1
|
Król-Kulikowska M, Banasik M, Kepinska M. The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy. Antioxidants (Basel) 2024; 13:838. [PMID: 39061907 PMCID: PMC11273648 DOI: 10.3390/antiox13070838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Nitric oxide synthase (NOS) is an enzyme that catalyzes the formation of nitric oxide (NO), the altered production of which is characteristic of diabetic nephropathy. NOS exists in three isoforms: NOS1, NOS2, and NOS3. Moreover, there are reports about the potential role of NOS3 polymorphisms in the development of diabetes complications. The aim of this study was to assess the role of selected NOS polymorphisms-rs3782218 (NOS1), rs1137933 (NOS2), rs1799983, rs2070744, and rs61722009 (NOS3)-in the risk of developing diabetic nephropathy and in the likelihood of renal replacement therapy. METHODS The studied polymorphisms were analyzed in a group of 232 patients divided into three groups. Four polymorphisms (rs3782218, rs1137933, rs1799983, rs2070744) were genotyped using the PCR-RFLP, while the rs61722009 polymorphism was genotyped using the PCR. RESULTS The C/C genotype and the C allele of the rs3782218 polymorphism (NOS1) were associated with an increased risk of developing diabetic nephropathy and an increased likelihood of renal replacement therapy. In turn, the G allele of the rs1137933 polymorphism (NOS2) reduces the likelihood of renal replacement therapy. CONCLUSIONS The specific genotypes or alleles of the rs3782218 (NOS1) and rs1137933 (NOS2) polymorphisms seem to be potential risk factors for diabetic nephropathy and renal replacement therapy.
Collapse
Affiliation(s)
- Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Mirosław Banasik
- Department and Clinic of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| |
Collapse
|
2
|
Laxmi, Golmei P, Srivastava S, Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur J Pharmacol 2024; 972:176584. [PMID: 38621507 DOI: 10.1016/j.ejphar.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Primary hypertension is a multiplex and multifactorial disease influenced by various strong components including genetics. Extensive research such as Genome-wide association studies and candidate gene studies have revealed various single nucleotide polymorphisms (SNPs) related to hypertension, providing insights into the genetic basis of the condition. This review summarizes the current status of SNP research in primary hypertension, including examples of hypertension-related SNPs, their location, function, and frequency in different populations. The potential clinical implications of SNP research for primary hypertension management are also discussed, including disease risk prediction, personalized medicine, mechanistic understanding, and lifestyle modifications. Furthermore, this review highlights emerging technologies and methodologies that have the potential to revolutionize the vast understanding of the basis of genetics in primary hypertension. Gene editing holds the potential to target and correct any kind of genetic mutations that contribute to the development of hypertension or modify genes involved in blood pressure regulation to prevent or treat the condition. Advances in computational biology and machine learning enable researchers to analyze large datasets and identify complex genetic interactions contributing to hypertension risk. In conclusion, SNP research in primary hypertension is rapidly evolving with emerging technologies and methodologies that have the potential to transform the knowledge about genetic basis related to the condition. These advances hold promise for personalized prevention and treatment strategies tailored to an individual's genetic profile ultimately improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Laxmi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Pougang Golmei
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India.
| |
Collapse
|
3
|
Graudal N, Hubeck-Graudal T, Jurgens G. A low dietary sodium dose is associated with a more pronounced aldosterone response in normotensive than in hypertensive individuals. Sci Rep 2023; 13:19027. [PMID: 37923769 PMCID: PMC10624927 DOI: 10.1038/s41598-023-46285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
In this comprehensive meta-regression analysis encompassing 79 randomized controlled trials, we observed that in populations assigned to a high sodium intake level exceeding 94 mmol, there was no discernible link between plasma aldosterone levels and sodium intake. However, among populations with normal blood pressure subjected to a lower sodium intake, falling below 111 mmol (N = 1544), the association between sodium intake and plasma aldosterone levels manifested as a decrease of 192 pg/ml per 100 mmol of sodium (95% CI - 303 to - 81). In hypertensive populations (N = 1145), this association was less pronounced, with a reduction of 46 pg/ml per 100 mmol sodium, (95% CI - 112 to 20). Furthermore, in normotensive populations the plasma aldosterone increase associated with a decrease in sodium intake was 70 pg/ml per 100 mmol sodium (95% CI 27 to 113). In hypertensive populations, the observed increase was more modest, at 30 pg/ml per 100 mmol sodium, (95% CI 6.8 to 54). A limitation of this study lies in the absence of individual participant data. Our analysis included adjustments for potential effect-modifiers, encompassing bias estimation, which did not substantially alter these associations. One perspective of the present results may be to prompt a reconsideration of current sodium reduction recommendations.
Collapse
Affiliation(s)
- Niels Graudal
- Center for Rheumatology and Spine Diseases, The Lupus and Vasculitis Clinic 4242, Copenhagen University Hospital Rigshospitalet, Juliane Maries Vej 10, Copenhagen, Denmark.
| | - Thorbjørn Hubeck-Graudal
- Department of Nuclear Medicine, Zealand University Hospital, Næstved, Ringstedgade 61, 4700, Næstved, Denmark
| | - Gesche Jurgens
- Clinical Pharmacology Unit, Zealand University Hospital, Roskilde, Sygehusvej 10, 4000, Roskilde, Denmark
| |
Collapse
|
4
|
Alyabyeva PV, Petrova MM, Dmitrenko DV, Garganeeva NP, Chumakova GA, Al-Zamil M, Trefilova VV, Nasyrova RF, Shnayder NA. Association of Single-Nucleotide Polymorphisms Rs2779249 (chr17:26128581 C>A) and Rs rs2297518 (chr17: chr17:27769571 G>A) of the NOS2 Gene with Tension-Type Headache and Arterial Hypertension Overlap Syndrome in Eastern Siberia. Genes (Basel) 2023; 14:513. [PMID: 36833440 PMCID: PMC9957272 DOI: 10.3390/genes14020513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Inducible nitric oxide (NO) synthase (iNOS), encoded by the NOS2 gene, promotes the generation of high levels of NO to combat harmful environmental influences in a wide range of cells. iNOS can cause adverse effects, such as falling blood pressure, if overexpressed. Thus, according to some data, this enzyme is an important precursor of arterial hypertension (AH) and tension-type headache (TTH), which are the most common multifactorial diseases in adults. The purpose of this study was to investigate the association of rs2779249 (chr17:26128581 C>A) and rs2297518 (chr17: chr17:27769571 G>A) of the NOS2 gene with TTH and AH overlap syndrome (OS) in Caucasians in Eastern Siberia. The sample size was 91 participants: the first group-30 patients with OS; the second group-30 patients AH; and the third group-31 healthy volunteers. RT-PCR was used for the determination of alleles and genotypes of the SNPs rs2779249 and rs2297518 of the NOS2 gene in all groups of participants. We showed that the frequency of allele A was significantly higher among patients with AH compared with healthy volunteers (p-value < 0.05). The frequency of the heterozygous genotype CA of rs2779249 was higher in the first group vs. the control (p-value = 0.03), and in the second group vs. the control (p-value = 0.045). The frequency of the heterozygous genotype GA of rs2297518 was higher in the first group vs. the control (p-value = 0.035), and in the second group vs. the control (p-value = 0.001). The allele A of rs2779249 was associated with OS (OR = 3.17 [95% CI: 1.31-7.67], p-value = 0.009) and AH (OR = 2.94 [95% CI: 1.21-7.15], p-value = 0.015) risks compared with the control. The minor allele A of rs2297518 was associated with OS (OR = 4.0 [95% CI: 0.96-16.61], p-value = 0.035) and AH (OR = 8.17 [95% CI: 2.03-32.79], p-value = 0.001) risks compared with the control. Therefore, our pilot study demonstrated that the SNPs rs2779249 and rs229718 of the NOS2 gene could be promising genetic biomarkers for this OS risk in Caucasians from Eastern Siberia.
Collapse
Affiliation(s)
- Polina V. Alyabyeva
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Diana V. Dmitrenko
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Vera V. Trefilova
- Neurological Department No. 16, Hospital for War Veterans, 193079 St. Petersburg, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia
| | - Natalia A. Shnayder
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia
| |
Collapse
|
5
|
Alyabyeva PV, Chastina OV, Petrova MM, Lareva NV, Garganeeva NP, Chumakova GA, Cherniaeva MS, Shnayder NA. New Genetic Biomarkers of the Overlap Syndrome Tension-Type Headache and Arterial Hypertension. Genes (Basel) 2022; 13:1823. [PMID: 36292708 PMCID: PMC9602376 DOI: 10.3390/genes13101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is an important autocrine and paracrine signaling molecule that plays a crucial role in cardiovascular physiology and pathology regulation. NO is an important molecule involved in regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. Reduced bioavailability of NO in the endothelium is an important precursor for impaired vasodilation and arterial hypertension (AH). Furthermore, NO is involved in nociceptive processing. A NO-induced biphasic response with immediate and a delayed headache is typical for chronic tension-type headaches (TTH) in humans. The aim was to study the association of allelic variants and genotypes of the single nucleotide variant (SNV) rs3782218 of the NOS1 gene with the TTH and AH overlap syndrome development in middle age adults. MATERIALS AND METHODS We observed 91 Caucasian participants who resided in Krasnoyarsk city: group 1 (TTH and AH overlap syndrome)-30 patients; group 2 (AH without headache)-30 patients; group 3 (control)-31 healthy volunteers. The diagnosis of AH was based on criteria of the European Society of Cardiology and the European Society of Hypertension (2018) и criteria of the Russian Society of Cardiology (2020). Diagnosis of TTH was based on criteria of the International Classification of Headache Disorders (2018). Real-time polymerase chain reaction was used for the determination of allelic variants and genotypes of the SNV rs3782218 of the NOS1 gene in all groups of participants. RESULTS The frequency of the minor allele T of rs3782218 was statistically significantly higher by 16.7 times in group 1 (TTH and AH) compared to group 3 (control): 26.7% versus 1.6%, respectively (p-value = 0.000065) and 3.2 times higher in group 1 (TTH and AH) compared to group 2 (AH without headache): 26.7% versus 8.3%, respectively (p-value = 0.008). The frequency of the heterozygous (CT) genotype was statistically significantly higher in group 1 (TTH and AH) compared to group 3 (control): 40.0% versus 3.2% (p-value = 0.000454) and in group 1 (TTH and AH) compared to group 2 (AH without headache): 40.0% versus 16.7% (p-value = 0.045). The minor allele T was statistically significantly associated with a high risk of developing the TTH and AH overlap syndrome compared with the controls (odds ratio (OR) = 22.2 (95% confidential interval (CI): 2.8-173.5)) and compared with AH without headache (OR = 4.0 (95% CI: 1.4-11.8)). Although the frequency of the minor allele T was 5.2 times higher in group 2 (AH without headache) compared with group 3 (control), there were not statistically significantly differences (p-value = 0.086). CONCLUSION Thus, the minor allele T of rs3782218 of the NOS1 gene is an important genetic biomarker for a high risk of developing the TTH and AH overlap syndrome in hypertensive patients.
Collapse
Affiliation(s)
- Polina V. Alyabyeva
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Olga V. Chastina
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Additional Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Marina S. Cherniaeva
- Department of Internal and Preventive Medicine, Central State Medical Academy of the Presidential Administration, 121359 Moscow, Russia
| | - Natalia A. Shnayder
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| |
Collapse
|
6
|
Boumezber S, Yelekçi K. Screening of novel and selective inhibitors for neuronal nitric oxide synthase (nNOS) via structure-based drug design techniques. J Biomol Struct Dyn 2022; 41:3607-3629. [PMID: 35322764 DOI: 10.1080/07391102.2022.2054471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NO, or nitric oxide, is produced by a family of enzymes called nitric oxide synthase (NOS) from L-arginine. NO regulates many physiological functions such as smooth muscle relaxation, immune defense, and memory function. The overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is implicated in neurodegeneration and neuropathic pain, making nNOS inhibition a promising therapeutic approach. Many developed nNOS inhibitors, generally L-arginine mimetics, have some issues in selectivity and bioavailability. According to earlier studies, targeting nNOS has the advantage of decreasing excess NO in the brain while avoiding the negative consequences of inhibiting the two isozymes: endothelial NOS (eNOS) and inducible NOS (iNOS). This study applied structure-based virtual screening, molecular docking, and molecular dynamics simulations to design potent and selective inhibitors against nNOS over related isoforms (eNOS and iNOS) using human X-ray crystal structures of the NOS isoforms. It was discovered that some compounds displayed a very good inhibitory potency for hnNOS and moderate selectivity for the other isozymes, eNOS and iNOS, in addition to good solubility and desirable physiochemical properties. The compounds which showed good stability and selectivity with nNOS, such as ZINC000013485422, can be interesting and informative guidance for designing more potent human nNOS inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarah Boumezber
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
7
|
Solanki K, Rajpoot S, Bezsonov EE, Orekhov AN, Saluja R, Wary A, Axen C, Wary K, Baig MS. The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 2022; 10:e13651. [PMID: 35821897 PMCID: PMC9271274 DOI: 10.7717/peerj.13651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
The nitric oxide synthases (NOS; EC 1.14.13.39) use L-arginine as a substrate to produce nitric oxide (NO) as a by-product in the tissue microenvironment. NOS1 represents the predominant NO-producing enzyme highly enriched in the brain and known to mediate multiple functions, ranging from learning and memory development to maintaining synaptic plasticity and neuronal development, Alzheimer's disease (AD), psychiatric disorders and behavioral deficits. However, accumulating evidence indicate both canonical and non-canonical roles of NOS1-derived NO in several other tissues and chronic diseases. A better understanding of NOS1-derived NO signaling, and identification and characterization of NO-metabolites in non-neuronal tissues could become useful in diagnosis and prognosis of diseases associated with NOS1 expression. Continued investigation on the roles of NOS1, therefore, will synthesize new knowledge and aid in the discovery of small molecules which could be used to titrate the activities of NOS1-derived NO signaling and NO-metabolites. Here, we address the significance of NOS1 and its byproduct NO in modifying pathophysiological events, which could be beneficial in understanding both the disease mechanisms and therapeutics.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Anita Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cassondra Axen
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kishore Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| |
Collapse
|
8
|
Abstract
The Hardy-Weinberg law of population genetics is usually associated with the notion of random mating of parents. A numerical example for a triallelic autosomal locus shows that an uncountable set of mating combinations can maintain Hardy-Weinberg proportions. Therefore, one cannot infer random mating in a population from the observation of Hardy-Weinberg equilibrium. The mating system which ensures that the genotypic distribution of offspring is the same as that of the parents is specified.
Collapse
|
9
|
Association of Gene Polymorphisms of Some Endothelial Factors with Stent Reendothelization after Elective Coronary Artery Revascularization. Bull Exp Biol Med 2021; 171:194-197. [PMID: 34173092 DOI: 10.1007/s10517-021-05193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 10/21/2022]
Abstract
Restenosis remains the main complication after percutaneous coronary interventions in patients with coronary heart disease. The causes of its development include, in particular, genetic factors. We studied polymorphic loci of genes encoding endothelin-1 (EDN1 rs5370), endothelin-1 receptor (EDNRA rs5333), endothelin-converting enzyme (ECE1 rs1076669), and endothelial NO synthase (eNOS rs1549758, eNOS rs1799983, and eNOS rs2070244) in the context of in-stent restenosis development. It was found that the analyzed polymorphisms of the endothelin system genes were more significant for patients aged ≥ 65 years, while the polymorphic loci of the endothelial NO synthase gene (eNOS rs1799983 and eNOS rs1549758) were predominantly associated with time of in-stent restenosis. The obtained results can be useful for comprehensive assessment of the restenosis risk factors and the choice of optimal treatment for patients with coronary heart disease before elective surgical intervention.
Collapse
|
10
|
The Role of Single Nucleotide Variants of NOS1, NOS2, and NOS3 Genes in the Development of the Phenotype of Migraine and Arterial Hypertension. Brain Sci 2021; 11:brainsci11060753. [PMID: 34200123 PMCID: PMC8228947 DOI: 10.3390/brainsci11060753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine (M) and arterial hypertension (AH) are very common diseases. Today, there are a number of studies confirming and explaining their comorbidity. We searched PubMed, Springer, Scopus, Web of Science, Clinicalkeys, and Google Scholar databases for full-text English publications over the past 15 years using keywords and their combinations. The present review provides a synthesis of information about single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes involved in the development of M and essential AH. The results of studies we have discussed in this review are contradictory, which might be due to different designs of the studies, small sample sizes in some of them, as well as different social and geographical environments. Despite a high prevalence of the M and AH phenotype, its genetic markers have not yet been sufficiently studied. Specifically, there are separate molecular genetic studies aimed to identify SNVs of NOS1, NOS2, and NOS3 genes responsible for the development of M and those responsible for the development of AH. However, these SNVs have not been studied in patients with the phenotype of M and AH. In this review, we identify the SNVs that would be the most interesting to study in this aspect. Understanding the role of environmental factors and genetic predictors will contribute to a better diagnostics and exploration of new approaches to pathogenetic and disease-modifying treatment of the M and AH phenotype.
Collapse
|
11
|
The Role of Single-Nucleotide Variants of NOS1, NOS2, and NOS3 Genes in the Comorbidity of Arterial Hypertension and Tension-Type Headache. Molecules 2021; 26:molecules26061556. [PMID: 33809023 PMCID: PMC8002043 DOI: 10.3390/molecules26061556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with tension-type headache (TTH) have an increased risk of developing arterial hypertension (AH), while hypertensive subjects do seem to have an increased risk of TTH. We searched for full-text English publications in databases using keywords and combined word searches over the past 15 years. In addition, earlier publications of historical interest were included in the review. In our review, we summed up the single nucleotide variants (SNVs) of Nitric Oxide Synthases (NOSs) genes involved in the development of essential AH and TTH. The results of studies we discussed in this review are contradictory. This might be due to different designs of the studies, small sample sizes in some of them, as well as different social and geographical characteristics. However, the contribution of genetic and environmental factors remains understudied. This makes the issue interesting for researchers, as understanding these mechanisms can contribute to a search for new approaches to pathogenetic and disease-modifying treatment of the AH and TTH phenotype. New drugs against AH and TTH can be based on inhibition of nitric oxide (NO) production, blockade of steps in the NO-cGMP pathway, or NO scavenging. Indeed, selective neuronal NOS (n-NOS) and inducible NOS (i-NOS) inhibitors are already in early clinical development.
Collapse
|
12
|
Human Nitric Oxide Synthase-Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Int J Mol Sci 2020; 22:ijms22010056. [PMID: 33374571 PMCID: PMC7793075 DOI: 10.3390/ijms22010056] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
In various diseases, there is an increased production of the free radicals needed to carry out certain physiological processes but their excessive amounts can cause oxidative stress and cell damage. Enzymes play a major role in the transformations associated with free radicals. One of them is nitric oxide synthase (NOS), which catalyzes the formation of nitric oxide (NO). This enzyme exists in three forms (NOS1, NOS2, NOS3), each encoded by a different gene. The following work presents the most important information on the NOS isoforms and their role in the human body, including NO synthesis in various tissues and cells, intercellular signaling and activities supporting the immune system and regulating blood vessel functions. The role of NOS in pathological conditions such as obesity, diabetes and heart disease is considered. Attention is also paid to the influence of the polymorphisms of these genes, encoding particular isoforms, on the development of these pathologies and the role of NOS inhibitors in the treatment of patients.
Collapse
|
13
|
Yuan X, Guo M, Li Y, Han Y, Li P. Association Between eNOS, MMP-9, BAG-6 Gene Polymorphisms and Risk of Hypertensive Disorders of Pregnancy in the Northern Chinese Population. DNA Cell Biol 2020; 40:393-404. [PMID: 33539267 DOI: 10.1089/dna.2020.6124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to investigate the role of endothelial nitric oxide synthase (eNOS), matrix metalloproteinases (MMP)-9, and Bcl2-associated oncogene 6 (BAG-6) gene polymorphisms, as well as the combined role of single nucleotide polymorphisms (SNPs) in hypertensive disorders of pregnancy (HDP) patients. This case-control study consisted of women with 326 HDP and 312 healthy pregnant controls. Multiplex PCR combined with next-generation sequencing method was used for determination of gene polymorphisms. Nine SNPs were analyzed, and we classified these case samples in depth by preeclampsia (PE) non-PE or blood pressure stages. We undertook allele and genotype haplotype association studies in all the cases and in the subgroups, as well as adjust age by binary logistic regression. Furthermore, the distribution of the haplotypes formed by the nine SNPs mentioned between the HDP patients and healthy pregnant controls were analyzed. There were no statistically significant differences in the nine SNPs of eNOS, MMP-9, and BAG-6 gene allele and genotype frequencies between HDP or subtypes and controls. However, for haplotype analyses, we found that the frequencies of AGACGCCGA (p = 3.67e-005), AGACGCGCA (p = 0.03127), and GAACACCGA (p = 0.02449) were significantly lower in the cases than in the controls. However, the haplotype of GGACGCCGA (p = 0.000686) was higher in the cases than in the controls. Our results suggested protective effect of the haplotypes AGACGCCGA, AGACGCGCA, and GAACACCGA against the development of HDP, and the haplotype GGACGCCGA was the risk factor of HDP.
Collapse
Affiliation(s)
- Xiaolei Yuan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Man Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujing Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
de Aragão Santos TW, Dos Santos Catena A, da Silva Mattos S, de Lima Filho JL, Gondim Martins DB. The incidence of NOS3 gene polymorphisms on newborns with large and small birth weight. Mol Biol Rep 2020; 47:8545-8552. [PMID: 33063148 DOI: 10.1007/s11033-020-05897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/03/2020] [Indexed: 11/26/2022]
Abstract
The NOS3 gene polymorphisms T-786C, G894T and VNTR 4b/a are associated with a predisposition to the development of Metabolic Syndrome (MetS). The NOS3 gene contributes to a normal pregnancy and fetal development. According to their birthweight, newborns can be classified as: small (SGA), adequate (AGA) or large (LGA) for gestational age. The SGA and LGA present a higher risk of developing disorders related to MetS, both during childhood and adulthood. Therefore, the aim of this work is to relate the incidence of G894T, T-786C and VNTR 4b/a on SGA and LGA newborns and their mothers. 204 blood samples were collected from mothers (102) and the umbilical cords of 102 newborns (SGA = 12; AGA = 47; LGA = 43). The genotyping was performed through PCR-RFLP to evaluate presence of the G894T, T-786C and VNTR 4b/a polymorphisms. A significant difference was found between the groups of newborns in the genotypic frequency of T-786C, but without Hardy-Weinberg equilibrium. The VNTR 4b/a and the G894T polymorphisms showed no significance between the groups. The haplotype analysis showed that the SGA newborns presented the higher frequency of 4aGT (9.8%) and of the 4aTT combination (25.4%), while LGA newborns presented the higher frequency of the 4bTT haplotype (23%). Only the SGA newborns and their mothers presented the 4aTC haplotype. In conclusion, the NOS3 polymorphisms do not appear to be a factor to inadequate birth weight. However, the G894T and VNTR 4b/a polymorphisms, and the haplotype 4aTC, seem to influence the occurrence of SGA.
Collapse
Affiliation(s)
- Thaysa Walléria de Aragão Santos
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Avenue Professor Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil.
| | - Andriu Dos Santos Catena
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Avenue Professor Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | | | - José Luiz de Lima Filho
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Avenue Professor Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Avenue Professor Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
15
|
Amenyah SD, Ward M, McMahon A, Deane J, McNulty H, Hughes C, Strain JJ, Horigan G, Purvis J, Walsh CP, Lees-Murdock DJ. DNA methylation of hypertension-related genes and effect of riboflavin supplementation in adults stratified by genotype for the MTHFR C677T polymorphism. Int J Cardiol 2020; 322:233-239. [PMID: 32920065 DOI: 10.1016/j.ijcard.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The interaction between genetic, epigenetic and environmental factors plays an important role in the aetiology of hypertension. GWAS and observational studies link the C677T polymorphism in methylenetetrahydrofolate reductase (MTHFR) with hypertension, while riboflavin, the MTHFR cofactor, has been shown to reduce blood pressure and global DNA methylation in homozygous (TT genotype) individuals. It is currently unclear whether riboflavin modulates DNA methylation of other hypertension-related genes. OBJECTIVES To compare DNA methylation of hypertension-related genes in adults stratified by MTHFR genotype and effect of riboflavin intervention in adults with the variant MTHFR 677TT genotype. METHOD Pyrosequencing was carried out for hypertension-related genes (ACE, AGTR1, GCK, GNA12, IGF2, MMP9 and NOS3) in blood samples from participants in previous trials (CC, n = 40; TT, n = 40). The effect of intervention with riboflavin (1.6 mg/d for16 weeks) or placebo on DNA methylation was investigated in adults with the variant MTHFR 677TT genotype (n = 80). RESULTS Individuals with the MTHFR 677TT v CC genotype had significantly higher average DNA methylation at NOS3 (+1.66%, P = 0.044). In response to riboflavin supplementation in TT individuals, there was an increase in average DNA methylation at IGF2 (+1.09%, P = 0.019) and a decrease at ACE (-0.44%, P = 0.021) in females only. Specific CpG sites were hypomethylated in GNA12 and hypermethylated in AGTR1. CONCLUSION This study provides the first RCT evidence that riboflavin alters DNA methylation of hypertension-related genes in adults with the MTHFR 677TT genotype, providing some insight into mechanisms linking hypertension with the genotype-specific response of BP to riboflavin.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK; Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Amy McMahon
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Jennifer Deane
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Catherine Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Geraldine Horigan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - John Purvis
- Department of Cardiology, Altnagelvin Area Hospital, BT47 6SB, N. Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group, Ulster University, Coleraine BT52 1SA, N. Ireland, UK.
| |
Collapse
|
16
|
Beghi S, Cavaliere F, Buschini A. Gene polymorphisms in calcium-calmodulin pathway: Focus on cardiovascular disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108325. [PMID: 33339582 DOI: 10.1016/j.mrrev.2020.108325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease is the leading cause of death in industrialized countries and affects an increasing number of people. Several risk factors play an important role in the etiology of this disease, such as an unhealthy lifestyle. It is increasingly clear that genetic factors influencing the molecular basis of excitation-contraction mechanisms in the heart could contribute to modify the individual's risk. Thanks to the progress that has been made in understanding calcium signaling in the heart, it is assumed that calmodulin can play a crucial role in the excitation-contraction coupling. In fact, calmodulin (CaM) binds calcium and consequently regulates calcium channels. Several works show how some polymorphic variants can be considered predisposing factors to complex pathologies. Therefore, we hypothesize that the identification of polymorphic variants of proteins involved in the CaM pathway could be important for understanding how genetic traits can influence predisposition to myocardial infarction. This review considers each pathway of the three different isoforms of calmodulin (CaM1; CaM2; CaM3) and focuses on some common proteins involved in the three pathways, with the aim of analyzing the polymorphisms studied in the literature and understanding if they are associated with cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Beghi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy
| | - Francesca Cavaliere
- University of Parma, Department of Food and Drug, Parco Area Delle Scienze 17A, 43124, Parma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy.
| |
Collapse
|
17
|
Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A, Di Lisa F. The role of mitochondrial reactive oxygen species, NO and H 2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med 2020; 24:6510-6522. [PMID: 32383522 PMCID: PMC7299678 DOI: 10.1111/jcmm.15279] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022] Open
Abstract
Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S‐nitros(yl)ation by nitric oxide (NO) and its derivatives, and S‐sulphydration by hydrogen sulphide (H2S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed at decreasing mitochondrial ROS accumulation have been developed and have shown cardioprotective effects in experimental settings. However, ROS, NO and H2S play also a role in endogenous cardioprotection, as in the case of ischaemic pre‐conditioning, so that preventing their increase might hamper self‐defence mechanisms. The aim of the present review was to provide a critical analysis of formation and role of reactive species, NO and H2S in mitochondria, with a special emphasis on mechanisms of injury and protection that determine the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, NO and H2S is likely to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent I/R injury.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology 1, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
18
|
Abstract
Cerebral autoregulatory dysfunction after traumatic brain injury (TBI) is strongly linked to poor global outcome in patients at 6 months after injury. However, our understanding of the drivers of this dysfunction is limited. Genetic variation among individuals within a population gives rise to single-nucleotide polymorphisms (SNPs) that have the potential to influence a given patient's cerebrovascular response to an injury. Associations have been reported between a variety of genetic polymorphisms and global outcome in patients with TBI, but few studies have explored the association between genetic variants and cerebrovascular function after injury. In this Review, we explore polymorphisms that might play an important part in cerebral autoregulatory capacity after TBI. We outline a variety of SNPs, their biological substrates and their potential role in mediating cerebrovascular reactivity. A number of candidate polymorphisms exist in genes that are involved in myogenic, endothelial, metabolic and neurogenic vascular responses to injury. Furthermore, polymorphisms in genes involved in inflammation, the central autonomic response and cortical spreading depression might drive cerebrovascular reactivity. Identification of candidate genes involved in cerebral autoregulation after TBI provides a platform and rationale for further prospective investigation of the link between genetic polymorphisms and autoregulatory function.
Collapse
|
19
|
Gholami M, Amoli MM, Sharifi F, Khoshnevisan K. Comments on and assessments of 'Associations between endothelial nitric oxide synthase gene polymorphisms and the risk of coronary artery disease: A systematic review and meta-analysis of 132 case-control studies'. Eur J Prev Cardiol 2019; 27:660-663. [PMID: 31387384 DOI: 10.1177/2047487319867785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Iran.,Endocrinology and Metabolism Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Iran.,Obesity and Eating Habits Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Iran
| | - Farshad Sharifi
- Elderly Health Research Centre, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Iran
| | - Kamyar Khoshnevisan
- Biosensor Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Iran
| |
Collapse
|
20
|
Lambden S, Tomlinson J, Piper S, Gordon AC, Leiper J. Evidence for a protective role for the rs805305 single nucleotide polymorphism of dimethylarginine dimethylaminohydrolase 2 (DDAH2) in septic shock through the regulation of DDAH activity. Crit Care 2018; 22:336. [PMID: 30538005 PMCID: PMC6288902 DOI: 10.1186/s13054-018-2277-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dimethylarginine dimethylaminohydrolase 2 (DDAH2) regulates the synthesis of nitric oxide (NO) through the metabolism of the endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA). Pilot studies have associated the rs805305 SNP of DDAH2 with ADMA concentrations in sepsis. This study explored the impact of the rs805305 polymorphism on DDAH activity and outcome in septic shock. METHODS We undertook a secondary analysis of data and samples collected during the Vasopressin versus noradrenaline as initial therapy in septic shock (VANISH) trial. Plasma and DNA samples isolated from 286 patients recruited into the VANISH trial were analysed. Concentrations of L-Arginine and the methylarginines ADMA and symmetric dimethylarginine (SDMA) were determined from plasma samples. Whole blood and buffy-coat samples were genotyped for polymorphisms of DDAH2. Clinical data collected during the study were used to explore the relationship between circulating methylarginines, genotype and outcome. RESULTS Peak ADMA concentration over the study period was associated with a hazard ratio for death at 28 days of 3.3 (95% CI 2.0-5.4), p < 0.001. Reduced DDAH activity measured by an elevated ADMA:SDMA ratio was associated with a reduced risk of death in septic shock (p = 0.03). The rs805305 polymorphism of DDAH2 was associated with reduced DDAH activity (p = 0.004) and 28-day mortality (p = 0.02). Mean SOFA score and shock duration were also reduced in the less common G:G genotype compared to heterozygotes and C:C genotype patients (p = 0.04 and p = 0.02, respectively). CONCLUSIONS Plasma ADMA is a biomarker of outcome in septic shock, and reduced DDAH activity is associated with a protective effect. The polymorphism rs805305 SNP is associated with reduced mortality, which is potentially mediated by reduced DDAH2 activity. TRIAL REGISTRATION ISRCTN Registry, ISRCTN20769191 . Registered on 20 September 2012.
Collapse
Affiliation(s)
- Simon Lambden
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2OQQ UK
| | - James Tomlinson
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN UK
| | - Sophie Piper
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN UK
| | - Anthony C. Gordon
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, London, UK
| | - James Leiper
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN UK
| |
Collapse
|
21
|
Mehlig K, Berg C, Björck L, Nyberg F, Olin AC, Rosengren A, Strandhagen E, Torén K, Thelle DS, Lissner L. Cohort Profile: The INTERGENE Study. Int J Epidemiol 2018; 46:1742-1743h. [PMID: 28186561 DOI: 10.1093/ije/dyw332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kirsten Mehlig
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Berg
- Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björck
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Nyberg
- Section for Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Medical Evidence and Observational Research Centre, Global Medical Affairs, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Anna-Carin Olin
- Section for Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Rosengren
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Strandhagen
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Torén
- Section for Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dag S Thelle
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lauren Lissner
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Shah SFA, Iqbal T, Qamar R, Rafiq MA, Hussain S. ARG1Gene Polymorphisms and Their Association in Individuals with Essential Hypertension: A Case–Control Study. DNA Cell Biol 2018; 37:609-616. [DOI: 10.1089/dna.2018.4222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Syed Fawad Ali Shah
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Tahir Iqbal
- Department of Internal Medicine, Shifa College of Medicine, Shifa International Hospital, Islamabad, Pakistan
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad Arshad Rafiq
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Sabir Hussain
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
23
|
Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and metabolic syndrome in healthy subjects and schizophrenia patients. Int J Obes (Lond) 2018; 42:2036-2046. [PMID: 29907847 PMCID: PMC6291422 DOI: 10.1038/s41366-018-0124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 04/11/2018] [Accepted: 04/22/2018] [Indexed: 11/18/2022]
Abstract
Background/objectives The frequency of metabolic syndrome (MetS) is significantly higher in schizophrenia (SCH) patients, when compared to the general populatiotin. The goal of this study was to evaluate whether genetic variants T-786C (rs2070744), G894T (rs1799983) and C774T (rs1549758) in the endothelial nitric oxide (NOS3) gene and/or their haplotypes could be associated with the risk of MetS in SCH patients or healthy subjects from Russian population. Subjects/methods We performed two case−control comparisons. NOS3 polymorphisms were genotyped in 70 SCH patients with MetS, 190 normal weight SCH patients, 155 MetS patients, and 100 healthy controls. MetS was defined as per the criteria proposed by the International Diabetes Federation (IDF). Anthropometric, clinical, biochemical parameters, and serum nitrite concentrations were measured in all samples. Haplotype frequency estimations and linkage disequilibrium measures were made using Haploview 4.2. Results The higher C allele (P = 0.009) and lower TT genotype (P = 0.008) frequencies of T-786C polymorphism were found in SCH patients with MetS compared to those in normal weight SCH patients. SCH patients with MetS who were carriers of the T-786C TT genotype had lower serum total cholesterol levels in comparison to the CC genotype (P = 0.016). Furthermore, the 774T/894T haplotype was more frequent in non-SCH individuals with MetS compared to healthy controls (P = 0.0004, odds ratio = 2.18, 95% confidence interval 1.4–3.37). Conversely, the most common haplotype 774C/894G was less frequent in MetS patients than in healthy controls (P = 0.013, odds ratio = 0.61, 95% confidence interval 0.41–0.9). Conclusions These results indicate that the NOS3 T-786C promoter polymorphism was closely associated with MetS risk in SCH patients. In addition, the haplotypes composed of G894T and C774T polymorphisms are associated with the MetS susceptibility in Russian population.
Collapse
|
24
|
Chen XJ, Qiu CG, Kong XD, Ren SM, Dong JZ, Gu HP, Chen YW, Tao HL, Sarbesh J. The association between an endothelial nitric oxide synthase gene polymorphism and coronary heart disease in young people and the underlying mechanism. Mol Med Rep 2017; 17:3928-3934. [PMID: 29359785 DOI: 10.3892/mmr.2017.8314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
With the development of molecular biological technology, the association between genes and diseases has drawn increasing attention of researchers; the endothelial nitric oxide synthase (eNOS) gene has been reported to be a candidate gene for cardiovascular disease (CHD). The present study aimed to investigate the association between a polymorphism of eNOS and the risk of CHD in young people (≤40 years old), in addition to the underlying mechanism. A total of 234 cases of CHD in young individuals were collected as the CHD group and 228 cases of healthy individuals as the control group. Peripheral blood was collected and the genotype of the eNOS G894T polymorphism was identified by polymerase chain reaction-restriction fragment length polymorphism, the gene frequency was calculated and the distributions of genotype and allele frequency between the two groups were compared. Bioinformatics tools were employed to analyze the differences in the local protein structures of the eNOS G894T polymorphism and the biological mechanism was preliminary discussed. The results demonstrated that there were significant differences in the distribution of genotype frequency and allele frequency of the eNOS G894T gene polymorphism between the CHD group and control group (P<0.05). The risk of CHD in GT and TT genotypes were higher compared with the GG genotype (P<0.05). The G894T polymorphism led to Glu298Asp mutation of encoded protein, which is within the active site of eNOS, and partial structures of the protein were converted from random coil to α‑helix. In conclusion, the eNOS G894T gene polymorphism was associated with the occurrence and development of CHD in young people. The potential mechanism is that the G894T polymorphism leads to altered protein structure, which affects the function of eNOS in generating nitric oxide and cardiovascular diastole. The results of the present study suggested a potential target gene for the prevention and treatment of CHD in young people (≤40 years old).
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chun-Guang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xiang-Dong Kong
- Department of Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Shu-Min Ren
- Department of Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jian-Zeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - He-Ping Gu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ying-Wei Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hai-Long Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jha Sarbesh
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
25
|
Yang S, Zhao Y, Tian Y, Chen Y, Zhao X, Li Y, Zhao H, Chen X, Zhu L, Fang Z, Yao Y, Hu Z, Shen C. Common variants of ROCKs and the risk of hypertension, and stroke: Two case-control studies and a follow-up study in Chinese Han population. Biochim Biophys Acta Mol Basis Dis 2017; 1864:778-783. [PMID: 29246448 DOI: 10.1016/j.bbadis.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022]
Abstract
The Rho kinases (ROCKs) are recognized as a critical regulator of vascular functions in cardiovascular disorders. It is crucial to illustrate the association of ROCKs genetic variation and hypertension and/or stroke events. Herein we aimed at investigating the association of ROCK1 and ROCK2 with hypertension and stroke in Chinese Han population. Seven tagSNPs at ROCK1 and ROCK2 were genotyped in a community-based case-control study consisting of 2012 hypertension cases and 2210 normotensive controls and 4128 subjects were further followed up. In stroke case-control study, 1471 ischemic stroke (IS) inpatients and 607 hemorrhagic stroke (HS) inpatients were collected, and 2443 age-matched controls were selected from the follow-up population. Risks were estimated as odds ratio (OR) and hazard ratio (HR) by logistic and Cox regression. The community-based case-control study didn't identify any significant tagSNPs associated with hypertension even after adjustment for covariates. The follow-up analysis showed that rs1481280 of ROCK1 significantly associated with incident hypertension (HR=1.130, P=0.048) after adjusting for covariates. rs7589629 and rs978906 of ROCK2 were significantly associated with incident IS (HR=1.373, P=0.004; HR=1.284, P=0.026) respectively. In stroke case-control study, rs288980, rs1481280 and rs7237677 were significantly associated with IS and the adjusted ORs (P values) of additive model were 0.879 (0.010), 0.895 (0.036) and 0.857 (0.002) respectively. Furthermore, rs288980, rs7237677 and rs978906 were significantly associated with HS and the adjusted ORs (P values) of additive model were 0.857 (0.025), 0.848 (0.018) and 0.856 (0.027) respectively. Our findings suggest that ROCK1 and ROCK2 contribute to the genetic susceptibility of hypertension and stroke.
Collapse
Affiliation(s)
- Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yanping Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yuanrui Tian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Ying Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hailong Zhao
- Experimental Center, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xiaotian Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - YingShui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Zhibing Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
26
|
Hyndman KA, Mironova EV, Giani JF, Dugas C, Collins J, McDonough AA, Stockand JD, Pollock JS. Collecting Duct Nitric Oxide Synthase 1ß Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways. J Am Heart Assoc 2017; 6:e006896. [PMID: 29066445 PMCID: PMC5721879 DOI: 10.1161/jaha.117.006896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1β is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1β pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. METHODS AND RESULTS Male control and collecting duct nitric oxide synthase 1β knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. CONCLUSIONS These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1β signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Elena V Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Courtney Dugas
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Jessika Collins
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| |
Collapse
|
27
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide 2017; 63:39-51. [DOI: 10.1016/j.niox.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
|
28
|
Puca AA, Spinetti G, Vono R, Vecchione C, Madeddu P. The genetics of exceptional longevity identifies new druggable targets for vascular protection and repair. Pharmacol Res 2016; 114:169-174. [PMID: 27818232 DOI: 10.1016/j.phrs.2016.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/15/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022]
Abstract
Therapeutic angiogenesis is a relatively new medical strategy in the field of cardiovascular diseases. The underpinning concept is that angiogenic growth factors or proangiogenic cells could be exploited therapeutically in cardiovascular patients to enhance native revascularization responses to an ischemic insult, thereby accelerating tissue healing. The initial enthusiasm generated by preclinical studies has been tempered by the modest success of clinical trials assessing therapeutic angiogenesis. Similarly, proangiogenic cell therapy has so far not maintained the original promises. Intriguingly, the current trend is to consider regeneration as a prerogative of the youngest organism. Consequentially, the embryonic and foetal models are attracting much attention for clinical translation into corrective modalities in the adulthood. Scientists seem to undervalue the lesson from Mother Nature, e.g. all humans are born young but very few achieve the goal of an exceptional healthy longevity. Either natural experimentation is driven by a supreme intelligence or stochastic phenomena, one has to accept the evidence that healthy longevity is the fruit of an evolutionary process lasting million years. It is therefore extremely likely that results of this natural experimentation are more reliable and translatable than the intensive, but very short human investigation on mechanisms governing repair and regeneration. With this preamble in mind, here we propose to shift the focus from the very beginning to the very end of human life and thus capture the secret of prolonged health span to improve well-being in the adulthood.
Collapse
Affiliation(s)
- Annibale A Puca
- IRCCS MultiMedica, Milan, Italy; University of Salerno, Salerno, Italy
| | | | | | - Carmine Vecchione
- University of Salerno, Salerno, Italy; IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
29
|
Oliveira-Paula GH, Lacchini R, Luizon MR, Fontana V, Silva PS, Biagi C, Tanus-Santos JE. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension. Nitric Oxide 2016; 55-56:62-9. [DOI: 10.1016/j.niox.2016.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 11/25/2022]
|
30
|
McGarrity S, Halldórsson H, Palsson S, Johansson PI, Rolfsson Ó. Understanding the Causes and Implications of Endothelial Metabolic Variation in Cardiovascular Disease through Genome-Scale Metabolic Modeling. Front Cardiovasc Med 2016; 3:10. [PMID: 27148541 PMCID: PMC4834436 DOI: 10.3389/fcvm.2016.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/03/2016] [Indexed: 01/04/2023] Open
Abstract
High-throughput biochemical profiling has led to a requirement for advanced data interpretation techniques capable of integrating the analysis of gene, protein, and metabolic profiles to shed light on genotype-phenotype relationships. Herein, we consider the current state of knowledge of endothelial cell (EC) metabolism and its connections to cardiovascular disease (CVD) and explore the use of genome-scale metabolic models (GEMs) for integrating metabolic and genomic data. GEMs combine gene expression and metabolic data acting as frameworks for their analysis and, ultimately, afford mechanistic understanding of how genetic variation impacts metabolism. We demonstrate how GEMs can be used to investigate CVD-related genetic variation, drug resistance mechanisms, and novel metabolic pathways in ECs. The application of GEMs in personalized medicine is also highlighted. Particularly, we focus on the potential of GEMs to identify metabolic biomarkers of endothelial dysfunction and to discover methods of stratifying treatments for CVDs based on individual genetic markers. Recent advances in systems biology methodology, and how these methodologies can be applied to understand EC metabolism in both health and disease, are thus highlighted.
Collapse
Affiliation(s)
- Sarah McGarrity
- Center for Systems Biology, University of Iceland , Reykjavik , Iceland
| | - Haraldur Halldórsson
- Department of Pharmacology and Toxicology, School of Health Sciences, University of Iceland , Reykjavik , Iceland
| | - Sirus Palsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland; Sinopia Biosciences Inc., San Diego, CA, USA
| | - Pär I Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland; Department of Biochemistry and Molecular Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
31
|
Zhao Y, Liao S, Lu R, Dang H, Zhao J, Ding X. Endothelial nitric oxide synthase gene polymorphism is associated with Legg-Calvé-Perthes disease. Exp Ther Med 2016; 11:1913-1917. [PMID: 27168827 DOI: 10.3892/etm.2016.3111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to assess the association of 27-bp variable number tandem repeat (VNTR) polymorphism in intron 4 and G894T polymorphism in exon 7 of the endothelial nitric oxide synthase (eNOS) gene with Legg-Calvé-Perthes disease (LCPD), and to provide a scientific basis for further research into the pathogenic mechanism. A total of 80 patients with LCPD and 100 healthy subjects were recruited in this case-control study. The 27-bp VNTR and G894T polymorphisms of the eNOS gene were genotyped using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism, respectively, followed by agarose gel electrophoresis and DNA sequencing. Allelic and genotypic frequencies were computed in the two groups and subjected to statistical analysis. For the 27-bp VNTR polymorphism, individuals with LCPD showed a higher frequency of the ab genotype [27.5 vs. 14%; odds ratio (OR), 2.33; 95% confidence interval (CI), 1.10-4.92; P=0.024]. For the G894T polymorphism, the LCPD case group showed a higher frequency of the heterozygous genotype GT than the healthy control group (35 vs. 17%; OR, 2.67; 95% CI, 1.33-5.36; P=0.005). The results indicate that these eNOS gene polymorphisms may be a risk factor for LCPD. The 27-bp VNTR polymorphism in intron 4 and G894T polymorphism in exon 7 may be involved in the etiology of LCPD.
Collapse
Affiliation(s)
- Yulong Zhao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shijie Liao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rongbin Lu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao Dang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaofei Ding
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
Pirela SV, Lu X, Miousse I, Sisler JD, Qian Y, Guo N, Koturbash I, Castranova V, Thomas T, Godleski J, Demokritou P. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NANOIMPACT 2016; 1:1-8. [PMID: 26989787 PMCID: PMC4791579 DOI: 10.1016/j.impact.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Incorporation of engineered nanomaterials (ENMs) into toners used in laser printers has led to countless quality and performance improvements. However, the release of ENMs during printing (consumer use) has raised concerns about their potential adverse health effects. The aim of this study was to use "real world" printer-emitted particles (PEPs), rather than raw toner powder, and assess the pulmonary responses following exposure by intratracheal instillation. Nine-week old male Balb/c mice were exposed to various doses of PEPs (0.5, 2.5 and 5 mg/kg body weight) by intratracheal instillation. These exposure doses are comparable to real world human inhalation exposures ranging from 13.7 to 141.9 h of printing. Toxicological parameters reflecting distinct mechanisms of action were evaluated, including lung membrane integrity, inflammation and regulation of DNA methylation patterns. Results from this in vivo toxicological analysis showed that while intratracheal instillation of PEPs caused no changes in the lung membrane integrity, there was a pulmonary immune response, indicated by an elevation in neutrophil and macrophage percentage over the vehicle control and low dose PEPs groups. Additionally, exposure to PEPs upregulated expression of the Ccl5 (Rantes), Nos1 and Ucp2 genes in the murine lung tissue and modified components of the DNA methylation machinery (Dnmt3a) and expression of transposable element (TE) LINE-1 compared to the control group. These genes are involved in both the repair process from oxidative damage and the initiation of immune responses to foreign pathogens. The results are in agreement with findings from previous in vitro cellular studies and suggest that PEPs may cause immune responses in addition to modifications in gene expression in the murine lung at doses that can be comparable to real world exposure scenarios, thereby raising concerns of deleterious health effects.
Collapse
Affiliation(s)
- Sandra V. Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Xiaoyan Lu
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Isabelle Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jennifer D. Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Nancy Guo
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Treye Thomas
- U.S. Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Rockville, MD, United States
| | - John Godleski
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Corresponding author at: Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, United States. Tel.: +1 917 432 3481. (P. Demokritou)
| |
Collapse
|
33
|
Umman B, Cakmakoglu B, Cincin Z, Kocaaga M, Emet S, Tamer S, Gokkusu C. Identification of gene variants related to the nitric oxide pathway in patients with acute coronary syndrome. Gene 2015; 574:76-81. [DOI: 10.1016/j.gene.2015.07.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
|
34
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2015; 575:584-99. [PMID: 26428312 DOI: 10.1016/j.gene.2015.09.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
35
|
Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z, Feng W, Wang W, Li Q, Wu X, Yang L. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2015; 294:109-120. [PMID: 25863025 DOI: 10.1016/j.jhazmat.2015.03.057] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/02/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on toxicity of low dose mixtures. In this study, lead (Pb) (0.01mg/L), mercury (Hg) (0.001mg/L), cadmium (Cd) (0.005mg/L) and arsenic (As) (0.01mg/L) were administered individually and as mixtures to 10 groups of 40 three-week old mice (20 males and 20 females), for 120 days. The study established that low dose exposures induced toxicity to the brain, liver, and kidney of mice. Metal mixtures showed higher toxicities compared to individual metals, as exposure to low dose Pb+Hg+Cd reduced brain weight and induced structural lesions, such as neuronal degeneration in 30-days. Pb+Hg+Cd and Pb+Hg+As+Cd exposure induced hepatocellular injury to mice evidenced by decreased antioxidant activities with marginal increases in MDA. These were accentuated by increases in ALT, AST and ALP. Interactions in metal mixtures were basically synergistic in nature and exposure to Pb+Hg+As+Cd induced renal tubular necrosis in kidneys of mice. This study underlines the importance of elucidating the toxicity of low dose metal mixtures so as to protect public health.
Collapse
Affiliation(s)
- Samuel J Cobbina
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Qian Li
- School of Pharmacy, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
36
|
Seidlerová J, Filipovský J, Mayer Jr O, Kučerová A, Pešta M. Association between endothelial NO synthase polymorphisms and arterial properties in the general population. Nitric Oxide 2015; 44:47-51. [DOI: 10.1016/j.niox.2014.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/14/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
37
|
Uysal A, Sahna E, Ozguler IM, Burma O, Ilhan N. Effects of apocynin, an NADPH oxidase inhibitor, on levels of ADMA, MPO, iNOS and TLR4 induced by myocardial ischemia reperfusion. Perfusion 2014; 30:472-7. [PMID: 25404055 DOI: 10.1177/0267659114559260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE In this study, the effects of apocynin, an NADPH oxidase inhibitor, on the levels of inducible nitric oxide synthase (iNOS) and the toll-like receptor 4 (TLR4), which are inflammatory mediators in myocardial ischemia-reperfusion (MIR) injury, and myeloperoxidase (MPO), which is the indicator of neutrophil infiltration and the endogenous nitric oxide synthase inhibitor asymmetric dimethyl arginine (ADMA) increasing with oxidative stress were investigated. METHODS MIR injury was accomplished by the application of occlusion for 30 minutes and reperfusion for 120 minutes in the left anterior descending artery (LAD). In the study, 21 Sprague-Dawley male rats were divided into three groups: a sham group (n = 7); a MIR group (n = 7); and a MIR + apocynin treatment group (n = 7, before the procedure, an intraperitoneal administration of 10 mg/kg of apocynin for 15 days). After reperfusion, iNOS, TLR4, MPO and ADMA levels in myocardial tissue were measured by ELISA. RESULTS While myocardial TLR4, MPO and ADMA levels increased in the MIR group, these parameters were found to be decreased significantly in the group treated with apocynin. Although iNOS levels showed an increase in the MIR group compared to the sham group and a reduction in the MIR+apocynin group, there was no statistically significant difference between the groups. DISCUSSION In our study, the effect of the treatment of apocynin in MIR on ADMA, MPO, iNOS and TLR4 levels in myocardial tissue was shown for the first time. It is thought that apocynin treatment may show a protective effect in MIR injury by affecting oxidative stress (ADMA) and inflammatory parameters (iNOS, MPO).
Collapse
Affiliation(s)
- A Uysal
- Depertment of Cardiovascular Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| | - E Sahna
- Depertment of Pharmacology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - I M Ozguler
- Depertment of Cardiovascular Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| | - O Burma
- Depertment of Cardiovascular Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| | - N Ilhan
- Depertment of Biochemistry, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|