030826 DOI: 10.1038/s41390-023-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Postnatal steroids are used to prevent bronchopulmonary dysplasia in extremely preterm infants but may have adverse effects on brain development. We assessed connectivity metrics of major cerebral and cerebellar white matter pathways at near-term gestational age among infants who did or did not receive a standardized regimen of hydrocortisone during the first 10 days of life. METHODS Retrospective cohort study. PARTICIPANTS Infants born <28 weeks: Protocol group (n = 33) received at least 50% and not more than 150% of an intended standard dose of 0.5 mg/kg hydrocortisone twice daily for 7 days, then 0.5 mg/kg per day for 3 days; Non-Protocol group (n = 22), did not receive protocol hydrocortisone or completed <50% of the protocol dose. We assessed group differences in near-term diffusion MRI mean fractional anisotropy (FA) and mean diffusivity (MD) across the corticospinal tract, inferior longitudinal fasciculus, corpus callosum and superior cerebellar peduncle. RESULTS Groups were comparable in gestational age, post-menstrual age at scan, medical complications, bronchopulmonary dysplasia, and necrotizing enterocolitis. No significant large effect group differences were identified in mean FA or MD in any cerebral or cerebellar tract. CONCLUSION(S) Low dose, early, postnatal hydrocortisone was not associated with significant differences in white matter tract microstructure at near-term gestational age. IMPACT This study compared brain microstructural connectivity as a primary outcome among extremely preterm infants who did or did not receive early postnatal hydrocortisone. Low dose hydrocortisone in the first 10 days of life was not associated with significant differences in white matter microstructure in major cerebral and cerebellar pathways. Hydrocortisone did not have a significant effect on early brain white matter circuits.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Lucy Rickerich
- Program in Human Biology, Stanford University, Stanford, CA, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Rocío Velasco Poblaciones
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Dawson Sproul
- Program in Human Biology, Stanford University, Stanford, CA, USA
| | - Melissa Scala
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Quinones JF, Hildebrandt A, Pavan T, Thiel CM, Heep A. Preterm birth and neonatal white matter microstructure in in-vivo reconstructed fiber tracts among audiovisual integration brain regions. Dev Cogn Neurosci 2023; 60:101202. [PMID: 36731359 PMCID: PMC9894786 DOI: 10.1016/j.dcn.2023.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/02/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Individuals born preterm are at risk of developing a variety of sequelae. Audiovisual integration (AVI) has received little attention despite its facilitating role in the development of socio-cognitive abilities. The present study assessed the association between prematurity and in-vivo reconstructed fiber bundles among brain regions relevant for AVI. We retrieved data from 63 preterm neonates enrolled in the Developing Human Connectome Project (http://www.developingconnectome.org/) and matched them with 63 term-born neonates from the same study by means of propensity score matching. We performed probabilistic tractography, DTI and NODDI analysis on the traced fibers. We found that specific DTI and NODDI metrics are significantly associated with prematurity in neonates matched for postmenstrual age at scan. We investigated the spatial overlap and developmental order of the reconstructed tractograms between preterm and full-term neonates. Permutation-based analysis revealed significant differences in dice similarity coefficients and developmental order between preterm and full term neonates at the group level. Contrarily, no group differences in the amount of interindividual variability of DTI and NODDI metrics were observed. We conclude that microstructural detriment in the reconstructed fiber bundles along with developmental and morphological differences are likely to contribute to disadvantages in AVI in preterm individuals.
Collapse
Affiliation(s)
- Juan F Quinones
- Psychological Methods and Statistics, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Andrea Hildebrandt
- Psychological Methods and Statistics, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany.
| | - Tommaso Pavan
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christiane M Thiel
- Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Axel Heep
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Klinik für Neonatologie, Intensivmedizin und Kinderkardiologie, Oldenburg, Germany
| |
Collapse
|
7
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Kallankari H, Taskila HL, Heikkinen M, Hallman M, Saunavaara V, Kaukola T. Microstructural alterations in association tracts and language abilities in schoolchildren born very preterm and with poor fetal growth. Pediatr Radiol 2023; 53:94-103. [PMID: 35773359 PMCID: PMC9816217 DOI: 10.1007/s00247-022-05418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prematurity and perinatal risk factors may influence white matter microstructure. In turn, these maturational changes may influence language development in this high-risk population of children. OBJECTIVE To evaluate differences in the microstructure of association tracts between preterm and term children and between preterm children with appropriate growth and those with fetal growth restriction and to study whether the diffusion tensor metrics of these tracts correlate with language abilities in schoolchildren with no severe neurological impairment. MATERIALS AND METHODS This study prospectively followed 56 very preterm children (mean gestational age: 28.7 weeks) and 21 age- and gender-matched term children who underwent diffusion tensor imaging at a mean age of 9 years. We used automated probabilistic tractography and measured fractional anisotropy in seven bilateral association tracts known to belong to the white matter language network. Both groups participated in language assessment using five standardised tests at the same age. RESULTS Preterm children had lower fractional anisotropy in the right superior longitudinal fasciculus 1 compared to term children (P < 0.05). Preterm children with fetal growth restriction had lower fractional anisotropy in the left inferior longitudinal fasciculus compared to preterm children with appropriate fetal growth (P < 0.05). Fractional anisotropy in three dorsal tracts and in two dorsal and one ventral tract had a positive correlation with language assessments among preterm children and preterm children with fetal growth restriction, respectively (P < 0.05). CONCLUSION There were some microstructural differences in language-related tracts between preterm and term children and between preterm children with appropriate and those with restricted fetal growth. Children with better language abilities had a higher fractional anisotropy in distinct white matter tracts.
Collapse
Affiliation(s)
- Hanna Kallankari
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Child Neurology, Oulu University Hospital, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland.
| | - Hanna-Leena Taskila
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| | - Minna Heikkinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Child Language Research Center, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Virva Saunavaara
- PET Center, Turku University Hospital, Turku, Finland ,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuula Kaukola
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
9
|
Goldstein Ferber S, Weller A, Ben-Shachar M, Klinger G, Geva R. Development of the Ontogenetic Self-Regulation Clock. Int J Mol Sci 2022; 23:993. [PMID: 35055184 PMCID: PMC8778416 DOI: 10.3390/ijms23020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
To date, there is no overarching proposition for the ontogenetic-neurobiological basis of self-regulation. This paper suggests that the balanced self-regulatory reaction of the fetus, newborn and infant is based on a complex mechanism starting from early brainstem development and continuing to progressive control of the cortex over the brainstem. It is suggested that this balance occurs through the synchronous reactivity between the sympathetic and parasympathetic systems, both which originate from the brainstem. The paper presents an evidence-based approach in which molecular excitation-inhibition balance, interchanges between excitatory and inhibitory roles of neurotransmitters as well as cardiovascular and white matter development across gestational ages, are shown to create sympathetic-parasympathetic synchrony, including the postnatal development of electroencephalogram waves and vagal tone. These occur in developmental milestones detectable in the same time windows (sensitive periods of development) within a convergent systematic progress. This ontogenetic stepwise process is termed "the self-regulation clock" and suggest that this clock is located in the largest connection between the brainstem and the cortex, the corticospinal tract. This novel evidence-based new theory paves the way towards more accurate hypotheses and complex studies of self-regulation and its biological basis, as well as pointing to time windows for interventions in preterm infants. The paper also describes the developing indirect signaling between the suprachiasmatic nucleus and the corticospinal tract. Finally, the paper proposes novel hypotheses for molecular, structural and functional investigation of the "clock" circuitry, including its associations with other biological clocks. This complex circuitry is suggested to be responsible for the developing self-regulatory functions and their neurobehavioral correlates.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel; (A.W.); (R.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel; (A.W.); (R.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Michal Ben-Shachar
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Gil Klinger
- Department of Neonatology, Schneider Children’s Medical Center, Sackler Medical School, Tel Aviv University, Petach Tikvah 4920235, Israel;
| | - Ronny Geva
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel; (A.W.); (R.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| |
Collapse
|
10
|
Bouyeure A, Bekha D, Patil S, Hertz-Pannier L, Noulhiane M. OUP accepted manuscript. Cereb Cortex Commun 2022; 3:tgac004. [PMID: 35261977 PMCID: PMC8895309 DOI: 10.1093/texcom/tgac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/13/2022] Open
Abstract
The structure-function relationship between white matter microstructure and episodic memory (EM) has been poorly studied in the developing brain, particularly in early childhood. Previous studies in adolescents and adults have shown that episodic memory recall is associated with prefrontal-limbic white matter microstructure. It is unknown whether this association is also observed during early ontogeny. Here, we investigated the association between prefrontal-limbic tract microstructure and EM performance in a cross-sectional sample of children aged 4 to 12 years. We used a multivariate partial least squares correlation approach to extract tract-specific latent variables representing shared information between age and diffusion parameters describing tract microstructure. Individual projections onto these latent variables describe patterns of interindividual differences in tract maturation that can be interpreted as scores of white matter tract microstructural maturity. Using these estimates of microstructural maturity, we showed that maturity scores of the uncinate fasciculus and dorsal cingulum bundle correlated with distinct measures of EM recall. Furthermore, the association between tract maturity scores and EM recall was comparable between younger and older children. Our results provide new evidence on the relation between white matter maturity and EM performance during development.
Collapse
Affiliation(s)
- Antoine Bouyeure
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Dhaif Bekha
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Sandesh Patil
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Lucie Hertz-Pannier
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Marion Noulhiane
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
- Corresponding author: UNIACT, NeuroSpin, CEA, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Everts R, Muri R, Leibundgut K, Siegwart V, Wiest R, Steinlin M. Fear and discomfort of children and adolescents during MRI: ethical consideration on research MRIs in children. Pediatr Res 2022; 91:720-723. [PMID: 33879848 PMCID: PMC9064788 DOI: 10.1038/s41390-020-01277-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Regula Everts
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Raphaela Muri
- grid.411656.10000 0004 0479 0855Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland ,grid.411656.10000 0004 0479 0855Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kurt Leibundgut
- grid.411656.10000 0004 0479 0855Department of Pediatric Hematology and Oncology, Children’s University Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valerie Siegwart
- grid.411656.10000 0004 0479 0855Division of Neuropediatrics, Development and Rehabilitation, Children’s University Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Pediatric Hematology and Oncology, Children’s University Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- grid.411656.10000 0004 0479 0855Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Maja Steinlin
- grid.411656.10000 0004 0479 0855Division of Neuropediatrics, Development and Rehabilitation, Children’s University Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Abdul Aziz S, Athalye-Jape G, Agrawal S, Sharp M. Survey of clinical staff knowledge on the long-term outcomes of very preterm infants delivered in a tertiary referral hospital. J Paediatr Child Health 2021; 57:1442-1447. [PMID: 33900665 DOI: 10.1111/jpc.15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Abstract
AIM To assess knowledge of our neonatal intensive care unit clinical staff regarding preterm neurodevelopmental outcomes using the 33-item Preterm Birth Knowledge Scale (PB-KS). METHODS An anonymous convenience sampling survey of clinical staff in the Neonatal Directorate was conducted between July and December 2019. PB-KS, demographic information and prior staff education on long-term outcomes in very preterm infants were collected. RESULTS There were 56 responses (five neonatologists, eight paediatric trainees, 41 neonatal nurses and two allied health staff). Responses were scored as correct or incorrect. The mean score on the PB-KS was 19.5 (range: 4-29 out of 40) with 50% correct answers. Accuracy was highest (96%) for rates of cerebral palsy and lowest (11%) for estimation of quality of life among preterm survivors. Staff reported training in long-term outcomes of preterm infants through attending a conference/seminar (20%) or a combination of formal training and seminars (41.1%). Over half of our clinical staff reported a lack of formal training. Formally trained clinical staff scored significantly better in this survey. Didactic seminars were indicated as preferred choice for staff education. CONCLUSIONS Results of our survey will assist in developing a customised educational programme to address identified gaps in the knowledge of clinical staff as our survey also showed significantly better scores among staff who were formally trained about long-term outcomes in very preterm infants. Staff responses indicated that knowledge on long-term outcomes was variable but more accurate with regard to more severe disabilities and shorter-term developmental outcomes.
Collapse
Affiliation(s)
- Safiyyah Abdul Aziz
- Neonatal Follow Up Programme, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia.,Neonatology, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia
| | - Gayatri Athalye-Jape
- Neonatal Follow Up Programme, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia.,Neonatology, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia
| | - Sachin Agrawal
- Neonatal Follow Up Programme, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia.,Neonatology, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia
| | - Mary Sharp
- Neonatal Follow Up Programme, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia.,Neonatology, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Parikh MN, Chen M, Braimah A, Kline J, McNally K, Logan JW, Tamm L, Yeates KO, Yuan W, He L, Parikh NA. Diffusion MRI Microstructural Abnormalities at Term-Equivalent Age Are Associated with Neurodevelopmental Outcomes at 3 Years of Age in Very Preterm Infants. AJNR Am J Neuroradiol 2021; 42:1535-1542. [PMID: 33958330 DOI: 10.3174/ajnr.a7135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/18/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Microstructural white matter abnormalities on DTI using Tract-Based Spatial Statistics at term-equivalent age are associated with cognitive and motor outcomes at 2 years of age or younger. However, neurodevelopmental tests administered at such early time points are insufficiently predictive of mild-moderate motor and cognitive impairment at school age. Our objective was to evaluate the microstructural antecedents of cognitive and motor outcomes at 3 years' corrected age in a cohort of very preterm infants. MATERIALS AND METHODS We prospectively recruited 101 very preterm infants (<32 weeks' gestational age) and performed DTI at term-equivalent age. The Differential Ability Scales, 2nd ed, Verbal and Nonverbal subtests, and the Bayley Scales of Infant and Toddler Development, 3rd ed, Motor subtest, were administered at 3 years of age. We correlated DTI metrics from Tract-Based Spatial Statistics with the Bayley Scales of Infant and Toddler Development, 3rd ed, and the Differential Ability Scales, 2nd ed, scores with correction for multiple comparisons. RESULTS Of the 101 subjects, 84 had high-quality DTI data, and of these, 69 returned for developmental testing (82%). Their mean (SD) gestational age was 28.4 (2.5) weeks, and birth weight was 1121.4 (394.1) g. DTI metrics were significantly associated with Nonverbal Ability in the corpus callosum, posterior thalamic radiations, fornix, and inferior longitudinal fasciculus and with Motor scores in the corpus callosum, internal and external capsules, posterior thalamic radiations, superior and inferior longitudinal fasciculi, cerebral peduncles, and corticospinal tracts. CONCLUSIONS We identified widespread microstructural white matter abnormalities in very preterm infants at term that were significantly associated with cognitive and motor development at 3 years' corrected age.
Collapse
Affiliation(s)
- M N Parikh
- From the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - M Chen
- Imaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Electronic Engineering and Computer Science (M.C.), College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - A Braimah
- Imaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Kline
- From the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - K McNally
- Center for Perinatal Research (K.M., J.W.L.), The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - J W Logan
- Center for Perinatal Research (K.M., J.W.L.), The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - L Tamm
- Department of Pediatrics (L.T., L.H., N.A.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio.,Center for ADHD (L.T.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - K O Yeates
- Department of Psychology (K.O.Y.), Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, and University of Calgary, Alberta, Canada
| | - W Yuan
- Imaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology (W.Y.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - L He
- From the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Imaging Research Center (M.C., A.B., W.Y.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics (L.T., L.H., N.A.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - N A Parikh
- From the Perinatal Institute (M.N.P., J.K., L.H., N.A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio .,Department of Pediatrics (L.T., L.H., N.A.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
14
|
Prasad JD, van de Looij Y, Gunn KC, Ranchhod SM, White PB, Berry MJ, Bennet L, Sizonenko SV, Gunn AJ, Dean JM. Long-term coordinated microstructural disruptions of the developing neocortex and subcortical white matter after early postnatal systemic inflammation. Brain Behav Immun 2021; 94:338-356. [PMID: 33307171 DOI: 10.1016/j.bbi.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Severe postnatal systemic infection is highly associated with persistent disturbances in brain development and neurobehavioral outcomes in survivors of preterm birth. However, the contribution of less severe but prolonged postnatal infection and inflammation to such disturbances is unclear. Further, the ability of modern imaging techniques to detect the underlying changes in cellular microstructure of the brain in these infants remains to be validated. We used high-field ex-vivo MRI, neurohistopathology, and behavioral tests in newborn rats to demonstrate that prolonged postnatal systemic inflammation causes subtle, persisting disturbances in brain development, with neurodevelopmental delays and mild motor impairments. Diffusion-tensor MRI and neurite orientation dispersion and density imaging (NODDI) revealed delayed maturation of neocortical and subcortical white matter microstructure. Analysis of pyramidal neurons showed that the cortical deficits involved impaired dendritic arborization and spine formation. Analysis of oligodendrocytes showed that the white matter deficits involved impaired oligodendrocyte maturation and axonal myelination. These findings indicate that prolonged postnatal inflammation, without severe infection, may critically contribute to the diffuse spectrum of brain pathology and subtle long-term disability in preterm infants, with a cellular mechanism involving oligodendrocyte and neuronal dysmaturation. NODDI may be useful for clinical detection of these microstructural deficits.
Collapse
Affiliation(s)
- Jaya D Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology, Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | - Katherine C Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sonya M Ranchhod
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Petra B White
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Mary J Berry
- The Department of Pediatrics and Health Care, University of Otago, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
15
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
16
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
17
|
Lee HJ, Kwon H, Kim JI, Lee JY, Lee JY, Bang S, Lee JM. The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age. NEUROIMAGE-CLINICAL 2020; 29:102528. [PMID: 33338967 PMCID: PMC7750449 DOI: 10.1016/j.nicl.2020.102528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Maturation of specific WM tracts in preterm individuals differs from those of term controls. The elastic net logistic regression model was used to identify altered white matter tracts in the preterm brain. The alteration of the cingulum in the preterm at near-term correlate with neurodevelopmental scores at 18–22 months of age.
Background Relative to full-term infants, very preterm infants exhibit disrupted white matter (WM) maturation and problems related to development, including motor, cognitive, social-emotional, and receptive and expressive language processing. Objective The present study aimed to determine whether regional abnormalities in the WM microstructure of very preterm infants, as defined relative to those of full-term infants at a near-term age, are associated with neurodevelopmental outcomes at the age of 18–22 months. Methods We prospectively enrolled 89 very preterm infants (birth weight < 1500 g) and 43 normal full-term control infants born between 2016 and 2018. All infants underwent a structural brain magnetic resonance imaging scan at near-term age. The diffusion tensor imaging (DTI) metrics of the whole-brain WM tracts were extracted based on the neonatal probabilistic WM pathway. The elastic net logistic regression model was used to identify altered WM tracts in the preterm brain. We evaluated the associations between the altered WM microstructure at near-term age and motor, cognitive, social-emotional, and receptive and expressive language developments at 18–22 months of age, as measured using the Bayley Scales of Infant Development, Third Edition. Results We found that the elastic net logistic regression model could classify preterm and full-term neonates with an accuracy of 87.9% (corrected p < 0.008) using the DTI metrics in the pathway of interest with a 10% threshold level. The fractional anisotropy (FA) values of the body and splenium of the corpus callosum, middle cerebellar peduncle, left and right uncinate fasciculi, and right portion of the pathway between the premotor and primary motor cortices (premotor-PMC), as well as the mean axial diffusivity (AD) values of the left cingulum, were identified as contributive features for classification. Increased adjusted AD values in the left cingulum pathway were significantly correlated with language scores after false discovery rate (FDR) correction (r = 0.217, p = 0.043). The expressive language and social-emotional composite scores showed a significant positive correlation with the AD values in the left cingulum pathway (r = 0.226 [p = 0.036] and r = 0.31 [p = 0.003], respectively) after FDR correction. Conclusion Our approach suggests that the cingulum pathways of very preterm infants differ from those of full-term infants and significantly contribute to the prediction of the subsequent development of the language and social-emotional domains. This finding could improve our understanding of how specific neural substrates influence neurodevelopment at later ages, and individual risk prediction, thus helping to inform early intervention strategies that address developmental delay.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Hyeokjin Kwon
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, South Korea
| | - SungKyu Bang
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
18
|
Kimpton JA, Batalle D, Barnett ML, Hughes EJ, Chew ATM, Falconer S, Tournier JD, Alexander D, Zhang H, Edwards AD, Counsell SJ. Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates. Neuroradiology 2020; 63:573-583. [PMID: 33123752 PMCID: PMC7966229 DOI: 10.1007/s00234-020-02584-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023]
Abstract
Purpose Diffusion magnetic resonance imaging (dMRI) studies report altered white matter (WM) development in preterm infants. Neurite orientation dispersion and density imaging (NODDI) metrics provide more realistic estimations of neurite architecture in vivo compared with standard diffusion tensor imaging (DTI) metrics. This study investigated microstructural maturation of WM in preterm neonates scanned between 25 and 45 weeks postmenstrual age (PMA) with normal neurodevelopmental outcomes at 2 years using DTI and NODDI metrics. Methods Thirty-one neonates (n = 17 male) with median (range) gestational age (GA) 32+1 weeks (24+2–36+4) underwent 3 T brain MRI at median (range) post menstrual age (PMA) 35+2 weeks (25+3–43+1). WM tracts (cingulum, fornix, corticospinal tract (CST), inferior longitudinal fasciculus (ILF), optic radiations) were delineated using constrained spherical deconvolution and probabilistic tractography in MRtrix3. DTI and NODDI metrics were extracted for the whole tract and cross-sections along each tract to assess regional development. Results PMA at scan positively correlated with fractional anisotropy (FA) in the CST, fornix and optic radiations and neurite density index (NDI) in the cingulum, CST and fornix and negatively correlated with mean diffusivity (MD) in all tracts. A multilinear regression model demonstrated PMA at scan influenced all diffusion measures, GA and GAxPMA at scan influenced FA, MD and NDI and gender affected NDI. Cross-sectional analyses revealed asynchronous WM maturation within and between WM tracts.). Conclusion We describe normal WM maturation in preterm neonates with normal neurodevelopmental outcomes. NODDI can enhance our understanding of WM maturation compared with standard DTI metrics alone. Supplementary Information The online version of this article (10.1007/s00234-020-02584-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J A Kimpton
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - D Batalle
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M L Barnett
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - E J Hughes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - A T M Chew
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - S Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - J D Tournier
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - D Alexander
- Department of Computer Science and Centre for Medical Imaging Computing, University College London, London, UK
| | - H Zhang
- Department of Computer Science and Centre for Medical Imaging Computing, University College London, London, UK
| | - A D Edwards
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - S J Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
19
|
Dubner SE, Rose J, Bruckert L, Feldman HM, Travis KE. Neonatal white matter tract microstructure and 2-year language outcomes after preterm birth. NEUROIMAGE-CLINICAL 2020; 28:102446. [PMID: 33035964 PMCID: PMC7554644 DOI: 10.1016/j.nicl.2020.102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023]
Abstract
Preterm infant white matter tracts uniquely predict later toddler language. Neonatal medical history moderates posterior corpus callosum–language relations. Different associations by tract may relate to brain maturation and medical history.
Aim To determine whether variability in diffusion MRI (dMRI) white matter tract metrics, obtained in a cohort of preterm infants prior to neonatal hospital discharge, would be associated with language outcomes at age 2 years, after consideration of age at scan and number of major neonatal complications. Method 30 children, gestational age 28.9 (2.4) weeks, underwent dMRI at mean post menstrual age 36.4 (1.4) weeks and language assessment with the Bayley Scales of Infant Development–III at mean age 22.2 (1.7) months chronological age. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for 5 white matter tracts. Hierarchical linear regression assessed associations between tract FA, moderating variables, and language outcomes. Results FA of the left inferior longitudinal fasciculus accounted for 17% (p = 0.03) of the variance in composite language and FA of the posterior corpus callosum accounted for 19% (p = 0.02) of the variance in composite language, beyond that accounted for by post-menstrual age at scan and neonatal medical complications. The number of neonatal medical complications moderated the relationship between language and posterior corpus callosum FA but did not moderate the association in the other tract. Conclusion Language at age 2 is associated with white matter metrics in early infancy in preterm children. The different pattern of associations by fiber group may relate to the stage of brain maturation and/or the nature and timing of medical complications related to preterm birth. Future studies should replicate these findings with a larger sample size to assure reliability of the findings.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jessica Rose
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
21
|
Association between diffusivity measures and language and cognitive-control abilities from early toddler’s age to childhood. Brain Struct Funct 2020; 225:1103-1122. [DOI: 10.1007/s00429-020-02062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
22
|
Raja R, Caprihan A, Rosenberg GA, Rachakonda S, Calhoun VD. Discriminating VCID subgroups: A diffusion MRI multi-model fusion approach. J Neurosci Methods 2020; 335:108598. [PMID: 32004594 PMCID: PMC7443575 DOI: 10.1016/j.jneumeth.2020.108598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 01/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vascular cognitive impairment and dementia (VCID) and Alzheimer's disease are predominant diseases among the aging population resulting in decline of various cognitive domains. Diffusion weighted MRI (DW-MRI) has been shown to be a promising aid in the diagnosis of such diseases. However, there are various models of DW-MRI and the interpretation of diffusion metrics depends on the model used in fitting data. Most previous studies are entirely based on parameters calculated from a single diffusion model. NEW METHOD We employ a data fusion framework wherein diffusion metrics from different models such as diffusion tensor imaging, diffusion kurtosis imaging and constrained spherical deconvolution model are fused using well known blind source separation approach to investigate white matter microstructural changes in population comprising of controls and VCID subgroups. Multiple comparisons between subject groups and prediction analysis using features from individual models and proposed fusion model are carried out to evaluate performance of proposed method. RESULTS Diffusion features from individual models successfully distinguished between controls and disease groups, but failed to differentiate between disease groups, whereas fusion approach showed group differences between disease groups too. WM tracts showing significant differences are superior longitudinal fasciculus, anterior thalamic radiation, arcuate fasciculus, optic radiation and corticospinal tract. COMPARISON WITH EXISTING METHOD ROC analysis showed increased AUC for fusion (AUC = 0.913, averaged across groups and tracts) compared to that of uni-model features (AUC = 0.77) demonstrating increased sensitivity of proposed method. CONCLUSION Overall our results highlight the benefits of multi-model fusion approach, providing improved sensitivity in discriminating VCID subgroups.
Collapse
Affiliation(s)
- Rajikha Raja
- The Mind Research Network, Albuquerque, NM 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA.
| | | | - Gary A Rosenberg
- UNM Health Sciences Center, University of New Mexico, Albuquerque, NM 87106, USA
| | - Srinivas Rachakonda
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA
| |
Collapse
|
23
|
Maternal reading and fluency abilities are associated with diffusion properties of ventral and dorsal white matter tracts in their preschool-age children. Brain Cogn 2020; 140:105532. [PMID: 32007789 DOI: 10.1016/j.bandc.2020.105532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
Early language exposure and shared parent-child reading, as assessed by maternal reading ability and fluency, affect the child's future language and cognitive abilities. The aim of the current study was to explore the association between maternal reading ability and fluency and diffusion properties of language- and cognition-related white matter tracts in their pre-school age children using diffusion tensor imaging (DTI). DTI data were acquired from fifteen girls (mean age: 3.83 ± 0.49 years). Reading ability and fluency were assessed in their mothers. Effects of hemisphere and node on diffusion properties were measured at 100 points along white matter tracts related to language and cognitive abilities. Significant positive correlations were found between maternal reading ability and fractional anisotropy in left and right dorsal and ventral language and executive functions-related tracts, while maternal reading fluency was associated with higher fractional anisotropy in ventral tracts, mainly in the left hemisphere. Fractional Anisotropy was significantly higher in the left compared to the right arcuate, cingulum cingulate, and inferior longitudinal fasciculus and higher in the right compared to the left superior longitudinal fasciculus. Our results signify the importance of maternal reading as a facilitator of the child's future language and cognitive abilities.
Collapse
|
24
|
Sanchez K, Spittle AJ, Boyce JO, Leembruggen L, Mantelos A, Mills S, Mitchell N, Neil E, John MS, Treloar J, Morgan AT. Conversational Language in 3-Year-Old Children Born Very Preterm and at Term. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:206-215. [PMID: 31855605 PMCID: PMC7213482 DOI: 10.1044/2019_jslhr-19-00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 09/19/2019] [Indexed: 06/02/2023]
Abstract
Purpose Language difficulties are prevalent among children born preterm. Existing studies have largely used standardized language tests, providing limited scope for detailed descriptive examination of preterm language. This study aimed to examine differences in conversational language between children born < 30 weeks and at term as well as correlations between language sample analysis (LSA) and a standardized language tool. Method Two hundred four 3-year-olds (103 born < 30 weeks, 101 born at term) recruited at birth provided a 10-min language sample and completed the Preschool Language Scales-Fifth Edition (I. Zimmerman, Steiner, & Pond, 2011). LSA was conducted using the Systematic Analysis of Language Transcripts and Index of Productive Syntax. Group differences were analyzed using linear regression, and Pearson correlation coefficient (coef) was used to determine correlations between measures. Results Children born < 30 weeks scored lower than term-born peers on multiple metrics when controlled for confounding factors (sex, high social risk, multilingualism, and diagnosed neurodevelopmental disorders), including mean length of utterance in morphemes (coef = -0.28, 95% confidence interval [CI] [-0.56, 0.01]) and words (coef = -0.29, 95% CI [-0.53, -0.05]), number of different word roots (coef = -10.04, 95% CI [-17.93, -2.14]), and Index of Productive Syntax sentence structures (coef = -1.81, 95% CI [-3.10, -0.52]). Other variables (e.g., number of utterances, number of nouns and adjectives) were not significantly different between groups. LSA and the Preschool Language Scales-Fifth Edition were at most moderately correlated (≤ .45). Conclusions Three-year-old children born preterm demonstrated poorer conversational language than children born at term, with some specific areas of deficit emerging. Furthermore, formal assessment and LSA appear to provide relatively distinct and yet complementary data to guide diagnostic and intervention decisions. Supplemental Material https://doi.org/10.23641/asha.11368073.
Collapse
Affiliation(s)
- Katherine Sanchez
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia J. Spittle
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Physiotherapy, The University of Melbourne, Parkville, Victoria, Australia
- The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Jessica O. Boyce
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Leembruggen
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anastasia Mantelos
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Mills
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Naomi Mitchell
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emily Neil
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Miya St John
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jasmin Treloar
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Angela T. Morgan
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Speech Pathology and Audiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Speech Pathology, the Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Andica C, Kamagata K, Hayashi T, Hagiwara A, Uchida W, Saito Y, Kamiya K, Fujita S, Akashi T, Wada A, Abe M, Kusahara H, Hori M, Aoki S. Scan-rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics. Neuroradiology 2019; 62:483-494. [PMID: 31883043 PMCID: PMC7093343 DOI: 10.1007/s00234-019-02350-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
Purpose The reproducibility of neurite orientation dispersion and density imaging (NODDI) metrics in the human brain has not been explored across different magnetic resonance (MR) scanners from different vendors. This study aimed to evaluate the scan–rescan and inter-vendor reproducibility of NODDI metrics in white and gray matter of healthy subjects using two 3-T MR scanners from two vendors. Methods Ten healthy subjects (7 males; mean age 30 ± 7 years, range 23–37 years) were included in the study. Whole-brain diffusion-weighted imaging was performed with b-values of 1000 and 2000 s/mm2 using two 3-T MR scanners from two different vendors. Automatic extraction of the region of interest was performed to obtain NODDI metrics for whole and localized areas of white and gray matter. The coefficient of variation (CoV) and intraclass correlation coefficient (ICC) were calculated to assess the scan–rescan and inter-vendor reproducibilities of NODDI metrics. Results The scan–rescan and inter-vendor reproducibility of NODDI metrics (intracellular volume fraction and orientation dispersion index) were comparable with those of diffusion tensor imaging (DTI) metrics. However, the inter-vendor reproducibilities of NODDI (CoV = 2.3–14%) were lower than the scan–rescan reproducibility (CoV: scanner A = 0.8–3.8%; scanner B = 0.8–2.6%). Compared with the finding of DTI metrics, the reproducibility of NODDI metrics was lower in white matter and higher in gray matter. Conclusion The lower inter-vendor reproducibility of NODDI in some brain regions indicates that data acquired from different MRI scanners should be carefully interpreted.
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Abe
- Canon Medical Systems Corporation, Kanagawa, Japan
| | | | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Cooper HE, Kaden E, Halliday LF, Bamiou DE, Mankad K, Peters C, Clark CA. White matter microstructural abnormalities in children with severe congenital hypothyroidism. NEUROIMAGE-CLINICAL 2019; 24:101980. [PMID: 31446316 PMCID: PMC6713841 DOI: 10.1016/j.nicl.2019.101980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022]
Abstract
This study assessed white matter microstructural integrity and behavioral correlates for children with severe congenital hypothyroidism (CH) who were identified and treated early following newborn screening. Eighteen children with severe CH and 21 healthy controls underwent a battery of behavioral measures of hearing, language and communication, along with diffusion MR imaging. Tract-based spatial statistics were performed on standard diffusion parameters of fractional anisotropy and diffusivity metrics. Microscopic diffusion anisotropy mapping based on the Spherical Mean Technique was also used to evaluate biologically specific metrics. Compared with age-matched controls, children with severe CH had poorer hearing and communication skills, albeit generally within normal limits. Children with severe CH had fractional anisotropy that was significantly lower in the cerebellum, bilateral thalami and right temporal lobe, and radial diffusivity that was significantly higher in the cerebellum and bilateral thalami. Microscopic fractional anisotropy and intra-neurite volume fraction were also significantly decreased, and transverse microscopic diffusivity was significantly increased, in the CH group in areas including the cerebellum, thalamus, occipital lobe, and corpus callosum, and in the white matter adjacent to sensorimotor cortex, particularly in the left hemisphere. Significant and widespread correlations were observed between behavioral measures and measures of white matter microstructural integrity in children with CH. The results indicate that children with severe CH who are identified through newborn screening may have significant brain white matter microstructural abnormalities despite early treatment. Children with severe CH show reductions in white matter microstructural integrity. Hearing and communication abilities are impaired for some children with severe CH. White matter abnormalities are associated with communication abilities in CH.
Collapse
Affiliation(s)
- Hannah E Cooper
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK; Royal Berkshire NHS Foundation Trust, Reading, UK.
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Lorna F Halliday
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Doris-Eva Bamiou
- UCL Ear Institute, Faculty of Brain Sciences, University College London, London, UK; National Institute of Health Research (NIHR), University College London Hospitals Biomedical Research Centre, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Catherine Peters
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Christopher A Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|