1
|
Liang X, Kelly CE, Yeh CH, Dhollander T, Hearps S, Anderson PJ, Thompson DK. Structural brain network organization in children with prenatal alcohol exposure. Neuroimage Clin 2024; 44:103690. [PMID: 39490220 DOI: 10.1016/j.nicl.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION There is growing evidence suggesting that children with prenatal alcohol exposure (PAE) struggle with cognitively demanding tasks, such as learning, attention, and language. Complex structural network analyses can provide insight into the neurobiological underpinnings of these functions, as they may be sensitive for characterizing the effects of PAE on the brain. However, investigations on how PAE affects brain networks are limited. We aim to compare diffusion magnetic resonance imaging (MRI) tractography-based structural networks between children with low-to-moderate PAE in trimester 1 only (T1) or throughout all trimesters (T1-T3) with those without alcohol exposure prenatally. METHODS Our cohort included three groups of children aged 6 to 8 years: 1) no PAE (n = 24), 2) low-to-moderate PAE during T1 only (n = 30), 3) low-to-moderate PAE throughout T1-T3 (n = 36). Structural networks were constructed using the multi-shell multi-tissue constrained spherical deconvolution tractography technique. Quantitative group-wise analyses were conducted at three levels: (a) at the whole-brain network level, using both network-based statistical analyses and network centrality; and then using network centrality at (b) the modular level, and (c) per-region level, including the regions identified as brain hubs. RESULTS Compared with the no PAE group, widespread brain network alterations were observed in the PAE T1-T3 group using network-based statistics, but no alterations were observed for the PAE T1 group. Network alterations were also detected at the module level in the PAE T1-T3 compared with the no PAE group, with lower eigenvector centrality in the module that closely represented the right cortico-basal ganglia-thalamo-cortical network. No significant group differences were found in network centrality at the per-region level, including the hub regions. CONCLUSIONS This study demonstrated that low-to-moderate PAE throughout pregnancy may alter brain structural connectivity, which may explain the neurodevelopmental deficits associated with PAE. It is possible that timing and duration of alcohol exposure are crucial, as PAE in T1 only did not appear to alter brain structural connectivity.
Collapse
Affiliation(s)
- Xiaoyun Liang
- Murdoch Children's Research Institute, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Claire E Kelly
- Murdoch Children's Research Institute, Melbourne, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | | | - Stephen Hearps
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Peter J Anderson
- Murdoch Children's Research Institute, Melbourne, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Deanne K Thompson
- Murdoch Children's Research Institute, Melbourne, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Maleki S, Hendrikse J, Richardson K, Segrave RA, Hughes S, Kayayan E, Oldham S, Syeda W, Coxon JP, Caeyenberghs K, Domínguez D JF, Solowij N, Lubman DI, Suo C, Yücel M. White matter alterations associated with chronic cannabis use disorder: a structural network and fixel-based analysis. Transl Psychiatry 2024; 14:429. [PMID: 39389949 PMCID: PMC11467328 DOI: 10.1038/s41398-024-03150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cannabis use disorder (CUD) is associated with adverse mental health effects, as well as social and cognitive impairment. Given prevalence rates of CUD are increasing, there is considerable efforts, and need, to identify prognostic markers which may aid in minimising any harm associated with this condition. Previous neuroimaging studies have revealed changes in white matter (WM) organization in people with CUD, though, the findings are mixed. In this study, we applied MRI-based analysis techniques that offer complimentary mechanistic insights, i.e., a connectome approach and fixel-based analysis (FBA) to investigate properties of individual WM fibre populations and their microstructure across the entire brain, providing a highly sensitive approach to detect subtle changes and overcome limitations of previous diffusion models. We compared 56 individuals with CUD (median age 25 years) to a sample of 38 healthy individuals (median age 31.5 years). Compared to controls, those with CUD had significantly increased structural connectivity strength (FDR corrected) across 9 edges between the right parietal cortex and several cortical and subcortical regions, including left orbitofrontal, left temporal pole, and left hippocampus and putamen. Utilizing FBA, WM density was significantly higher in those with CUD (FWE-corrected) across the splenium of the corpus callosum, and lower in the bilateral cingulum and right cerebellum. We observed significant correlation between cannabis use over the past month and connectivity strength of the frontoparietal edge, and between age of regular use and WM density of the bilateral cingulum and right cerebellum. Our findings enhance the understanding of WM architecture alterations associated with CUD.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Karyn Richardson
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Rebecca A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Sam Hughes
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Edouard Kayayan
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Warda Syeda
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health, Melbourne, VIC, Australia
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Clayton, VIC, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia.
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
3
|
Hadi Z, Mahmud M, Seemungal BM. Brain Mechanisms Explaining Postural Imbalance in Traumatic Brain Injury: A Systematic Review. Brain Connect 2024; 14:144-177. [PMID: 38343363 DOI: 10.1089/brain.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Introduction: Persisting imbalance and falls in community-dwelling traumatic brain injury (TBI) survivors are linked to reduced long-term survival. However, a detailed understanding of the impact of TBI upon the brain mechanisms mediating imbalance is lacking. To understand the state of the art concerning the brain mechanisms mediating imbalance in TBI, we performed a systematic review of the literature. Methods: PubMed, Web of Science, and Scopus were searched and peer-reviewed research articles in humans, with any severity of TBI (mild, moderate, severe, or concussion), which linked a postural balance assessment (objective or subjective) with brain imaging (through computed tomography, T1-weighted imaging, functional magnetic resonance imaging [fMRI], resting-state fMRI, diffusion tensor imaging, magnetic resonance spectroscopy, single-photon emission computed tomography, electroencephalography, magnetoencephalography, near-infrared spectroscopy, and evoked potentials) were included. Out of 1940 articles, 60 were retrieved and screened, and 25 articles fulfilling inclusion criteria were included. Results: The most consistent finding was the link between imbalance and the cerebellum; however, the regions within the cerebellum were inconsistent. Discussion: The lack of consistent findings could reflect that imbalance in TBI is due to a widespread brain network dysfunction, as opposed to focal cortical damage. The inconsistency in the reported findings may also be attributed to heterogeneity of methodology, including data analytical techniques, small sample sizes, and choice of control groups. Future studies should include a detailed clinical phenotyping of vestibular function in TBI patients to account for the confounding effect of peripheral vestibular disorders on imbalance and brain imaging.
Collapse
Affiliation(s)
- Zaeem Hadi
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Mohammad Mahmud
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Domínguez D JF, Stewart A, Burmester A, Akhlaghi H, O'Brien K, Bollmann S, Caeyenberghs K. Improving quantitative susceptibility mapping for the identification of traumatic brain injury neurodegeneration at the individual level. Z Med Phys 2024:S0939-3889(24)00001-1. [PMID: 38336583 DOI: 10.1016/j.zemedi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Emerging evidence suggests that traumatic brain injury (TBI) is a major risk factor for developing neurodegenerative disease later in life. Quantitative susceptibility mapping (QSM) has been used by an increasing number of studies in investigations of pathophysiological changes in TBI. However, generating artefact-free quantitative susceptibility maps in brains with large focal lesions, as in the case of moderate-to-severe TBI (ms-TBI), is particularly challenging. To address this issue, we utilized a novel two-pass masking technique and reconstruction procedure (two-pass QSM) to generate quantitative susceptibility maps (QSMxT; Stewart et al., 2022, Magn Reson Med.) in combination with the recently developed virtual brain grafting (VBG) procedure for brain repair (Radwan et al., 2021, NeuroImage) to improve automated delineation of brain areas. We used QSMxT and VBG to generate personalised QSM profiles of individual patients with reference to a sample of healthy controls. METHODS Chronic ms-TBI patients (N = 8) and healthy controls (N = 12) underwent (multi-echo) GRE, and anatomical MRI (MPRAGE) on a 3T Siemens PRISMA scanner. We reconstructed the magnetic susceptibility maps using two-pass QSM from QSMxT. We then extracted values of magnetic susceptibility in grey matter (GM) regions (following brain repair via VBG) across the whole brain and determined if they deviate from a reference healthy control group [Z-score < -3.43 or > 3.43, relative to the control mean], with the aim of obtaining personalised QSM profiles. RESULTS Using two-pass QSM, we achieved susceptibility maps with a substantial increase in quality and reduction in artefacts irrespective of the presence of large focal lesions, compared to single-pass QSM. In addition, VBG minimised the loss of GM regions and exclusion of patients due to failures in the region delineation step. Our findings revealed deviations in magnetic susceptibility measures from the HC group that differed across individual TBI patients. These changes included both increases and decreases in magnetic susceptibility values in multiple GM regions across the brain. CONCLUSIONS We illustrate how to obtain magnetic susceptibility values at the individual level and to build personalised QSM profiles in ms-TBI patients. Our approach opens the door for QSM investigations in more severely injured patients. Such profiles are also critical to overcome the inherent heterogeneity of clinical populations, such as ms-TBI, and to characterize the underlying mechanisms of neurodegeneration at the individual level more precisely. Moreover, this new personalised QSM profiling could in the future assist clinicians in assessing recovery and formulating a neuroscience-guided integrative rehabilitation program tailored to individual TBI patients.
Collapse
Affiliation(s)
- Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Ashley Stewart
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Hamed Akhlaghi
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Emergency Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
5
|
Keleher F, Lindsey HM, Kerestes R, Amiri H, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Caeyenberghs K, Esopenko C, Ewing-Cobbs L, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Irimia A, Königs M, Max JE, Newsome MR, Olsen A, Ryan NP, Schmidt AT, Stein DJ, Suskauer SJ, Ware AL, Wheeler AL, Zielinski BA, Thompson PM, Harding IH, Tate DF, Wilde EA, Dennis EL. Multimodal Analysis of Secondary Cerebellar Alterations After Pediatric Traumatic Brain Injury. JAMA Netw Open 2023; 6:e2343410. [PMID: 37966838 PMCID: PMC10652147 DOI: 10.1001/jamanetworkopen.2023.43410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Importance Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (β = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (β = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (β = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (β=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.
Collapse
Affiliation(s)
- Finian Keleher
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Hannah M. Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Houshang Amiri
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Robert F. Asarnow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Brain Research Institute, University of California, Los Angeles
- Department of Psychology, University of California, Los Angeles
| | - Talin Babikian
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Steve Tisch BrainSPORT Program, University of California, Los Angeles
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, California
| | - Erin D. Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Psychology, Brigham Young University, Provo, Utah
- Neuroscience Center, Brigham Young University, Provo, Utah
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Linda Ewing-Cobbs
- Children’s Learning Institute, Department of Pediatrics, University of Texas Health Science Center at Houston
| | - Christopher C. Giza
- Steve Tisch BrainSPORT Program, University of California, Los Angeles
- Division of Neurology, Department of Pediatrics, Mattel Children’s Hospital University of California, Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles
| | - Naomi J. Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Cooper B. Hodges
- Department of Psychology, Brigham Young University, Provo, Utah
- School of Social and Behavioral Sciences, Andrews University, Berrien Springs, Michigan
| | - Kristen R. Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles
| | - Marsh Königs
- Emma Neuroscience Group, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jeffrey E. Max
- Department of Psychiatry, University of California, San Diego, La Jolla
- Department of Psychiatry, Rady Children’s Hospital, San Diego, California
| | - Mary R. Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Rehabilitation, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NorHEAD-Norwegian Centre for Headache Research, Trondheim, Norway
| | - Nicholas P. Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
- Department of Clinical Sciences, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adam T. Schmidt
- Department of Psychological Sciences, Texas Tech University, Lubbock
| | - Dan J. Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Cape Town University, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Neuroscience Institute, Cape Town University, Cape Town, South Africa
| | - Stacy J. Suskauer
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley L. Ware
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Psychology, Georgia State University, Atlanta
| | - Anne L. Wheeler
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology Department, University of Toronto, Toronto, Ontario, Canada
| | - Brandon A. Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Pediatrics, University of Florida, Gainesville
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
- Department of Neurology, University of Florida, Gainesville
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey
- Department of Neurology, University of Southern California, Los Angeles
- Department of Pediatrics, University of Southern California, Los Angeles
- Department of Psychiatry, University of Southern California, Los Angeles
- Department of Radiology, University of Southern California, Los Angeles
- Department of Engineering, University of Southern California, Los Angeles
- Department of Ophthalmology, University of Southern California, Los Angeles
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - David F. Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Elisabeth A. Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
6
|
Clemente A, Attyé A, Renard F, Calamante F, Burmester A, Imms P, Deutscher E, Akhlaghi H, Beech P, Wilson PH, Poudel G, Domínguez D JF, Caeyenberghs K. Individualised profiling of white matter organisation in moderate-to-severe traumatic brain injury patients. Brain Res 2023; 1806:148289. [PMID: 36813064 DOI: 10.1016/j.brainres.2023.148289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND PURPOSE Approximately 65% of moderate-to-severe traumatic brain injury (m-sTBI) patients present with poor long-term behavioural outcomes, which can significantly impair activities of daily living. Numerous diffusion-weighted MRI studies have linked these poor outcomes to decreased white matter integrity of several commissural tracts, association fibres and projection fibres in the brain. However, most studies have focused on group-based analyses, which are unable to deal with the substantial between-patient heterogeneity in m-sTBI. As a result, there is increasing interest and need in conducting individualised neuroimaging analyses. MATERIALS AND METHODS Here, we generated a detailed subject-specific characterisation of microstructural organisation of white matter tracts in 5 chronic patients with m-sTBI (29 - 49y, 2 females), presented as a proof-of-concept. We developed an imaging analysis framework using fixel-based analysis and TractLearn to determine whether the values of fibre density of white matter tracts at the individual patient level deviate from the healthy control group (n = 12, 8F, Mage = 35.7y, age range 25 - 64y). RESULTS Our individualised analysis revealed unique white matter profiles, confirming the heterogenous nature of m-sTBI and the need of individualised profiles to properly characterise the extent of injury. Future studies incorporating clinical data, as well as utilising larger reference samples and examining the test-retest reliability of the fixel-wise metrics are warranted. CONCLUSIONS Individualised profiles may assist clinicians in tracking recovery and planning personalised training programs for chronic m-sTBI patients, which is necessary to achieve optimal behavioural outcomes and improved quality of life.
Collapse
Affiliation(s)
- Adam Clemente
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural, Health and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Arnaud Attyé
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France; School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Félix Renard
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Imaging - The University of Sydney, Sydney, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Phoebe Imms
- Leonard Davis School of Gerontology, University of Southern California, Australia
| | - Evelyn Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Hamed Akhlaghi
- Emergency Department, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Department of Psychology, Faculty of Health, Deakin University, Australia
| | - Paul Beech
- Department of Radiology and Nuclear Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Peter H Wilson
- Development and Disability over the Lifespan Program, Healthy Brain and Mind Research Centre, School of Behavioural, Health and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
7
|
Meisler SL, Gabrieli JDE. Fiber-specific structural properties relate to reading skills in children and adolescents. eLife 2022; 11:e82088. [PMID: 36576253 PMCID: PMC9815823 DOI: 10.7554/elife.82088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Recent studies suggest that the cross-sectional relationship between reading skills and white matter microstructure, as indexed by fractional anisotropy, is not as robust as previously thought. Fixel-based analyses yield fiber-specific micro- and macrostructural measures, overcoming several shortcomings of the traditional diffusion tensor model. We ran a whole-brain analysis investigating whether the product of fiber density and cross-section (FDC) related to single-word reading skills in a large, open, quality-controlled dataset of 983 children and adolescents ages 6-18. We also compared FDC between participants with (n = 102) and without (n = 570) reading disabilities. We found that FDC positively related to reading skills throughout the brain, especially in left temporoparietal and cerebellar white matter, but did not differ between reading proficiency groups. Exploratory analyses revealed that among metrics from other diffusion models - diffusion tensor imaging, diffusion kurtosis imaging, and neurite orientation dispersion and density imaging - only the orientation dispersion and neurite density indexes from NODDI were associated (inversely) with reading skills. The present findings further support the importance of left-hemisphere dorsal temporoparietal white matter tracts in reading. Additionally, these results suggest that future DWI studies of reading and dyslexia should be designed to benefit from advanced diffusion models, include cerebellar coverage, and consider continuous analyses that account for individual differences in reading skill.
Collapse
Affiliation(s)
- Steven Lee Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical SchoolBostonUnited States
| | | |
Collapse
|
8
|
Mito R, Parker DM, Abbott DF, Makdissi M, Pedersen M, Jackson GD. White matter abnormalities characterize the acute stage of sports-related mild traumatic brain injury. Brain Commun 2022; 4:fcac208. [PMID: 36043140 PMCID: PMC9419063 DOI: 10.1093/braincomms/fcac208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Sports-related concussion, a form of mild traumatic brain injury, is characterized by transient disturbances of brain function. There is increasing evidence that functional brain changes may be driven by subtle abnormalities in white matter microstructure, and diffusion MRI has been instrumental in demonstrating these white matter abnormalities in vivo. However, the reported location and direction of the observed white matter changes in mild traumatic brain injury are variable, likely attributable to the inherent limitations of the white matter models used. This cross-sectional study applies an advanced and robust technique known as fixel-based analysis to investigate fibre tract-specific abnormalities in professional Australian Football League players with a recent mild traumatic brain injury. We used the fixel-based analysis framework to identify common abnormalities found in specific fibre tracts in participants with an acute injury (≤12 days after injury; n = 14). We then assessed whether similar changes exist in subacute injury (>12 days and <3 months after injury; n = 15). The control group was 29 neurologically healthy control participants. We assessed microstructural differences in fibre density and fibre bundle morphology and performed whole-brain fixel-based analysis to compare groups. Subsequent tract-of-interest analyses were performed within five selected white matter tracts to investigate the relationship between the observed tract-specific abnormalities and days since injury and the relationship between these tract-specific changes with cognitive abnormalities. Our whole-brain analyses revealed significant increases in fibre density and bundle cross-section in the acute mild traumatic brain injury group when compared with controls. The acute mild traumatic brain injury group showed even more extensive differences when compared with the subacute injury group than with controls. The fibre structures affected in acute concussion included the corpus callosum, left prefrontal and left parahippocampal white matter. The fibre density and cross-sectional increases were independent of time since injury in the acute injury group, and were not associated with cognitive deficits. Overall, this study demonstrates that acute mild traumatic brain injury is characterized by specific white matter abnormalities, which are compatible with tract-specific cytotoxic oedema. These potential oedematous changes were absent in our subacute mild traumatic brain injury participants, suggesting that they may normalize within 12 days after injury, although subtle abnormalities may persist in the subacute stage. Future longitudinal studies are needed to elucidate individualized recovery after brain injury.
Collapse
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - Donna M Parker
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - David F Abbott
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Olympic Park Sports Medicine Centre , Melbourne, VIC 3004 , Australia
| | - Mangor Pedersen
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Psychology and Neuroscience, Auckland University of Technology (AUT) , Auckland 1010 , New Zealand
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Neurology, Austin Health , Melbourne, VIC 3084 , Australia
| |
Collapse
|
9
|
Pu H, Ma C, Zhao Y, Wang Y, Zhang W, Miao W, Yu F, Hu X, Shi Y, Leak RK, Hitchens TK, Dixon CE, Bennett MV, Chen J. Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:2870-2886. [PMID: 34259069 PMCID: PMC8545055 DOI: 10.1177/0271678x211028680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI) is commonly followed by long-term cognitive deficits that severely impact the quality of life in survivors. Recent studies suggest that microglial/macrophage (Mi/MΦ) polarization could have multidimensional impacts on post-TBI neurological outcomes. Here, we report that repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles for 4 weeks after controlled cortical impact improved hippocampus-dependent spatial and non-spatial cognitive functions in adult C57BL6 mice, as assessed by a battery of neurobehavioral tests for up to 5 weeks after TBI. IL-4-elicited enhancement of cognitive functions was associated with improvements in the integrity of the hippocampus at the functional (e.g., long-term potentiation) and structural levels (CA3 neuronal loss, diffusion tensor imaging of white matter tracts, etc.). Mechanistically, IL-4 increased the expression of PPARγ and arginase-1 within Mi/MΦ, thereby driving microglia toward a global inflammation-resolving phenotype. Notably, IL-4 failed to shift microglial phenotype after TBI in Mi/MΦ-specific PPARγ knockout (mKO) mice, indicating an obligatory role for PPARγ in IL-4-induced Mi/MΦ polarization. Accordingly, post-TBI treatment with IL-4 failed to improve hippocampal integrity or cognitive functions in PPARγ mKO mice. These results demonstrate that administration of exogenous IL-4 nanoparticles stimulates PPARγ-dependent beneficial Mi/MΦ responses, and improves hippocampal function after TBI.
Collapse
Affiliation(s)
- Hongjian Pu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cheng Ma
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yangfan Wang
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wenting Zhang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wanying Miao
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Vl Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Clemente A, Domínguez D JF, Imms P, Burmester A, Dhollander T, Wilson PH, Poudel G, Caeyenberghs K. Individual differences in attentional lapses are associated with fiber-specific white matter microstructure in healthy adults. Psychophysiology 2021; 58:e13871. [PMID: 34096075 DOI: 10.1111/psyp.13871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Attentional lapses interfere with goal-directed behaviors, which may result in harmless (e.g., not hearing instructions) or severe (e.g., fatal car accident) consequences. Task-related functional MRI (fMRI) studies have shown a link between attentional lapses and activity in the frontoparietal network. Activity in this network is likely to be mediated by the organization of the white matter fiber pathways that connect the regions implicated in the network, such as the superior longitudinal fasciculus I (SLF-I). In the present study, we investigate the relationship between susceptibility to attentional lapses and relevant white matter pathways in 36 healthy adults (23 females, Mage = 31.56 years). Participants underwent a diffusion MRI (dMRI) scan and completed the global-local task to measure attentional lapses, similar to previous fMRI studies. Applying the fixel-based analysis framework for fiber-specific analysis of dMRI data, we investigated the association between attentional lapses and variability in microstructural fiber density (FD) and macrostructural (morphological) fiber-bundle cross section (FC) in the SLF-I. Our results revealed a significant negative association between higher total number of attentional lapses and lower FD in the left SLF-I. This finding indicates that the variation in the microstructure of a key frontoparietal white matter tract is associated with attentional lapses and may provide a trait-like biomarker in the general population. However, SLF-I microstructure alone does not explain propensity for attentional lapses, as other factors such as sleep deprivation or underlying psychological conditions (e.g., sleep disorders) may also lead to higher susceptibility in both healthy people and those with neurological disorders.
Collapse
Affiliation(s)
- Adam Clemente
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Phoebe Imms
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Peter H Wilson
- Healthy Brain and Mind Research Centre, School of Behavioural, Health and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|