1
|
Wu H, Dong Y, Meng Q, Jiang J, Gao B, Ren Y, Liu Y, Li H, Wang C, Zhang H. Best1 mitigates ER stress induced by the increased cellular microenvironment stiffness in epilepsy. Neurobiol Dis 2025; 204:106767. [PMID: 39674551 DOI: 10.1016/j.nbd.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024] Open
Abstract
Changes in brain tissue stiffness are closely linked to the development and diseases of the nervous system. Endoplasmic reticulum (ER) stress plays a role in various pathological processes related to epilepsy. However, the relationship between stiffness changes, ER stress, and epilepsy remains unclear. This study aimed to investigate the impact of Best1 upregulation on alleviating ER stress and the underlying mechanism. Additionally, we proposed a protective strategy to prevent cell death resulting from ER stress in epilepsy. This study investigated the expression levels of ER stress-related proteins in epileptic tissues of varying stiffness. Atomic force microscopy revealed differences in stiffness across various lesion regions in patients with epilepsy. The expression levels of ECM and ER stress-related proteins were elevated in tissues with higher stiffness. Polypropionamide hydrogels were used to simulate extracellular matrix (ECM) with varying stiffness levels. Basal ER stress increased in the stiffer hydrogel substrates. Furthermore, the calcium-activated anion channel Bestrophin 1 (Best1) mitigated ER stress induced by both the stiffer substrate and thapsigargin. The loss-of-function mutations in Best1 inhibited this activity. The underlying mechanism involves the upregulation of the endosomal sorting complex required for the transport (ESCRT) components by Best1, which helps mitigate ER stress. These findings suggest that increased stiffness of the cellular microenvironment may contribute to neuronal death during epileptogenesis. Additionally, Best1 upregulation may serve as a protective strategy against excessive ER stress-induced neuronal damage in epilepsy.
Collapse
Affiliation(s)
- Hao Wu
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Department of Neurosurgery, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yicong Dong
- Department of Neurosurgery, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Meng
- Department of Neurosurgery, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Jiang
- The Second Clinical School, Lanzhou University, Lanzhou, China
| | - Bojian Gao
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yutao Ren
- Department of Neurosurgery, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Liu
- Department of Neurosurgery, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanfa Li
- Department of Neurosurgery, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Hua Zhang
- Department of Neurosurgery, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
McIlvain G. The contributions of relative brain viscosity to brain function and health. Brain Commun 2024; 6:fcae424. [PMID: 39713240 PMCID: PMC11660954 DOI: 10.1093/braincomms/fcae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Magnetic resonance elastography has emerged over the last two decades as a non-invasive method for quantitatively measuring the mechanical properties of the brain. Since the inception of the technology, brain stiffness has been the primary metric used to describe brain microstructural mechanics. However, more recently, a secondary measure has emerged as both theoretical and experimental significance, which is the ratio of tissue viscosity relative to tissue elasticity. This viscous-to-elastic ratio describes different but complementary aspects of brain microstructural health and is theorized to relate to microstructural organization, as opposed to stiffness, which is related to tissue composition. The relative viscosity of brain tissue changes regionally during maturation, aging and neurodegenerative disease. It also exhibits unique characteristics in brain tumours and hydrocephalus, and is of interest for characterizing traumatic head impacts. Most notably, regional measures of relative brain tissue viscosity appear to hold a unique role in describing cognitive function. For instance, in young adults, relatively lower hippocampal viscosity compared to elasticity repeatedly and sensitively relates to spatial, declarative and verbal memory performance. Importantly, these same trends are not found with hippocampal stiffness, or hippocampal volume, highlighting a potential sensitivity of relative viscosity to underlying cellularity that contributions to normal healthy brain function. Likewise in young adults, in the orbitofrontal cortex, lower relative viscosity relates to better performance on fluid intelligence tasks, and in the Broca's area of children ages 5-7, lower relative viscosity is indicative of better language performance. In these instances, this ratio shows heightened sensitivity over other structural MRI metrics, and importantly, provides a quantitative and intrinsic alternative to measuring structure-function relationships with task-based fMRI. There are ongoing efforts to improve the accuracy and repeatability of the relative viscosity measurement, and much work is needed to reveal the cellular underpinning of changes to tissue viscosity. But it appears clear that regionally measuring the viscous-to-elastic ratio holds the potential to noninvasively reveal an aspect of tissue microstructure that is clinically, cognitively and functionally relevant to our understanding of brain function and health.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
4
|
Foss KD, Billhymer AC. Magnetic resonance imaging in canine idiopathic epilepsy: a mini-review. Front Vet Sci 2024; 11:1427403. [PMID: 39021411 PMCID: PMC11251927 DOI: 10.3389/fvets.2024.1427403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Magnetic resonance imaging (MRI) in an integral part of the diagnostic workup in canines with idiopathic epilepsy (IE). While highly sensitive and specific in identifying structural lesions, conventional MRI is unable to detect changes at the microscopic level. Utilizing more advanced neuroimaging techniques may provide further information on changes at the neuronal level in the brain of canines with IE, thus providing crucial information on the pathogenesis of canine epilepsy. Additionally, earlier detection of these changes may aid clinicians in the development of improved and targeted therapies. Advances in MRI techniques are being developed which can assess metabolic, cellular, architectural, and functional alterations; as well alterations in neuronal tissue mechanical properties, some of which are currently being applied in research on canine IE. This mini-review focuses on novel MRI techniques being utilized to better understand canine epilepsy, which include magnetic resonance spectroscopy, diffusion-weighted imaging, diffusion tensor imaging, perfusion-weighted imaging, voxel based morphometry, and functional MRI; as well as techniques applied in human medicine and their potential use in veterinary species.
Collapse
Affiliation(s)
- Kari D. Foss
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | |
Collapse
|
5
|
Li B, Zhao A, Tian T, Yang X. Mechanobiological insight into brain diseases based on mechanosensitive channels: Common mechanisms and clinical potential. CNS Neurosci Ther 2024; 30:e14809. [PMID: 38923822 PMCID: PMC11197048 DOI: 10.1111/cns.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND As physical signals, mechanical cues regulate the neural cells in the brain. The mechanosensitive channels (MSCs) perceive the mechanical cues and transduce them by permeating specific ions or molecules across the plasma membrane, and finally trigger a series of intracellular bioelectrical and biochemical signals. Emerging evidence supports that wide-distributed, high-expressed MSCs like Piezo1 play important roles in several neurophysiological processes and neurological disorders. AIMS To systematically conclude the functions of MSCs in the brain and provide a novel mechanobiological perspective for brain diseases. METHOD We summarized the mechanical cues and MSCs detected in the brain and the research progress on the functional roles of MSCs in physiological conditions. We then concluded the pathological activation and downstream pathways triggered by MSCs in two categories of brain diseases, neurodegenerative diseases and place-occupying damages. Finally, we outlined the methods for manipulating MSCs and discussed their medical potential with some crucial outstanding issues. RESULTS The MSCs present underlying common mechanisms in different brain diseases by acting as the "transportation hubs" to transduce the distinct signal patterns: the upstream mechanical cues and the downstream intracellular pathways. Manipulating the MSCs is feasible to alter the complicated downstream processes, providing them promising targets for clinical treatment. CONCLUSIONS Recent research on MSCs provides a novel insight into brain diseases. The common mechanisms mediated by MSCs inspire a wide range of therapeutic potentials targeted on MSCs in different brain diseases.
Collapse
Affiliation(s)
- Bolong Li
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
| | - An‐ran Zhao
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Tian Tian
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Xin Yang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| |
Collapse
|
6
|
Khair AM, McIlvain G, McGarry MDJ, Kandula V, Yue X, Kaur G, Averill LW, Choudhary AK, Johnson CL, Nikam RM. Clinical application of magnetic resonance elastography in pediatric neurological disorders. Pediatr Radiol 2023; 53:2712-2722. [PMID: 37794174 PMCID: PMC11086054 DOI: 10.1007/s00247-023-05779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Magnetic resonance elastography is a relatively new, rapidly evolving quantitative magnetic resonance imaging technique which can be used for mapping the viscoelastic mechanical properties of soft tissues. MR elastography measurements are akin to manual palpation but with the advantages of both being quantitative and being useful for regions which are not available for palpation, such as the human brain. MR elastography is noninvasive, well tolerated, and complements standard radiological and histopathological studies by providing in vivo measurements that reflect tissue microstructural integrity. While brain MR elastography studies in adults are becoming frequent, published studies on the utility of MR elastography in children are sparse. In this review, we have summarized the major scientific principles and recent clinical applications of brain MR elastography in diagnostic neuroscience and discuss avenues for impact in assessing the pediatric brain.
Collapse
Affiliation(s)
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | | | - Vinay Kandula
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Xuyi Yue
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Gurcharanjeet Kaur
- Department of Neurology, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren W Averill
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Rahul M Nikam
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA.
| |
Collapse
|
7
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
8
|
Jyoti D, McGarry M, Caban-Rivera DA, Van Houten E, Johnson CL, Paulsen K. Transversely-isotropic brain in vivo MR elastography with anisotropic damping. J Mech Behav Biomed Mater 2023; 141:105744. [PMID: 36893687 PMCID: PMC10084917 DOI: 10.1016/j.jmbbm.2023.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Measuring tissue parameters from increasingly sophisticated mechanical property models may uncover new contrast mechanisms with clinical utility. Building on previous work on in vivo brain MR elastography (MRE) with a transversely-isotropic with isotropic damping (TI-ID) model, we explore a new transversely-isotropic with anisotropic damping (TI-AD) model that involves six independent parameters describing direction-dependent behavior for both stiffness and damping. The direction of mechanical anisotropy is determined by diffusion tensor imaging and we fit three complex-valued moduli distributions across the full brain volume to minimize differences between measured and modeled displacements. We demonstrate spatially accurate property reconstruction in an idealized shell phantom simulation, as well as an ensemble of 20 realistic, randomly-generated simulated brains. We characterize the simulated precisions of all six parameters across major white matter tracts to be high, suggesting that they can be measured independently with acceptable accuracy from MRE data. Finally, we present in vivo anisotropic damping MRE reconstruction data. We perform t-tests on eight repeated MRE brain exams on a single-subject, and find that the three damping parameters are statistically distinct for most tracts, lobes and the whole brain. We also show that population variations in a 17-subject cohort exceed single-subject measurement repeatability for most tracts, lobes and whole brain, for all six parameters. These results suggest that the TI-AD model offers new information that may support differential diagnosis of brain diseases.
Collapse
Affiliation(s)
- Dhrubo Jyoti
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Matthew McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | | | | | | | - Keith Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA; Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| |
Collapse
|
9
|
Delgorio PL, Hiscox LV, McIlvain G, Kramer MK, Diano AM, Twohy KE, Merritt AA, McGarry MDJ, Schwarb H, Daugherty AM, Ellison JM, Lanzi AM, Cohen ML, Martens CR, Johnson CL. Hippocampal subfield viscoelasticity in amnestic mild cognitive impairment evaluated with MR elastography. Neuroimage Clin 2023; 37:103327. [PMID: 36682312 PMCID: PMC9871742 DOI: 10.1016/j.nicl.2023.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Hippocampal subfields (HCsf) are brain regions important for memory function that are vulnerable to decline with amnestic mild cognitive impairment (aMCI), which is often a preclinical stage of Alzheimer's disease. Studies in aMCI patients often assess HCsf tissue integrity using measures of volume, which has little specificity to microstructure and pathology. We use magnetic resonance elastography (MRE) to examine the viscoelastic mechanical properties of HCsf tissue, which is related to structural integrity, and sensitively detect differences in older adults with aMCI compared to an age-matched control group. Group comparisons revealed HCsf viscoelasticity is differentially affected in aMCI, with CA1-CA2 and DG-CA3 exhibiting lower stiffness and CA1-CA2 exhibiting higher damping ratio, both indicating poorer tissue integrity in aMCI. Including HCsf stiffness in a logistic regression improves classification of aMCI beyond measures of volume alone. Additionally, lower DG-CA3 stiffness predicted aMCI status regardless of DG-CA3 volume. These findings showcase the benefit of using MRE in detecting subtle pathological tissue changes in individuals with aMCI via the HCsf particularly affected in the disease.
Collapse
Affiliation(s)
- Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Mary K Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexa M Diano
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Kyra E Twohy
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - Alexis A Merritt
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | | | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - James M Ellison
- Swank Memory Care and Geriatric Consultation, ChristianaCare, Wilmington, DE, United States; Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Alyssa M Lanzi
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Matthew L Cohen
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States; Department of Mechanical Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
10
|
Morr AS, Nowicki M, Bertalan G, Vieira Silva R, Infante Duarte C, Koch SP, Boehm-Sturm P, Krügel U, Braun J, Steiner B, Käs JA, Fuhs T, Sack I. Mechanical properties of murine hippocampal subregions investigated by atomic force microscopy and in vivo magnetic resonance elastography. Sci Rep 2022; 12:16723. [PMID: 36202964 PMCID: PMC9537158 DOI: 10.1038/s41598-022-21105-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity. We further use magnetic resonance elastography (MRE) to investigate whether in vivo mechanical properties reveal similar spatial patterns, however, on a much coarser scale. AFM showed that tissue stiffness increases with increasing distance from the subgranular zone (p = 0.0069), and that stiffness is 39% lower in GFP than non-GFP regions (p = 0.0004). Consistently, MRE showed that dentate gyrus is, on average, softer than Ammon´s horn (shear wave speed = 3.2 ± 0.2 m/s versus 4.4 ± 0.3 m/s, p = 0.01) with another 3.4% decrease towards the subgranular zone (p = 0.0001). The marked reduction in stiffness measured by AFM in areas of high neurogenic activity is consistent with softer MRE values, indicating the sensitivity of macroscopic mechanical properties in vivo to micromechanical structures as formed by the neurogenic niche of the hippocampus.
Collapse
Affiliation(s)
- Anna S Morr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rafaela Vieira Silva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Infante Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Steiner
- Clinic for Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef A Käs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Thomas Fuhs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
11
|
Jyoti D, McGarry M, Van Houten E, Sowinski D, Bayly PV, Johnson CL, Paulsen K. Quantifying stability of parameter estimates for in vivonearly incompressible transversely-isotropic brain MR elastography. Biomed Phys Eng Express 2022; 8. [PMID: 35299161 PMCID: PMC9272913 DOI: 10.1088/2057-1976/ac5ebe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022]
Abstract
Easily computable quality metrics for measured medical data at point-of-care are important for imaging technologies involving offline reconstruction. Accordingly, we developed a new data quality metric forin vivotransversely-isotropic (TI) magnetic resonance elastography (MRE) based on a generalization of the widely accepted octahedral shear-strain calculation. The metric uses MRE displacement data and an estimate of the TI property field to yield a 'stability map' which predicts regions of low versus high accuracy in the resulting material property reconstructions. We can also calculate an average TI parameter stability (TIPS) score over all voxels in a region of interest for a given measurement to indicate how reliable the recovered mechanical property estimate for the region is expected to be. The calculation is rapid and places little demand on computing resources compared to the computationally intensive material property reconstruction from non-linear inversion (TI-NLI) of displacement fields, making it ideal for point-of-care evaluation of data quality. We test the predictions of the stability map for both simulated phantoms andin vivohuman brain data. We used a range of different displacement datasets from vibrations applied in the anterior-posterior (AP), left-right (LR) and combined AP + LR directions. The TIPS and variability maps (noise sensitivity or variation from the mean of repeated MRE scans) were consistently anti-correlated. Notably, Spearman correlation coefficients ∣R∣>0.6 were found between variability and TIPS score for individual white matter tracts within vivodata. These observations demonstrate the reliability and promise of this data quality metric to screen data rapidly in realistic clinical MRE applications.
Collapse
Affiliation(s)
- Dhrubo Jyoti
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Matthew McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | | | - Damian Sowinski
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Philip V Bayly
- Washington University in St Louis, St Louis, MO, 63130, United States of America
| | - Curtis L Johnson
- University of Delaware, Newark, DE 19716, United States of America
| | - Keith Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America.,Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| |
Collapse
|
12
|
Smith DR, Caban-Rivera DA, McGarry MD, Williams LT, McIlvain G, Okamoto RJ, Van Houten EE, Bayly PV, Paulsen KD, Johnson CL. Anisotropic mechanical properties in the healthy human brain estimated with multi-excitation transversely isotropic MR elastography. BRAIN MULTIPHYSICS 2022; 3. [DOI: 10.1016/j.brain.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Yoshiba T, Kawamoto H, Sankai Y. Basic study of epileptic seizure detection using a single-channel frontal EEG and a pre-trained ResNet. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3082-3088. [PMID: 34891894 DOI: 10.1109/embc46164.2021.9630982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epilepsy is a neurological disorder that causes sudden seizures due to abnormal excitation of neurons in the brain. Approximately 30 % of patients cannot control their seizures using medication. In addition, since seizures can occur anywhere and at any time, caregivers must always be with the patient. Various researchers have developed seizure detection methods using multichannel EEG to improve the quality of life of patients and caregivers. However, the large size of the measurement device impedes transportation. We believe that a portable measurement device with a small number of channels is suitable for detecting seizures in daily life. Therefore, we need a system that can detect seizures using a small number of channels. The purpose of this research is to develop a seizure detection algorithm using a single-channel frontal EEG and to confirm its basic performance. We used EEG signals from a single electrode position (Fp1-F7, Fp2-F8), which is a bipolar derivation of the frontal region. We segmented the EEG using a 2 s sliding window with 50 % overlap and converted the segments into images. After preprocessing, we fine-tuned ResNet18, pre-trained on ImageNet, and developed an ensemble classification method. In the experiments with 10 epileptic patients (3 - 19 years old) registered in the CHB-MIT scalp EEG database, the results showed that the average sensitivity was 88.73 %, the average specificity was 98.98 %, and the average detection latency time was 7.39 s. In conclusion, the developed algorithm was validated as sufficiently accurate to detect epileptic seizures.Clinical Relevance- This establishes an image recognition algorithm that can detect epileptic seizures using a single- channel frontal EEG.
Collapse
|
14
|
Zoraghi M, Scherf N, Jaeger C, Sack I, Hirsch S, Hetzer S, Weiskopf N. Simulating Local Deformations in the Human Cortex Due to Blood Flow-Induced Changes in Mechanical Tissue Properties: Impact on Functional Magnetic Resonance Imaging. Front Neurosci 2021; 15:722366. [PMID: 34621151 PMCID: PMC8490675 DOI: 10.3389/fnins.2021.722366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/06/2023] Open
Abstract
Investigating human brain tissue is challenging due to the complexity and the manifold interactions between structures across different scales. Increasing evidence suggests that brain function and microstructural features including biomechanical features are related. More importantly, the relationship between tissue mechanics and its influence on brain imaging results remains poorly understood. As an important example, the study of the brain tissue response to blood flow could have important theoretical and experimental consequences for functional magnetic resonance imaging (fMRI) at high spatial resolutions. Computational simulations, using realistic mechanical models can predict and characterize the brain tissue behavior and give us insights into the consequent potential biases or limitations of in vivo, high-resolution fMRI. In this manuscript, we used a two dimensional biomechanical simulation of an exemplary human gyrus to investigate the relationship between mechanical tissue properties and the respective changes induced by focal blood flow changes. The model is based on the changes in the brain’s stiffness and volume due to the vasodilation evoked by neural activity. Modeling an exemplary gyrus from a brain atlas we assessed the influence of different potential mechanisms: (i) a local increase in tissue stiffness (at the level of a single anatomical layer), (ii) an increase in local volume, and (iii) a combination of both effects. Our simulation results showed considerable tissue displacement because of these temporary changes in mechanical properties. We found that the local volume increase causes more deformation and consequently higher displacement of the gyrus. These displacements introduced considerable artifacts in our simulated fMRI measurements. Our results underline the necessity to consider and characterize the tissue displacement which could be responsible for fMRI artifacts.
Collapse
Affiliation(s)
- Mahsa Zoraghi
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nico Scherf
- Methods and Development Group Neural Data Science and Statistical Computing, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Carsten Jaeger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Hirsch
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Computational Neuroscience, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Computational Neuroscience, Berlin, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Physics and Earth Sciences, Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
15
|
Hiscox LV, McGarry MDJ, Schwarb H, Van Houten EEW, Pohlig RT, Roberts N, Huesmann GR, Burzynska AZ, Sutton BP, Hillman CH, Kramer AF, Cohen NJ, Barbey AK, Paulsen KD, Johnson CL. Standard-space atlas of the viscoelastic properties of the human brain. Hum Brain Mapp 2020; 41:5282-5300. [PMID: 32931076 PMCID: PMC7670638 DOI: 10.1002/hbm.25192] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons.
Collapse
Affiliation(s)
- Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elijah E W Van Houten
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ryan T Pohlig
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Graham R Huesmann
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Agnieszka Z Burzynska
- Department of Human Development and Family Studies and Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA.,Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | - Neal J Cohen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aron K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|