1
|
Ince S, Demirel HH, Demirkapi EN, Kucukkurt I, Eryavuz A, Arslan-Acaroz D, Acaroz U, Tureyen A. Magnolin alleviates cyclophosphamide-induced oxidative stress, inflammation, and apoptosis via Nrf2/HO-1 signaling pathway. Toxicol Res (Camb) 2024; 13:tfae129. [PMID: 39148957 PMCID: PMC11323662 DOI: 10.1093/toxres/tfae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
In the present study, we investigated the protective effect of magnolin (MAG) against oxidative stress induced by cyclophosphamide (CP) and its role in the Nrf2/HO-1 signaling pathway. Rats were administered MAG (1 mg/kg, i.p.) for 14 days and CP (75 mg/kg, i.p.) on the 14th day. CP administration increased tissue damage, as evidenced by elevated levels of transaminases (aspartate and alanine), alkaline phosphatase, and renal parameters (blood urea nitrogen and creatinine). Additionally, 8-hydroxy-2'-deoxyguanosine and malondialdehyde levels were increased, whereas glutathione levels, along with catalase and superoxide dismutase activities, decreased in CP-treated rats. CP also down-regulated the expression of Bcl-2, HO-1, Nrf2, and NQO-1, while up-regulating Bax, Cas-3, TNF-α, Cox-2, iNOS, IL-6, IL-1β, and NFκB in liver and kidney tissues. In addition, CP treatment caused histopathological changes in heart, lung, liver, kidney, brain, and testis tissues. Treatment with MAG improved biochemical and oxidative stress parameters and prevented histopathological changes in CP-treated rats. Moreover, MAG suppressed the expression of inflammatory cytokines and apoptosis markers. In conclusion, MAG effectively prevented CP-induced toxicity by reducing oxidative stress, inflammation, and apoptosis, with its protective efficacy associated with the up-regulation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | | | - Ezgi Nur Demirkapi
- Faculty of Veterinary Medicine, Department of Physiology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Ismail Kucukkurt
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Abdullah Eryavuz
- Faculty of Veterinary Medicine, Department of Physiology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Damla Arslan-Acaroz
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
- Kyrgyz-Turkish Manas University, Department of Biochemistry, Faculty of Veterinary Medicine, Bishkek, KG-720038, Kyrgyzstan
| | - Ulas Acaroz
- Kyrgyz-Turkish Manas University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, KG720038, Bishkek, Kyrgyzstan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Ali Tureyen
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, 26080 Eskisehir, Turkey
| |
Collapse
|
2
|
Zhang M, Song X, Liu S, Zhang N, Yang M, Gao P, Geng Z, Zuo L, Zhang X, Wang L, Wang Y, Li J, Hu J. Magnolin inhibits intestinal epithelial cell apoptosis alleviating Crohn's disease-like colitis by suppressing the PI3K/AKT signalling pathway. Int Immunopharmacol 2024; 134:112181. [PMID: 38733829 DOI: 10.1016/j.intimp.2024.112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND AIMS Previous reports have shown that preventing excessive intestinal epithelial cell (IEC) apoptosis is a crucial approach for protecting the intestinal barrier in patients with Crohn's disease (CD). Magnolin (MGL) has various biological activities, including antiapoptotic activities, but its role in CD has largely not been determined. This study investigated how MGL impacts CD-like colitis and the underlying mechanism involved. METHODS Mice were treated with TNBS to establish a disease model, and these mice were used to assess the therapeutic effects of MGL on CD-like colitis. TNF-α-treated colon organoids were used to evaluate the impact of MGL on intestinal barrier function and IEC apoptosis. Enrichment analysis was performed to examine the potential pathways through which MGL inhibits IEC apoptosis. Finally, rescue experiments showed the mechanism by which MGL suppresses IEC apoptosis. RESULTS The animal experiments demonstrated that MGL treatment alleviated the weight loss, colon shortening, elevated disease activity index (DAI) scores, increased colitis histological scores and upregulated inflammatory factor expression that were observed in model mice. MGL ameliorated intestinal barrier dysfunction and the loss of tight junction (TJ) proteins (ZO-1 and Claudin-1) by inhibiting IEC apoptosis in both TNBS-treated mice and TNF-α-treated colon organoids. MGL inhibited the PI3K/AKT signalling pathway, thus safeguarding the intestinal barrier and alleviating CD-like colitis in vivo and in vitro. CONCLUSIONS MGL improves the intestinal barrier integrity and prevents CD-like colitis by inhibiting IEC apoptosis. The potential mechanism of its anti-apoptotic impact on IECs could be associated with the PI3K/AKT pathway, presenting novel approaches and avenues for the clinical management of CD.
Collapse
Affiliation(s)
- Min Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Shengbao Liu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Nuo Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Ming Yang
- Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Pengcheng Gao
- Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China.
| |
Collapse
|
3
|
Yao T, Yao YY, Wang JZ, Jiang SM, Li LJ. Magnolin alleviated DSS-induced colitis by inhibiting ALOX5-mediated ferroptosis. Kaohsiung J Med Sci 2024; 40:360-373. [PMID: 38340032 DOI: 10.1002/kjm2.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and incurable disorder associated with higher cancer risk and currently faces unsatisfactory treatment outcomes. Ferroptotic cells secrete damage-associated molecular patterns (DAMPs) that recruit and activate immune cells, particularly macrophages. Magnolin has excellent antioxidant and anti-inflammatory properties, but its effect on IBD has not yet been clearly understood. This study aimed to investigate the therapeutic effects and mechanism of magnolin in IBD. For this purpose, in vivo and in vitro colitis models were established using dextran sulfate sodium (DSS), followed by optimization of magnolin concentration 2.5 μg/mL in vitro and 5 mg/kg in vivo. Bioinformatics analysis identified potential magnolin target sites and evaluated ferroptosis-associated gene expressions. Body weight, food intake, disease activity index (DAI), pathological changes, and inflammation levels were assessed. The effect of magnolin on ferroptosis and macrophages was evaluated using quantitative real time-polymerase chain reaction (qRT-PCR), immunofluorescent staining, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and western blotting. Results indicated that magnolin at a lower dose (5 mg/kg) alleviated DSS-induced colitis symptoms and reduced inflammation in mice. The bioinformatics analysis showed arachidonate 5-lipoxygenase (ALOX5) as a potential magnolin target. Furthermore, magnolin inhibited the expression of ALOX5 with no effect on GPX4. Moreover, magnolin regulated macrophage differentiation into the M2 phenotype and suppressed pro-inflammatory factors, that is, interleukin-6 and tumor necrosis factor-α (IL-6 and TNFα). These results suggested that magnolin possesses significant therapeutic potential in treating IBD by suppressing ALOX5-mediated ferroptosis, inhibiting M1 while promoting M2 macrophages, which is envisaged to provide novel strategies for treating IBD.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Yuan-Yuan Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jin-Zhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Shi-Man Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
4
|
Patel K, Patel DK. Biological Potential and Therapeutic Effectiveness of Phytoproduct 'Fargesin' in Medicine: Focus on the Potential of an Active Phytochemical of Magnolia fargesii. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:79-89. [PMID: 38726781 DOI: 10.2174/0127722708286664240429093913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 10/16/2024]
Abstract
Flos Magnoliae is one of the important medicinal plants in different traditional medicine, including Chinese herbal medicine. Lignans and neolignans, including tetrahydrofurofuran, tetrahydrofuran, and aryltetralin, are present in the Flos Magnoliae species. A wide range of pharmacological activity of Flos Magnoliae has been reported in medicine. Fargesin has been isolated from Magnolia fargesii and it is a lignan-class phytochemical. Fargesin has numerous pharmacological activities in medicine, including its effectiveness on lipid and glucose metabolism, oxidative stress, myocardial apoptosis, etc. In the present work, we have summarized the detailed scientific information of fargesin concerning its medicinal properties and pharmacological activities. Numerous biological and chemical aspects of fargesin are discussed here, including the detailed pharmacological activities and analytical aspects of fargesin. In this review, we have also compiled analytical data on fargesin based on available scientific literature. Ethnopharmacological information on fargesin was gathered by a literature survey on PubMed, Science Direct, Google, and Scopus using the terms fargesin, Flos Magnoliae, phytochemical, and herbal medicine. The present review paper compiled the scientific data on fargesin in medicine for its pharmacological activities and analytical aspects in a very concise manner with proper citations. The present work signified the biological importance of fargesin in medicine due to its significant impact on bone disorders, lung injury, colon cancer, atherosclerosis, neurological disorders, ischemia, sars-cov-2, allergy, lipid and glucose metabolism, melanin synthesis, and different classes of enzymes. Furthermore, fargesin also has anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, and antifeedant activity. However, analytical methods used for the separation, identification and isolation of fargesin in different biological and non-biological samples were also covered in the present review. The present work revealed the pharmacological activities and analytical aspects of fargesin in medicine and other allied health sectors.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|
5
|
Lee MS, Park EJ, Cho YY, Lee JY, Kang HC, Lee HS. Comparative metabolism of fargesin in human, dog, monkey, mouse, and rat hepatocytes. Toxicol Res 2024; 40:125-137. [PMID: 38223669 PMCID: PMC10786765 DOI: 10.1007/s43188-023-00211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 01/16/2024] Open
Abstract
Fargesin, a bioactive lignan derived from Flos Magnoliae, possesses anti-inflammatory, anti-oxidative, anti-melanogenic, and anti-apoptotic effects. This study compared the metabolic profiles of fargesin in human, dog, monkey, mouse, and rat hepatocytes using liquid chromatography-high resolution mass spectrometry. In addition, we investigated the human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for fargesin metabolism. The hepatic extraction ratio of fargesin among the five species ranged from 0.59 to 0.78, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. During metabolism, fargesin generates three phase 1 metabolites, including fargesin catechol (M1) and O-desmethylfargesin (M2 and M3), and 11 phase 2 metabolites, including O-methyl-M1 (M4 and M5) via catechol O-methyltransferase (COMT), glucuronides of M1, M2, M4, and M5, and sulfates of M1-M5. The production of M1 from fargesin via O-demethylenation is catalyzed by CYP2C9, CYP3A4, CYP2C19, and CYP2C8 enzymes, whereas the formation of M2 and M3 (O-desmethylfargesin) is catalyzed by CYP2C9, CYP2B6, CYP2C19, CYP3A4, CYP1A2, and CYP2D6 enzymes. M4 is metabolized to M4 glucuronide by UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17 enzymes, whereas M4 sulfate is generated by multiple SULT enzymes. Fargesin is extensively metabolized in human hepatocytes by CYP, COMT, UGT, and SULT enzymes. These findings help to elucidate the pharmacokinetics and drug interactions of fargesin.
Collapse
Affiliation(s)
- Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Eun Jeong Park
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| |
Collapse
|
6
|
Kim N, Chung G, Son SR, Park JH, Lee YH, Park KT, Cho IH, Jang DS, Kim SK. Magnolin Inhibits Paclitaxel-Induced Cold Allodynia and ERK1/2 Activation in Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2283. [PMID: 37375908 DOI: 10.3390/plants12122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anti-cancer drugs. The main symptoms often include sensory disturbances and neuropathic pain, and currently there is no effective treatment for this condition. This study aimed to investigate the suppressive effects of magnolin, an extracellular signal-regulated kinase (ERK) inhibitor substance derived from a 95% EtOH extract of the seeds of Magnolia denudata, on the symptoms of CIPN. A taxol-based anti-cancer drug paclitaxel (PTX) was repeatedly injected (2 mg/kg/day, total 8 mg/kg) into mice to induce CIPN. A neuropathic pain symptom was assessed using a cold allodynia test that scores behaviors of licking and shaking paw after plantar administration of acetone drop. Magnolin was administered intraperitoneally (0.1, 1, or 10 mg/kg) and behavioral changes to acetone drop were measured. The effect of magnolin administration on ERK expression in the dorsal root ganglion (DRG) was investigated using western blot analysis. The results showed that the repeated injections of PTX induced cold allodynia in mice. Magnolin administration exerted an analgesic effect on the PTX-induced cold allodynia and inhibited the ERK phosphorylation in the DRG. These results suggest that magnolin could be developed as an alternative treatment to suppress paclitaxel-induced neuropathic pain symptoms.
Collapse
Affiliation(s)
- Nari Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Hyun Park
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Hyun Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keon-Tae Park
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Abstract
Rhinosinusitis is characterized by inflammation of the mucosa involving the paranasal sinuses and the nasal cavity and is one of the most common and significant health care problems, with significant impairment of quality of life. Current standard conventional management of rhinosinusitis commonly uses multiple therapeutic modalities to break the cycle of chronic disease. However, to date, there is no consensus as to the optimal treatment algorithm for patients with chronic rhinosinusitis. There is a growing interest in the use of complementary and integrative medicine for the treatment of rhinosinusitis. This article update focuses on an integrative approach to rhinosinusitis.
Collapse
Affiliation(s)
- Malcolm B Taw
- UCLA Center for East-West Medicine, 1250 La Venta Drive, Suite 101A, Westlake Village, CA 91361, USA.
| | - Chau T Nguyen
- Division of Otolaryngology-Head & Neck Surgery, Ventura County Medical Center, 300 Hillmont Avenue, Suite 401, Ventura, CA 93003, USA
| | - Marilene B Wang
- UCLA Department of Head and Neck Surgery, 200 UCLA Medical Plaza, Suite 550, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Zhang Y, Ma R, Wang J. Protective effects of fargesin on cadmium-induced lung injury through regulating aryl hydrocarbon receptor. J Biochem Mol Toxicol 2022; 36:e23197. [PMID: 35983679 DOI: 10.1002/jbt.23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Fragesin, a traditional Chinese medicine, has been shown to exert anti-inflammatory effect. The aim of this study was to figure out the possible effectiveness of the fargesin, and to invest the mechanisms by which it works in the cadmium-induced lung injury in mice. Fargesin was given 1 h before cadmium treatment for 7 days. Then, the bronchoalveolar lavage fluid (BALF) were harvested to test inflammatory cells and pro-inflammatory cytokine production. Lung histopathological changes, myeloperoxidase (MPO) activity, and aryl hydrocarbon receptor (AhR) and nuclear factor kappa B (NF-κB) activation were measured. Fargesin dose-dependently reduced inflammatory cells and pro-inflammatory cytokines in BALF, improved lung histopathological injury, and inhibited lung wet/dry ratio and MPO activity. Furthermore, fargesin inhibited cadmium-induced NF-κB activation. In addition, fargesin was found to increase AhR expression. In conclusion, fargesin attenuates cadmium-induced lung injury may be via activating AhR, which subsequently suppressing the inflammatory response.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Ma
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese, Jinan, China
| | - Juan Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
9
|
Magnoliae flos Downregulated Lipopolysaccharide-Induced Inflammatory Responses via NF-κB/ERK-JNK MAPK/STAT3 Pathways. Mediators Inflamm 2022; 2022:6281892. [PMID: 35795403 PMCID: PMC9251077 DOI: 10.1155/2022/6281892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Magnoliae flos is the dried flower bud of Magnolia biondii and related plants. It has been used as a medicinal herb for the treatment of rhinitis, sinusitis, and sinus headaches. Nevertheless, the effects of Magnoliae flos in microbial infection or sepsis remain unclear. In this study, we investigated the anti-inflammatory effects of Magnoliae flos water extract (MF) in lipopolysaccharide- (LPS-) induced septic mice and LPS-stimulated RAW264.7 macrophages. Results. We found that MF reduced the mortality of LPS-challenged mice. Enzyme immunoassays and reverse transcription polymerase chain reaction analysis revealed that MF administration attenuated mRNA expression and protein production of proinflammatory mediators, including cyclooxygenase 2, inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-6. In parallel to these results in mice, pretreatment with MF suppressed the LPS-induced production of proinflammatory mediators in RAW264.7 macrophages. In addition, we found that MF exerted its suppressive effects by inhibiting the activation of the mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription pathways at the protein level. Conclusion. MF could be a potential therapeutic agent for regulating excessive inflammatory responses in sepsis.
Collapse
|
10
|
Qu X, Hu S, Li T, Zhang J, Wang B, Liu C. Metabolomics Analysis Reveals the Differences Between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. FRONTIERS IN PLANT SCIENCE 2022; 13:933849. [PMID: 35909726 PMCID: PMC9328751 DOI: 10.3389/fpls.2022.933849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/22/2022] [Indexed: 05/12/2023]
Abstract
Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. are two varieties of Bupleuri Radix in Chinese Pharmacopoeia 2020. The clinical efficacy of the two bupleurum species is different. The difference in clinical efficacy is closely related to the composition of plant metabolites. In order to analyze the difference in metabolites, we used liquid chromatography coupled with mass spectrometry (LC-MS) for untargeted metabolome and gas chromatography coupled with mass spectrometry (GC-MS) for widely targeted metabolome to detect the roots (R), stems (S), leaves (L), and flowers (F) of two varieties, and detected 1,818 metabolites in 25 classes. We performed a statistical analysis of metabolites. Differential metabolites were screened by fold-change and variable importance in the projection values of the OPLS-DA model, and significant differences were found among different groups. The content of active components (triterpenoid saponins) was found to be high in the BcR group than in the BsR group. Other pharmacological metabolites were significantly different. By Kyoto Encyclopedia of Genes and Genomes annotation and enrichment analysis, we found that differential metabolites of the aboveground parts mainly concentrated in monoterpenoid biosynthesis, while the differential metabolites of the root mainly concentrated in sesquiterpenoid and triterpenoid biosynthesis. Differences in metabolic networks may indirectly affect the metabolic profile of Bc and Bs, leading to differences in clinical efficacy. Our study provides a scientific basis for subsequent biosynthesis pathway and related bioactivity research, and provides a reference for developing non-medicinal parts and guiding the clinical application of Bupleuri Radix.
Collapse
|
11
|
Xu K, Gao Y, Yang L, Liu Y, Wang C. Magnolin exhibits anti-inflammatory effects on chondrocytes via the NF-κB pathway for attenuating anterior cruciate ligament transection-induced osteoarthritis. Connect Tissue Res 2021; 62:475-484. [PMID: 32602381 DOI: 10.1080/03008207.2020.1778679] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: This study aimed to investigate whether magnolin (MGL) possesses the capability of suppressing inflammatory responses that can in turn alleviate osteoarthritis (OA).Methods: We investigated the effects of MGL on the viability of rat chondrocytes at concentrations of 5 to 100 µM, and selected 10 µM for further study. We elucidated the molecular mechanisms and signaling pathways mediating these effects via RNA sequencing, qRT-PCR, immunofluorescent staining, and Western blotting techniques. Following this, we established an anterior cruciate ligament (ACL) transection-induced OA rat model, and injected MGL into the knee articular cavities to verify the in vivo anti-inflammatory effects of MGL.Results: We found that MGL could recover the TNF-α-induced upregulation of IL-1β, COX2, ADAMTS-5, and MMP-1/3/13 at the gene/protein level, as well as the downregulation of cartilaginous ECM synthesis. Gene expression profiles of different groups identified 49 common differentially expressed genes (DEGs), which were mainly enriched in the structural constituents of the ribosome, the extracellular space, and inflammatory response. The NF-κB pathway was highly enriched, and the expression levels of DEGs associated with it (Nfkbia, Ptgs2, Rela, Tnfrsf1a, Tradd, Traf2) under TNF-α stimulation were reversed by MGL. Further studies proved that MGL simultaneously suppressed the cell nucleus translocation of p65 and the phosphorylation of IκBα. Moreover, in vivo, MGL suppressed cartilage matrix degradation, inhibited MMP-13 expression, and promoted cartilage matrix construction by upregulating SOX9 synthesis.Conclusion: MGL demonstrated significant anti-inflammatory bioactivity on chondrocytes by suppressing the activation of NF-κB pathway, which in turn exhibited a significant alleviation of OA.
Collapse
Affiliation(s)
- Kang Xu
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yan Gao
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Li Yang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yanju Liu
- Hubei Engineering Technology Research Center of TCM Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chunli Wang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Tureyen A, Ince S. Magnolin Alleviates Gastric Ulcer Induced by Ethanol/HCl in Mice Model via Oxidative Stress and NF-κB Pathway. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.380.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Fargesin Inhibits EGF-Induced Cell Transformation and Colon Cancer Cell Growth by Suppression of CDK2/Cyclin E Signaling Pathway. Int J Mol Sci 2021; 22:ijms22042073. [PMID: 33669811 PMCID: PMC7922630 DOI: 10.3390/ijms22042073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
Although the lignan compound fargesin is a major ingredient in Shin-Yi, the roles of fargesin in carcinogenesis and cancer cell growth have not been elucidated. In this study, we observed that fargesin inhibited cell proliferation and transformation by suppression of epidermal growth factor (EGF)-stimulated G1/S-phase cell cycle transition in premalignant JB6 Cl41 and HaCaT cells. Unexpectedly, we found that signaling pathway analyses showed different regulation patterns in which fargesin inhibited phosphatidylinositol 3-kinase/AKT signaling without an alteration of or increase in mitogen activated protein kinase (MAPK) in JB6 Cl41 and HaCaT cells, while both signaling pathways were abrogated by fargesin treatment in colon cancer cells. We further found that fargesin-induced colony growth inhibition of colon cancer cells was mediated by suppression of the cyclin dependent kinase 2 (CDK2)/cyclin E signaling axis by upregulation of p21WAF1/Cip1, resulting in G1-phase cell cycle accumulation in a dose-dependent manner. Simultaneously, the suppression of CDK2/cyclin E and induction of p21WAF1/Cip1 were correlated with Rb phosphorylation and c-Myc suppression. Taken together, we conclude that fargesin-mediated c-Myc suppression inhibits EGF-induced cell transformation and colon cancer cell colony growth by the suppression of retinoblastoma (Rb)-E2F and CDK/cyclin signaling pathways, which are mainly regulated by MAPK and PKB signaling pathways.
Collapse
|
14
|
Tetrahydrofurofuranoid Lignans, Eudesmin, Fargesin, Epimagnolin A, Magnolin, and Yangambin Inhibit UDP-Glucuronosyltransferase 1A1 and 1A3 Activities in Human Liver Microsomes. Pharmaceutics 2021; 13:pharmaceutics13020187. [PMID: 33535454 PMCID: PMC7912740 DOI: 10.3390/pharmaceutics13020187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Eudesmin, fargesin, epimagnolin A, magnolin, and yangambin are tetrahydrofurofuranoid lignans with various pharmacological activities found in Magnoliae Flos. The inhibition potencies of eudesmin, fargesin, epimagnolin A, magnolin, and yangambin on six major human uridine 5'-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes were evaluated using liquid chromatography-tandem mass spectrometry and cocktail substrates. Eudesmin, fargesin, epimagnolin A, magnolin, and yangambin inhibited UGT1A1 and UGT1A3 activities, but showed negligible inhibition of UGT1A4, UGT16, UGT1A9, and UGT2B7 activities at 200 μM in pooled human liver microsomes. Moreover, eudesmin, fargesin, epimagnolin A, magnolin, and yangambin noncompetitively inhibited UGT1A1-catalyzed SN38 glucuronidation with Ki values of 25.7, 25.3, 3.6, 26.0, and 17.1 μM, respectively, based on kinetic analysis of UGT1A1 inhibition in pooled human liver microsomes. Conversely, the aforementioned tetrahydrofurofuranoid lignans competitively inhibited UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation with 39.8, 24.3, 15.1, 37.6, and 66.8 μM, respectively in pooled human liver microsomes. These in vitro results suggest the necessity of evaluating whether the five tetrahydrofurofuranoid lignans can cause drug-drug interactions with UGT1A1 and UGT1A3 substrates in vivo.
Collapse
|
15
|
Wang J, Zhang S, Huang K, Shi L, Zhang Q. Magnolin Inhibits Proliferation and Invasion of Breast Cancer MDA-MB-231 Cells by Targeting the ERK1/2 Signaling Pathway. Chem Pharm Bull (Tokyo) 2021; 68:421-427. [PMID: 32378540 DOI: 10.1248/cpb.c19-00820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the effects of Magnolin (MGL) on inhibition of human breast cancer cells, and explore the underlying molecular mechanisms. The viability of the treated cells was assessed with the Cell Counting Kit-8 (CCK-8) assay, and the proliferation was analyzed in terms of EdU uptake, colony formation, and flow cytometry. The in vitro invasion and migration were determined by the transwell and wound healing assays respectively. The mRNA and protein levels of relevant factors was evaluated by quantitative real-time PCR and Western blotting respectively. MGL significantly decreased the viability and promoted apoptosis of MDA-MB-231 cells, along with reducing EdU incorporation rate as well as the colony forming capacity compared to the untreated control cells. In addition, the in vitro invasion and migration were also significantly inhibited by MGL. Furthermore, MGL suppressed the phosphorylation of MEK1/2, extracellular signal-regulated kinase (ERK)1/2 and significantly downregulated the expression of cyclin-dependent kinase 1 (CDK1), the anti-apoptotic B-cell lymphoma 2 (BCL2) and metastasis-associated matrix metalloproteases (MMPs) 2 & 9, and upregulated the cleaved caspases 3 and 9. After ERK was completely inhibited with the small interfering RNA (siRNA), MGL had no effect on these factors, indicating that ERK is essential for MGL action in breast cancer. In conclusion, MGL inhibits proliferation and invasion of and induces apoptosis in breast cancer cells through the ERK pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Thyroid and Breast Surgery, The First College of Clinical Medical Science, China Three Gorges University
| | - Shengchu Zhang
- Department of Thyroid and Breast Surgery, The First College of Clinical Medical Science, China Three Gorges University
| | - Kuo Huang
- Department of Clinical Laboratory, The First College of Clinical Medical Science, China Three Gorges University
| | - Lang Shi
- The First College of Clinical Medical Science, China Three Gorges University
| | - Qingyong Zhang
- Department of Clinical Laboratory, The First College of Clinical Medical Science, China Three Gorges University
| |
Collapse
|
16
|
Chen CH, Chen HC, Chang WT, Lee MS, Liu YC, Lin MK. Magnoliae Flos Essential Oil as an Immunosuppressant in Dendritic Cell Activation and Contact Hypersensitivity Responses. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:597-613. [DOI: 10.1142/s0192415x20500305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnoliae Flos is a commonly used traditional medicinal material in Asia. It is used to treat sinusitis, nasal congestion, and hypersensitive skin. Because Magonlia Flos was described as an aromatic material in ancient Chinese texts, we hypothesized that its essential oil may be used to treat immune disorders. Dendritic cells (DCs), regarded as a major target of immunomodulators to control immune responses, play a critical role in the adaptive immune response. In this study, Magnoliae Flos essential oil (MFEO) decreased the production of the cytokines TNF-[Formula: see text], IL-6, and IL-12p70 in lipopolysaccharide (LPS)-stimulated DCs. It also suppressed the surface markers MHC II, CD80, and CD86 in LPS-stimulated DCs. Animal models demonstrated that the 2,4-Dinitro-1-fluorobenzene (DNFB) inducing a contact hypersensitivity response was inhibited following treatment with MFEO. In addition, MFEO inhibited the infiltration of T cells in the ears of DNFB-induced mice. To explore its bioactive compounds, the components of MFEO were analyzed using gas chromatography (GC) and GC-mass spectrometry. The results revealed that the major compounds in MFEO are camphor and 1,8-cineole. Additional DC bioassays confirmed that these compounds substantially suppressed cytokine production in LPS-induced DCs. Therefore, we demonstrated that MFEO exhibits an immunosuppressive effect both in vivo and in vitro, and camphor and 1,8-cineole may be the major components responsible for its immunosuppressive ability. The findings indicate that MFEO has the potential to be developed as a new immunosuppressant for excessive diseases.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Chun Chen
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Te Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chen Liu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Medical Technology, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Li J, Wen J, Tang G, Li R, Guo H, Weng W, Wang D, Ji S. Development of a comprehensive quality control method for the quantitative analysis of volatiles and lignans in Magnolia biondii Pamp. by near infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118080. [PMID: 31982656 DOI: 10.1016/j.saa.2020.118080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The quality of drug is vital to its curative effect, thus it is important to develop a comprehensive quality control method for commonly used drugs. In this study, we developed a Gas chromatography-mass spectrometry separation method for the qualitative and quantitative analysis of volatiles, together with a High-performance liquid chromatography-mass spectrometry separation method for lignans in Magnolia biondii Pamp.. 79 volatiles and 11 lignans were identified via comparing their chromatographic behavior and mass spectra data with those in the literature. The methods were then used to determine the contents of volatiles (1, 8-cineole, d-Limonene, α-terpineol, linalool, L-camphor brain and bornyl acetate) and lignans (epieudesmin, magnolin, epi-magnolin A and fargesin) in Magnolia biondii Pamp.. Subsequently, 13 qualitative models including volatiles (1, 8-cineole, d-Limonene, α-terpineol, linalool, L-camphor brain and bornyl acetate), water-soluble extractive, lignans (pinoresinol dimethyl ether, magnolin, epi-magnolin A and fargesin) and moisture were developed by Near-Infrared Spectroscopy based on partial least square regression herein. The reference values were obtained by High-performance liquid chromatography, Gas chromatography and etc., while the predicted values were attained from the NIR spectrum. Compared with the traditional detection methods, NIR technique methodology significantly improved the ability to evaluate the quality of Magnolia biondii Pamp., which had the advantages of convenience, celerity, highly efficiency, low cost, no harm to samples, no reagent consumption, and no pollution to the environment. Moreover, the systematic analysis method combined pharmaceutical analysis with pharmacochemistry was proposed to prepare volatiles, water-soluble extractive and lignans parts from the same sample. This way could extract more index components to be beneficial in the quality control of Magnolia biondii Pamp. roundly.
Collapse
Affiliation(s)
- Junni Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China
| | - Jinfeng Wen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China
| | - Gengqiu Tang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China
| | - Rong Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China
| | - Huanjia Guo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China
| | - Wenfeng Weng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China
| | - Dong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China
| | - Shengguo Ji
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring Road East, Higher Education Mega Center, 510006 Guangdong, PR China.
| |
Collapse
|
18
|
Chun HW, Kim SJ, Pham TH, Bak Y, Oh J, Ryu HW, Oh SR, Hong JT, Yoon DY. Epimagnolin A inhibits IL-6 production by inhibiting p38/NF-κB and AP-1 signaling pathways in PMA-stimulated THP-1 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:796-803. [PMID: 30919561 DOI: 10.1002/tox.22746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Epimagnolin A is a lignan obtained from the flower buds of Magnolia fargesii, which is traditionally used in Asian medicine for treating headache and nasal congestion. A herbal compound fargesin obtained from M. fargesii, has exerted anti-inflammatory effects in human monocytic THP-1 cells in the previous study. The anti-inflammatory effects of epimagnolin A, however, have been not elucidated yet. In this study, it was demonstrated that epimagnolin A reduced phorbol-12-myristate-13-acetate (PMA)-induced IL-6 promoter activity and IL-6 production in human monocytic THP-1 cells. Furthermore, it was investigated the modulating effects of epimagnolin A on mitogen-activated protein kinase, nuclear factor-kappa B (NF-κB), and activator protein 1 (AP-1) activities. Phosphorylation of p38 and nuclear translocation of p50 and c-Jun were down-regulated by epimagnolin A in the PMA-stimulated THP-1 cell. The results revealed that epimagnolin A attenuated the binding affinity of NF-κB and AP-1 transcription factors to IL-6 promoter and IL-6 production through p38/NF-kB and AP-1 signaling pathways in the PMA-stimulated THP-1 cells. These results suggest that epimagnolin A can be a useful drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Woo Chun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jaewook Oh
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Mitani Y, Satake K, Tsukamoto M, Nakamura I, Kadioglu O, Teruya T, Yonezawa T, Cha BY, Efferth T, Woo JT, Nakagawa H. Epimagnolin A, a tetrahydrofurofuranoid lignan from Magnolia fargesii, reverses ABCB1-mediated drug resistance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:112-119. [PMID: 30466608 DOI: 10.1016/j.phymed.2018.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epimagnolin A is an ingredient of the Chinese crude drug Shin-i, derived from the dried flower buds of Magnolia fargesii and Magnolia flos, which has been traditionally used for the treatment of allergic rhinitis and nasal congestion, empyema, and sinusitis. The pharmacokinetic activity of epimagnolin A remains to be evaluated. PURPOSE In this study, we examined the possible interactions of epimagnolin A with human ATP-binding cassette (ABC) transporter ABCB1, a membrane protein vital in regulating the pharmacokinetics of drugs and xenobiotics. STUDY DESIGN/METHODS The interaction of epimagnolin A with ABCB1 was evaluated in calcein, ATPase, and MTT assays by using Flp-In-293/ABCB1 cells and purified ABCB1 and simulated in molecular docking studies. RESULTS Epimagnolin A inhibited calcein export by Flp-In-293/ABCB1 cells in a concentration-dependent manner in a calcein assay. ATPase assay revealed a concentration-dependent stimulation of the ATPase activity of ABCB1 by epimagnolin A. Epimagnolin A also showed saturation kinetics in the relationship between the compound-stimulated ATPase activity and the compound concentration, suggesting Michaelis-Menten kinetics similar to those of the control drug, verapamil. Km and Vmax values were calculated from Hanes-Woolf plots of (compound concentration) × (compound-stimulated ATPase activity)-1 vs. (compound concentration); the Km of epimagnolin and verapamil was 42.9 ± 7.53 μM and 12.3 ± 4.79 μM, respectively, and the corresponding Vmax values were 156 ± 15.0 μM and 109 ± 3.18 μM. Molecular docking studies on human ABCB1 showed that epimagnolin A docked to the same binding pocket as verapamil, and 3-(4,5-dimethyl-2-thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays showed that the sensitivities of Flp-In-293/ABCB1 cells against anti-cancer drugs were enhanced upon exposure to 10 μM epimagnolin A. CONCLUSION These results strongly suggest that epimagnolin A affects the transport activity of ABCB1 as a substrate.
Collapse
Affiliation(s)
- Yuji Mitani
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Kazuhiro Satake
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Megumi Tsukamoto
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Ichiro Nakamura
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0129, Japan
| | - Takayuki Yonezawa
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Byung-Yoon Cha
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Je-Tae Woo
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroshi Nakagawa
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
20
|
Huang Y, Yang XL, Ni YH, Xu ZM. Geraniol suppresses proinflammatory mediators in phorbol 12-myristate 13-acetate with A23187-induced HMC-1 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2897-2903. [PMID: 30254419 PMCID: PMC6141105 DOI: 10.2147/dddt.s145702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Geraniol is a monoterpene alcohol that has anti-fungal, anti-cancer and anti-nociceptive properties, but its anti-allergic rhinitis (AR) property is unclear. Methods In this study, the anti-inflammatory role and its possible mechanisms of geraniol in human mast cell line (HMC-1) cells stimulated by inflammatory trigger phorbol 12-myristate 13-acetate plus A23187 (PMACI), as well as in ovalbumin (OVA)-induced AR mice models were investigated. Results PMACI results in a significant increase in the production of proinflammatory cytokines, such as TNF-α, IL-1β, MCP-1, IL-6 and as well as histamine. Geraniol was found to inhibit both TNF-α, IL-1β and IL-6 protein and mRNA expressions at concentrations of 40, 80, 160 μM. In OVA-induced AR models, geraniol treatment was able to suppress AR biomarkers (OVA-specific IgE and IL-1β as well as histamine) and nasal rub scores. Interestingly, p38, a member of the mitogen-activated protein kinase (MAPK) signaling family, was found to be increasingly hypophosphorylated as geraniol dose was increased. Similar decreases in the nuclear level of p65, a member of the nuclear factor kappa B (NF-κB) signaling pathway, were also observed. Conclusion Our data highlights that the anti-inflammatory properties of geraniol on AR-related markers in activated HCM-1 cells and OVA-induced AR models may be mediated through the regulation of the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yue Huang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China,
| | - Xiao-Lin Yang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China,
| | - Yi-Hua Ni
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China,
| | - Zheng-Min Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China,
| |
Collapse
|
21
|
Anti-Inflammatory Effects of Fargesin on Chemically Induced Inflammatory Bowel Disease in Mice. Molecules 2018; 23:molecules23061380. [PMID: 29880739 PMCID: PMC6100621 DOI: 10.3390/molecules23061380] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
Fargesin is a bioactive lignan from Flos Magnoliae, an herb widely used in the treatment of allergic rhinitis, sinusitis, and headache in Asia. We sought to investigate whether fargesin ameliorates experimental inflammatory bowel disease (IBD) in mice. Oral administration of fargesin significantly attenuated the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration and myeloperoxidase (MPO) activity, reducing tumor necrosis factor (TNF)-α secretion, and inhibiting nitric oxide (NO) production in colitis mice. The degradation of inhibitory κBα (IκBα), phosphorylation of p65, and mRNA expression of nuclear factor κB (NF-κB) target genes were inhibited by fargesin treatment in the colon of the colitis mice. In vitro, fargesin blocked the nuclear translocation of p-p65, downregulated the protein levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and dose-dependently inhibited the activity of NF-κB-luciferase in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Taken together, for the first time, the current study demonstrated the anti-inflammatory effects of fargesin on chemically induced IBD might be associated with NF-κB signaling suppression. The findings may contribute to the development of therapies for human IBD by using fargesin or its derivatives.
Collapse
|
22
|
Kim JH, Kwon SS, Jeong HU, Lee HS. Inhibitory Effects of Dimethyllirioresinol, Epimagnolin A, Eudesmin, Fargesin, and Magnolin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. Int J Mol Sci 2017; 18:ijms18050952. [PMID: 28468305 PMCID: PMC5454865 DOI: 10.3390/ijms18050952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022] Open
Abstract
Magnolin, epimagnolin A, dimethyllirioresinol, eudesmin, and fargesin are pharmacologically active tetrahydrofurofuranoid lignans found in Flos Magnoliae. The inhibitory potentials of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on eight major human cytochrome P450 (CYP) enzyme activities in human liver microsomes were evaluated using liquid chromatography-tandem mass spectrometry to determine the inhibition mechanisms and inhibition potency. Fargesin inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation with a Ki value of 16.3 μM, and it exhibited mechanism-based inhibition of CYP2C19-catalyzed [S]-mephenytoin 4′-hydroxylation (Ki, 3.7 μM; kinact, 0.102 min−1), CYP2C8-catalyzed amodiaquine N-deethylation (Ki, 10.7 μM; kinact, 0.082 min−1), and CYP3A4-catalyzed midazolam 1′-hydroxylation (Ki, 23.0 μM; kinact, 0.050 min−1) in human liver microsomes. Fargesin negligibly inhibited CYP1A2-catalyzed phenacetin O-deethylation, CYP2A6-catalyzed coumarin 7-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, and CYP2D6-catalyzed bufuralol 1′-hydroxylation at 100 μM in human liver microsomes. Dimethyllirioresinol weakly inhibited CYP2C19 and CYP2C8 with IC50 values of 55.1 and 85.0 μM, respectively, without inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 activities at 100 μM. Epimagnolin A, eudesmin, and magnolin showed no the reversible and time-dependent inhibition of eight major CYP activities at 100 μM in human liver microsomes. These in vitro results suggest that it is necessary to investigate the potentials of in vivo fargesin-drug interaction with CYP2C8, CYP2C9, CYP2C19, and CYP3A4 substrates.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| | - Soon-Sang Kwon
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| | - Hyeon-Uk Jeong
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| | - Hye Suk Lee
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| |
Collapse
|
23
|
Pham TH, Kim MS, Le MQ, Song YS, Bak Y, Ryu HW, Oh SR, Yoon DY. Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-ĸB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 24:96-103. [PMID: 28160867 DOI: 10.1016/j.phymed.2016.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/24/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Fargesin is a lignan from Magnolia fargesii, an oriental medicine used in the treatment of nasal congestion and sinusitis. The anti-inflammatory properties of this compound have not been fully elucidated yet. PURPOSE This study focused on assessing the anti-inflammatory effects of fargesin on phorbal ester (PMA)-stimulated THP-1 human monocytes, and the molecular mechanisms underlying them. METHODS Cell viability was evaluated by MTS assay. Protein expression levels of inflammatory mediators were analyzed by Western blotting, ELISA, Immunofluorescence assay. mRNA levels were measured by Real-time PCR. Promoter activities were elucidated by Luciferase assay. RESULTS It was found that pre-treatment with fargesin attenuated significantly the expression of two major inflammatory mediators, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Fargesin also inhibited the production of pro-inflammation cytokines (IL-1β, TNF-α) and chemokine (CCL-5). Besides, nuclear translocation of transcription factors nuclear factor-kappa B (NF-ĸB) and activator protein-1 (AP-1), which regulate multiple pro-inflammatory genes, was suppressed by fargesin in a PKC-dependent manner. Furthermore, among the mitogen-activated protein kinases (MAPKs), only c-Jun N-terminal kinase (JNK) was downregulated by fargesin in a PKC-dependent manner, and this reduction was involved in PMA-induced AP-1 and NF-ĸB nuclear translocation attenuation, demonstrated using a specific JNK inhibitor. CONCLUSION Taken together, our results found that fargesin exhibits anti-inflammation effects on THP-1 cells via suppression of PKC pathway including downstream JNK, nuclear factors AP-1 and NF-ĸB. These results suggest that fargesin has anti-inflammatory properties with potential applications in drug development against inflammatory disorders.
Collapse
Affiliation(s)
- Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Man-Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Minh-Quan Le
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Seok Song
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 28116, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Herbal Medicines for Asthmatic Inflammation: From Basic Researches to Clinical Applications. Mediators Inflamm 2016; 2016:6943135. [PMID: 27478309 PMCID: PMC4958455 DOI: 10.1155/2016/6943135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/22/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022] Open
Abstract
Asthma is one of the most common chronic inflammatory disorders, associated with reversible airflow obstruction, airway hyperresponsiveness, and airway remodeling. This disease has a significant impact on individuals, their families, and society. Standardized therapeutics such as inhaled corticosteroid in combination with long acting β2 agonist have been applied for asthma control; however, complementary and alternative medicines, especially herbal medicines, are still widely used all over the world. A growing body of literature suggests that various herbals or related products might be effective in inhibiting asthmatic inflammation. In this review, we summarize recent advances about the mechanistic studies of herbal medicines on allergic airway inflammation in animal models and their potential application into clinic for asthma control.
Collapse
|
25
|
Lee CJ, Lee MH, Yoo SM, Choi KI, Song JH, Jang JH, Oh SR, Ryu HW, Lee HS, Surh YJ, Cho YY. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway. BMC Cancer 2015; 15:576. [PMID: 26253302 PMCID: PMC4529708 DOI: 10.1186/s12885-015-1580-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/27/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Magnolin is a natural compound abundantly found in Magnolia flos, which has been traditionally used in oriental medicine to treat headaches, nasal congestion and anti-inflammatory reactions. Our recent results have demonstrated that magnolin targets the active pockets of ERK1 and ERK2, which are important signaling molecules in cancer cell metastasis. The aim of this study is to evaluate the effects of magnolin on cell migration and to further explore the molecular mechanisms involved. METHODS Magnolin-mediated signaling inhibition was confirmed by Western blotting using RSK2(+/+) and RSK2(-/-) MEFs, A549 and NCI-H1975 lung cancer cells, and by NF-κB and Cox-2 promoter luciferase reporter assays. Inhibition of cell migration by magnolin was examined by wound healing and/or Boyden Chamber assays using JB6 Cl41 and A549 human lung cancer cells. The molecular mechanisms involved in cell migration and epithelial-to-mesenchymal transition were determined by zymography, Western blotting, real-time PCR and immunocytofluorescence. RESULTS Magnolin inhibited NF-κB transactivation activity by suppressing the ERKs/RSK2 signaling pathway. Moreover, magnolin abrogated the increase in EGF-induced COX-2 protein levels and wound healing. In human lung cancer cells such as A549 and NCI-H1975, which harbor constitutive active Ras and EGFR mutants, respectively, magnolin suppressed wound healing and cell invasion as seen by a Boyden chamber assay. In addition, it was observed that magnolin inhibited MMP-2 and -9 gene expression and activity. The knockdown or knockout of RSK2 in A549 lung cancer cells or MEFs revealed that magnolin targeting ERKs/RSK2 signaling suppressed epithelial-to-mesenchymal transition by modulating EMT marker proteins such as N-cadherin, E-cadherin, Snail, Vimentin and MMPs. CONCLUSIONS These results demonstrate that magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway.
Collapse
Affiliation(s)
- Cheol-Jung Lee
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| | - Mee-Hyun Lee
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| | - Sun-Mi Yoo
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| | - Kyung-Il Choi
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| | - Ji-Hong Song
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| | - Jeong-Hoon Jang
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea. .,College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, ChungBuk, 363-883, Republic of Korea.
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, ChungBuk, 363-883, Republic of Korea.
| | - Hye-Suk Lee
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| |
Collapse
|
26
|
Magnolin protects against contrast-induced nephropathy in rats via antioxidation and antiapoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:203458. [PMID: 25400863 PMCID: PMC4221873 DOI: 10.1155/2014/203458] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022]
Abstract
Background. Magnolin is the major active ingredient of the herb Magnolia fargesii which has anti-inflammatory and antioxidative effects. Oxidative stress and apoptosis are involved in the pathogenesis of contrast-induced nephropathy (CIN). We hypothesize that Magnolin could protect against CIN through antioxidative and antiapoptotic properties. Methods. To test whether Magnolin could attenuate CIN, oxidative stress and apoptosis, in vivo and in vitro, we utilized a rat model of ioversol-induced CIN and a cell model of oxidative stress in which HK2 cells were treated with H2O2. Rats were assigned to 4 groups (n = 6 per group): control group, ioversol group (ioversol-induced CIN), vehicle group (CIN rats pretreated with vehicle), and Magnolin group (CIN rats pretreated with 1 mg/kg Magnolin). Results. The results showed that magnolin ameliorated the renal tubular necrosis, apoptosis, and the deterioration of renal function (P < 0.05). Furthermore, Magnolin reduced the renal oxidative stress, suppressed caspase-3 activity, and increased Bcl-2 expression in vivo and in vitro. Conclusion. Magnolin might protect CIN in rats through antioxidation and antiapoptosis.
Collapse
|
27
|
Chen HY, Wang MF, Lin JY, Tsai YC, Cheng FC. Inhalation of Shin-I essential oil enhances lactate clearance in treadmill exercise. Asian Pac J Trop Biomed 2014; 4:158-63. [PMID: 25182288 DOI: 10.1016/s2221-1691(14)60225-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/22/2014] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To evaluate the effect of Shin-I essential oil inhalation on blood lactate changes in rats subjected to treadmill exercise. METHODS : Adult male Sprague Dawley rats (n=12) were randomly divided into the control or the Shin-I group. Rats were subjected to a treadmill exercise program (15 m/min for 30 min). After exercise, rats were exposed to 200 µL of water or Shin-I essential oil, respectively, using a nebulizer for 180 min during the recovery period. Blood samples were collected every 15 min. Blood glucose and lactate concentrations were determined in a CMA 600 analyzer. RESULTS : The basal glucose and lactate levels were no significantly different between two groups. After exercise, glucose levels were slightly increased to about 110%-120% of the basal level in both groups. Lactate levels of both groups reached to 110%-140% of basal levels during exercise. In the recovery period, lactate levels further increased to 180% of the basal level and were maintained at a plateau in the control group. However, lactate levels gradually decreased to 60%-65% of the basal level in the Shin-I group. Lactate clearance was significantly enhanced after Shin-I essential oil inhalation. CONCLUSIONS : Our results provide evidence that Shin-I essential oil inhalation may accelerate recovery after exercise in rats.
Collapse
Affiliation(s)
- Hsuan-Ying Chen
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, 1650, Sect. 4, Taiwan Boulevard, Taichung, 40705, Taiwan ; Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung, 43301, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung, 43301, Taiwan
| | - Jun-Ying Lin
- Yangsen Biotechnology Co., Ltd. 3F, 5, Sec.1, Bei-tou.Rd., Bei-tou, Taipei, 11245, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec.2, Li-nong Street, Taipei, 11221, Taiwan
| | - Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, 1650, Sect. 4, Taiwan Boulevard, Taichung, 40705, Taiwan
| |
Collapse
|
28
|
Zhou YF, Li WT, Han HC, Gao DK, He XS, Li L, Song JN, Fei Z. Allicin protects rat cortical neurons against mechanical trauma injury by regulating nitric oxide synthase pathways. Brain Res Bull 2014; 100:14-21. [DOI: 10.1016/j.brainresbull.2013.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023]
|
29
|
Lee CJ, Lee HS, Ryu HW, Lee MH, Lee JY, Li Y, Dong Z, Lee HK, Oh SR, Cho YY. Targeting of magnolin on ERKs inhibits Ras/ERKs/RSK2-signaling-mediated neoplastic cell transformation. Carcinogenesis 2013; 35:432-41. [PMID: 24031026 DOI: 10.1093/carcin/bgt306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitogen-activated protein kinases play a key role in cell proliferation, cell cycle progression and cell transformation, and activated Ras/extracellular signal-regulated kinases (ERKs)/ribosomal S6 kinase 2 (RSK2) signaling pathways have been widely identified in many solid tumors. In this study, we found that magnolin, a compound found in the Magnolia species, directly targeted and inhibited ERK1 and ERK2 kinase activities with IC50 values of 87 and 16.5 nM by competing with adenosine triphosphate in an active pocket. Further, we demonstrated that magnolin inhibited epidermal growth factor (EGF)-induced p90RSKs phosphorylation at Thr359/Ser363, but not ERKs phosphorylation at Thr202/Tyr204, and this resulted in inhibition of cell proliferation by suppression of the G1/S cell cycle transition. Additionally, p38 kinases, Jun N-terminal kinases and Akts were not involved in the magnolin-mediated inhibitory signaling. Magnolin targeting of ERK1 and 2 activities suppressed the phosphorylation of RSK2 and downstream target proteins including ATF1 and c-Jun and AP-1, a dimer of Jun/Fos, and the transactivation activities of ATF1 and AP-1. Notably, ERKs inhibition by magnolin suppressed EGF-induced anchorage-independent cell transformation and colony growth of Ras(G12V)-harboring A549 human lung cancer cells and NIH3T3 cells stably expressing Ras(G12V) in soft agar. Taken together, these results demonstrated that magnolin might be a naturally occurring chemoprevention and therapeutic agent capable of inhibiting cell proliferation and transformation by targeting ERK1 and ERK2.
Collapse
Affiliation(s)
- Cheol-Jung Lee
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jin M, Kim SR, Yoon SJ, Jeong HH, Kim DK, Cho E, Yang M, Pyo MY. Suppressive effects of fructus of Magnolia denudata on IL-4 and IL-13 expression in T cells. In Vitro Cell Dev Biol Anim 2013; 49:805-14. [PMID: 23949779 DOI: 10.1007/s11626-013-9670-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/17/2013] [Indexed: 11/29/2022]
Abstract
Magnolia species have been used for the treatment of allergic diseases in Asia as folk medicine; however, the cellular and molecular mechanisms of its anti-allergic effects have rarely been investigated. In this study, we demonstrated that a methanolic extract of the fructus of Magnolia denudata has suppressive effects on Th2 cytokine production such as IL-4 and IL-13, but not IFN-γ and IL-17, produced by both phorbol 12-myristate 13-acetate/ionomycin (PI)- and CD3/CD28-stimulated EL-4 T cells. Moreover, the mRNA expression of Th2 cytokines was significantly inhibited, and luciferase activity in cells transiently transfected with IL-4 or IL-13 promoter reporter plasmids was suppressed by M. denudata, indicating that M. denudata may regulate these expression at the transcriptional level. Western blot analysis for transcription factors involved in the cytokine gene expression indicated that the activation of c-Jun was significantly downregulated in the nucleus of cells, while the activations of nuclear factor of activated T cells, nuclear factor kappa B and c-Fos, were not affected. Furthermore, the mRNA expression and nuclear translocation of GATA-binding protein 3, a key transcriptional factor for Th2 commitment and Th2 cytokine expression, but not T-bet and RORγt, were dramatically downregulated by M. denudata. Treatment with M. denudata suppressed the phosphorylation of p38 mitogen-activated protein kinase; however, the PI-induced phosphorylation of extracellular signal-related kinase and c-Jun N-terminal kinase was unaffected. Taken together, our study indicated that M. denudata inhibited IL-4 and IL-13 expression, possibly through regulation of p38 mitogen-activated protein kinase phosphorylation and selective transcription factors, such as GATA-3 and c-Jun, in EL-4 T cells.
Collapse
Affiliation(s)
- Mirim Jin
- College of Korean Medicine, Daejeon University, Daejeon, 300-716, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Rhinosinusitis is characterized by inflammation of the mucosa involving the paranasal sinuses and the nasal cavity and is one of the most common health care problems, with significant impairment of quality of life. There is a growing amount of interest in the use of complementary and integrative medicine for the treatment of rhinosinusitis. This article focuses on an integrative approach to rhinosinusitis.
Collapse
Affiliation(s)
- Malcolm B Taw
- UCLA Center for East-West Medicine, Department of Medicine, Santa Monica, CA 90404, USA.
| | | | | |
Collapse
|
32
|
Zhou Y, Wang F, Hao L, Wang N. Effects of magnoline on P-selectin's expression in diabetic rats and its reno-protection. Kidney Blood Press Res 2013; 37:211-20. [PMID: 23736780 DOI: 10.1159/000350146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Magnoline is an active ingredient of magnolia fargesii with anti-inflammatory and anti-platelet effects. The objective is to explore the renoprotection of magnoline in diabetic rats and its effects on P-selectin. METHODS Thirty-six rats were randomized into 4 groups-normal control group (C), diabetic group (D), small-dose magnoline treatment group (M1) and large-dose magnoline treatment group (M2) (n=9 in each group). Streptozotocin was selected to construct diabetic rat model, and group M1 and group M2 were treated with magnoline 0.5mg/Kg.d and 2mg/Kg.d respectively. Urinary albumin excretion rate, renal function, levels of P-selectin and TGF-β1 were observed after 16 weeks. RESULTS Levels of albuminuria and serum creatinine of group M1 (1078.9 ± 77.3μg/24h, 29.7 ± 3.9μmol/L) and M2 (852.9 ± 80.1μg/24h, 30.9 ± 2.9μmol/L) were lower than group D (1572.8 ± 176.2μg/24h, 39.4 ± 4.1μmol/L) (P <0.05). Serum levels of P-selectin in group M1 and M2 were lower than group D (P <0.05). The renal expression of P-selectin and TGF-β1 in group M1 and M2 were significantly attenuated respectively. CONCLUSIONS Magnoline has reno-protective effects on diabetic rats which may be related to the inhibition of P-selectin.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin 150001, China
| | | | | | | |
Collapse
|
33
|
Yan J, Liu Q, Dou Y, Hsieh Y, Liu Y, Tao R, Zhu D, Lou Y. Activating glucocorticoid receptor-ERK signaling pathway contributes to ginsenoside Rg1 protection against β-amyloid peptide-induced human endothelial cells apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:456-466. [PMID: 23538162 DOI: 10.1016/j.jep.2013.03.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
The deposition of β-amyloid (Aβ) in neurons and vascular cells of the brain has been characterized in Alzheimer's disease. Ginsenoside Rg1 (Rg1) is an active components in Panax ginseng, a famous traditional Chinese medicines recorded in Compendium of Materia Medica. Present study attempted to evaluate the potential mechanisms of Aβ-mediated insult and the protective effects of Rg1 on human endothelial cells. Rg1 attenuated the Aβ25-35-associated mitochondrial apoptotic events, accompanied by inhibiting HIF-1α expression followed by intracellular reactive nitrogen species generation, and protein nitrotyrosination. These protective effects were abolished by glucocorticoid receptor (GR) antagonist RU486 or p-ERK inhibitor U0126 rather than estrogen receptor α antagonist ICI 82,780. Taken together, our results suggested that Rg1 protected against Aβ25-35-induced apoptosis at least in part by two complementary GR-dependent ERK phosphorylation pathways: (1) down-regulating HIF-1α initiated protein nitrotyrosination, and (2) inhibiting mitochondrial apoptotic cascades. These data provided a novel insight to the mechanisms of Rg1protective effects on Aβ25-35-induced endothelial cells apoptosis, suggesting that GR-ERK signaling pathway might play an important role in it.
Collapse
Affiliation(s)
- Jieping Yan
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Modulation of Asthma Pathogenesis by Nitric Oxide Pathways and Therapeutic Opportunities. ACTA ACUST UNITED AC 2012; 9:e89-e94. [PMID: 23976894 DOI: 10.1016/j.ddmec.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asthma, a chronic airway inflammatory disease is typically associated with high levels of exhaled nitric oxide (NO). Over the past decades, extensive research has revealed that NO participates in a number of metabolic pathways that contribute to animal models of asthma and human asthma. In asthmatic airway, high levels of NO lead to greater formation of reactive nitrogen species (RNS), which modify proteins adversely affecting functional activities. In contrast, high levels of NO are associated with lower than normal levels of S-nitrosothiols, which serve a bronchodilator function in the airway. Detailed mechanistic studies have enabled the development of compounds that target NO metabolic pathways, and provide opportunities for novel asthma therapy. This review discusses the role of NO in asthma with the primary focus on therapeutic opportunities developed in recent years.
Collapse
|
35
|
Extract of Magnoliae Flos inhibits ovariectomy-induced osteoporosis by blocking osteoclastogenesis and reducing osteoclast-mediated bone resorption. Fitoterapia 2012; 83:1523-31. [PMID: 22981503 DOI: 10.1016/j.fitote.2012.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 11/20/2022]
Abstract
Bone homeostasis is maintained by a balance between bone resorption by osteoclasts and bone formation by osteoblasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Pro-inflammatory cytokines stimulate osteoclast differentiation and activity by increasing production of macrophage-colony stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). In this study, we investigated whether Magnoliae Flos (MF), one of the most commonly used Chinese medicinal herbs for managing rhinitis, sinusitis and headache, could effectively inhibit osteoporosis. In ovariectomized (OVX) mice compared to sham mice, the body weight increased and serum levels of alkaline phosphatase (ALP), tartrate resistant acid phosphatase 5b, calcium, and osteocalcin were significantly elevated. However, orally administrated MF extract substantially inhibited the increased body weight and serum levels of bone turnover markers, without any evidence of tissue toxicity. MF extract treatment significantly reversed the morphometric parameters of ovariectomy-induced bone loss, including trabecular bone volume, thickness, number, separation, and bone density, to almost the same levels of the sham mice. Furthermore, MF extract reduced the RANKL-mediated osteoclast differentiation and bone resorption by inhibiting the activities of matrix metalloproteinases (MMPs) and cathepsin K in mouse bone marrow macrophages. MF extract appeared to increase ALP activity in murine osteoblastic cells. Taken together, MF extract may be a beneficial supplement for the blockade of osteoporosis progression, particularly for the management of postmenopausal osteoporosis.
Collapse
|
36
|
Lee YS, Cha BY, Choi SS, Harada Y, Choi BK, Yonezawa T, Teruya T, Nagai K, Woo JT. Fargesin improves lipid and glucose metabolism in 3T3-L1 adipocytes and high-fat diet-induced obese mice. Biofactors 2012; 38:300-8. [PMID: 22674784 DOI: 10.1002/biof.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
This study examined the effects of fargesin, a neolignan isolated from Magnolia plants, on obesity and insulin resistance and the possible mechanisms involved in these effects in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese mice. Fargesin promoted the glucose uptake in 3T3-L1 adipocytes. In HFD-induced obese mice, fargesin decreased the body weight gain, white adipose tissue (WAT), and plasma triglyceride, non-esterified fatty acid and glucose levels, and improved the glucose tolerance. Fargesin increased glucose transporter 4 (GLUT4) protein expression and phosphorylation of Akt, AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC) in both 3T3-L1 adipocytes and WAT of HFD-induced obese mice. Fargesin also decreased the mRNA expression levels of fatty acid oxidation-related genes, such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase-1 (CPT-1), uncoupling protein-2 (UCP-2) and leptin in WAT. Taken together, the present findings suggest that fargesin improves dyslipidemia and hyperglycemia by activating Akt and AMPK in WAT.
Collapse
Affiliation(s)
- Young-Sil Lee
- Research Institute for Biological Functions, Chubu University, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu YH, Wei YC, Tai YS, Chen KJ, Li HY. Clinical Outcomes of Traditional Chinese Medicine Compound Formula in Treating Sleep-Disordered Breathing Patients. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:11-24. [DOI: 10.1142/s0192415x12500024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sleep-Disordered Breathing (SDB) is a prevalent affliction, which can range from simple snoring to severely obstructive sleep apnea. Compared to current treatment options of SDB, traditional Chinese medicine (TCM) provides a noninvasive way to relieve SDB-related symptoms and deaths. The purpose of this retrospective study was to observe the progression of adult SDB patients who had taken compound formula SZ + NUH (concentrated herbal granules) for four weeks. Depending on subjects’ individual needs, minor additions of formulas or single herbs were allowed. We found a significant amount of relief from snoring among the 118 enrolled subjects, according to before-after scores observed through the Snore Outcome Survey (SOS). Furthermore, as projected from the moderate linear correlation in before-after scores, we inferred that those cases with more severe snoring at baseline had greater improvement after treatment. Excessive daytime sleepiness was also significantly improved according to the results of the Epworth Sleepiness Scale (ESS). Assessment, using the SF-36 (Taiwanese version) revealed possible benefits of SZ + NUH in improving multiple facets of subjects’ quality of life. During treatment, no significant side effects occurred. In conclusion, the TCM compound formula based on SZ + NUH could be a safe and effective option for SDB treatment.
Collapse
Affiliation(s)
- Yi-Hong Wu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taoyuan 33378, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Keelung 20401, Taiwan
| | - Yu-Shan Tai
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taoyuan 33378, Taiwan
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Kuan-Jen Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taoyuan 33378, Taiwan
| | - Hsueh-Yu Li
- Department of Otolaryngology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
38
|
Park CS, Kim TB, Lee JY, Park JY, Lee YC, Jeong SS, Lee YD, Cho YS, Moon HB. Effects of add-on therapy with NDC-052, an extract from Magnoliae Flos, in adult asthmatic patients receiving inhaled corticosteroids. Korean J Intern Med 2012; 27:84-90. [PMID: 22403504 PMCID: PMC3295993 DOI: 10.3904/kjim.2012.27.1.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS There is a need for new anti-asthmatic medications with fewer side effects. NDC-052, an extract of the medicinal herb Magnoliae flos, which has a long history of clinical use, was recently found to have anti-inflammatory effects. Herein, we evaluated the effects of NDC-052 as an add-on therapy in patients with mild to moderate asthma using inhaled corticosteroids (ICS). METHODS In a non-comparative, multi-center trial, 148 patients taking ICS received NDC-052 for eight weeks. We evaluated their forced expiratory volume in one second (FEV1), morning and evening peak expiratory flow rate (AM and PM PEFR), AM/PM asthma symptom scores, visual analogue symptom (VAS) scores, night-time wakening, frequency of short-acting β2-agonist usage, and adverse events. RESULTS After eight weeks, both AM and PM PEFRs were significantly improved. Asthma symptom scores, VAS scores, the frequency of nights without awakening, and the frequency of β2-agonist use were also reduced. Most of the adverse drug reactions were mild and resolved spontaneously. CONCLUSIONS The addition of NDC-052 to ICS had a beneficial effect on asthma control in patients with mild to moderate asthma, with good tolerability and fewer side effects. Further studies are necessary to evaluate the effects of NDC-052 in patients with severe and/or refractory asthma.
Collapse
Affiliation(s)
- Chan Sun Park
- Department of Internal Medicine, Heaundae Paik Hospital, Inje University, Busan, Korea
| | - Tae-Bum Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Young Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Jae Yong Park
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Seong Su Jeong
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yang Deok Lee
- Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - You Sook Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Kim DK, Liu KH, Jeong JH, Ji HY, Oh SR, Lee HK, Lee HS. In vitrometabolism of magnolin and characterization of cytochrome P450 enzymes responsible for its metabolism in human liver microsomes. Xenobiotica 2011; 41:358-71. [DOI: 10.3109/00498254.2010.549968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Jeong JH, Kim DK, Ji HY, Oh SR, Lee HK, Lee HS. Liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry for the simultaneous determination of dimethoxyaschantin, dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin in rat plasma. Biomed Chromatogr 2010; 25:879-89. [PMID: 21058411 DOI: 10.1002/bmc.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/04/2010] [Accepted: 09/06/2010] [Indexed: 11/06/2022]
Abstract
A rapid, selective, and sensitive liquid chromatography-atmospheric pressure chemical ionization (APCI) tandem mass spectrometry method was developed for the simultaneous determination of dimethoxyaschantin, dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin, the pharmacologically active ingredients of Magnolia fargesii in rat plasma. These tetrahydrofurofuranoid lignans were extracted from rat plasma using tert-butyl methyl ether at pH 7.4. The analytes were separated on a Pinnacle DB biphenyl column with 65% methanol in 10 mm ammonium formate (pH 3.0) and detected by APCI tandem mass spectrometry in the selective reaction monitoring mode. The calibration curves were linear (r(2) ≥ 0.996) over the concentration range of 20.0-1000 ng/mL for six tetrahydrofurofuranoid lignans. The lower limit of quantification for these lignans was 20.0 ng/mL with 50 µL of plasma sample. The intra- and inter-assay coefficient of variation and relative error for the six tetrahydrofurofuranoid lignans at four quality control concentrations were 0.2-9.9% and -8.5-8.2%, respectively. There was no matrix effect for the six tetrahydrofurofuranoid lignans and tolterodine (internal standard). The pharmacokinetics of dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin were evaluated after oral administration of a purified extract isolated from dried flower buds of Magnolia fargesii at doses of 5.5, 11.0 and 22.0 mg/kg in male rats.
Collapse
Affiliation(s)
- Ji Hyun Jeong
- National Research Laboratory for Drug Metabolism and Bioanalysis, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Pharmacokinetics of magnolin in rats. Arch Pharm Res 2010; 33:933-8. [DOI: 10.1007/s12272-010-0617-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
|