1
|
Leggieri A, García-González J, Hosseinian S, Ashdown P, Anagianni S, Wang X, Havelange W, Fernàndez-Castillo N, Cormand B, Brennan CH. rbfox1 loss of function in zebrafish leads to dysregulation in bdnf/trkb2 and pac1a expression resulting in HPI axis hyperactivation, altered stress response and allostatic overload. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.616976. [PMID: 39464042 PMCID: PMC11507754 DOI: 10.1101/2024.10.09.616976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
RBFOX1 regulates transcriptional networks linked to synaptic transmission and neurodevelopment. Mutations in the RBFOX1 gene are associated with psychiatric disorders but how RBFOX1 influences psychiatric disorder vulnerability remains unclear. Recent studies showed that RBFOX1 mediates the alternative splicing of PAC1, a critical HPA axis activator. Further, RBFOX1 dysfunction is linked to dysregulation of BDNF/TrkB, a pathway promoting neuroplasticity, neuronal survival, and stress resilience. Hence, RBFOX1 dysfunction may increase psychiatric disorder vulnerability via HPA axis dysregulation, leading to disrupted development and allostatic overload. To test this hypothesis, we generated a zebrafish rbfox1 loss of function (LoF) line and examined behavioural and molecular effects during development. In larvae and adults, rbfox1 LoF resulted in hyperactivity, impulsivity and hyperarousal, and alterations in proliferation, fertility and survival, traits associated with allostatic overload. In larvae, rbfox1 LoF disrupted expression of pac1a, bdnf, trkb2, and HPI axis genes. These latter were restored after chronic TrkB agonist/antagonist treatment. In adults, bdnf/trkb2 and HPI axes dysregulation was only seen following acute stress. Our findings revealed a strict interplay between RBFOX1 and BDNF/TrkB in stress resilience and suggest that RBFOX1 LoF predisposes to psychiatric diseases through HPA axis hyperactivation during development, impairing adaptation and heightening vulnerability to allostatic overload.
Collapse
Affiliation(s)
- Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - Judit García-González
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - Peter Ashdown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - Sofia Anagianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - Xian Wang
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - William Havelange
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| |
Collapse
|
2
|
Jimenez H, Carrion J, Adrien L, Wolin A, Eun J, Cinamon E, Chang EH, Davies P, Vo A, Koppel J. The Impact of Muscarinic Antagonism on Psychosis-Relevant Behaviors and Striatal [ 11C] Raclopride Binding in Tau Mouse Models of Alzheimer's Disease. Biomedicines 2023; 11:2091. [PMID: 37626588 PMCID: PMC10452133 DOI: 10.3390/biomedicines11082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023] Open
Abstract
Psychosis that occurs over the course of Alzheimer's disease (AD) is associated with increased caregiver burden and a more rapid cognitive and functional decline. To find new treatment targets, studies modeling psychotic conditions traditionally employ agents known to induce psychosis, utilizing outcomes with cross-species relevance, such as locomotive activity and sensorimotor gating, in rodents. In AD, increased burdens of tau pathology (a diagnostic hallmark of the disease) and treatment with anticholinergic medications have, separately, been reported to increase the risk of psychosis. Recent evidence suggests that muscarinic antagonists may increase extracellular tau. Preclinical studies in AD models have not previously utilized muscarinic cholinergic antagonists as psychotomimetic agents. In this report, we utilize a human-mutant-tau model (P301L/COMTKO) and an over-expressed non-mutant human tau model (htau) in order to compare the impact of antimuscarinic (scopolamine 10 mg/kg/day) treatment with dopaminergic (reboxetine 20 mg/kg/day) treatment, for 7 days, on locomotion and sensorimotor gating. Scopolamine increased spontaneous locomotion, while reboxetine reduced it; neither treatment impacted sensorimotor gating. In the P301L/COMTKO, scopolamine treatment was associated with decreased muscarinic M4 receptor expression, as quantified with RNA-seq, as well as increased dopamine receptor D2 signaling, as estimated with Micro-PET [11C] raclopride binding. Scopolamine also increased soluble tau in the striatum, an effect that partially mediated the observed increases in locomotion. Studies of muscarinic agonists in preclinical tau models are warranted to determine the impact of treatment-on both tau and behavior-that may have relevance to AD and other tauopathies.
Collapse
Affiliation(s)
- Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Joseph Carrion
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Adam Wolin
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - John Eun
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Ezra Cinamon
- Department of Biochemistry, Queens College, Flushing, NY 11355, USA;
| | - Eric H. Chang
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - An Vo
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| |
Collapse
|
3
|
Nelson JC, Shoenhard H, Granato M. Integration of cooperative and opposing molecular programs drives learning-associated behavioral plasticity. PLoS Genet 2023; 19:e1010650. [PMID: 36972301 PMCID: PMC10079226 DOI: 10.1371/journal.pgen.1010650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/06/2023] [Accepted: 02/02/2023] [Indexed: 03/29/2023] Open
Abstract
Habituation is a foundational learning process critical for animals to adapt their behavior to changes in their sensory environment. Although habituation is considered a simple form of learning, the identification of a multitude of molecular pathways including several neurotransmitter systems that regulate this process suggests an unexpected level of complexity. How the vertebrate brain integrates these various pathways to accomplish habituation learning, whether they act independently or intersect with one another, and whether they act via divergent or overlapping neural circuits has remained unclear. To address these questions, we combined pharmacogenetic pathway analysis with unbiased whole-brain activity mapping using the larval zebrafish. Based on our findings, we propose five distinct molecular modules for the regulation of habituation learning and identify a set of molecularly defined brain regions associated with four of the five modules. Moreover, we find that in module 1 the palmitoyltransferase Hip14 cooperates with dopamine and NMDA signaling to drive habituation, while in module 3 the adaptor protein complex subunit Ap2s1 drives habituation by antagonizing dopamine signaling, revealing two distinct and opposing roles for dopaminergic neuromodulation in the regulation of behavioral plasticity. Combined, our results define a core set of distinct modules that we propose act in concert to regulate habituation-associated plasticity, and provide compelling evidence that even seemingly simple learning behaviors in a compact vertebrate brain are regulated by a complex and overlapping set of molecular mechanisms.
Collapse
Affiliation(s)
- Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Leggieri A, García-González J, Torres-Perez JV, Havelange W, Hosseinian S, Mech AM, Keatinge M, Busch-Nentwich EM, Brennan CH. Ankk1 Loss of Function Disrupts Dopaminergic Pathways in Zebrafish. Front Neurosci 2022; 16:794653. [PMID: 35210987 PMCID: PMC8861280 DOI: 10.3389/fnins.2022.794653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Ankyrin repeat and kinase domain containing 1 (ANKK1) is a member of the receptor-interacting protein serine/threonine kinase family, known to be involved in cell proliferation, differentiation and activation of transcription factors. Genetic variation within the ANKK1 locus is suggested to play a role in vulnerability to addictions. However, ANKK1 mechanism of action is still poorly understood. It has been suggested that ANKK1 may affect the development and/or functioning of dopaminergic pathways. To test this hypothesis, we generated a CRISPR-Cas9 loss of function ankk1 zebrafish line causing a 27 bp insertion that disrupts the ankk1 sequence introducing an early stop codon. We found that ankk1 transcript levels were significantly lower in ankk1 mutant (ankk127ins) fish compared to their wild type (ankk1+/+) siblings. In ankk1+/+ adult zebrafish brain, ankk1 protein was detected in isocortex, hippocampus, basolateral amygdala, mesencephalon, and cerebellum, resembling the mammalian distribution pattern. In contrast, ankk1 protein was reduced in the brain of ankk127ins/27ins fish. Quantitative polymerase chain reaction analysis revealed an increase in expression of drd2b mRNA in ankk127ins at both larval and adult stages. In ankk1+/+ adult zebrafish brain, drd2 protein was detected in cerebral cortex, cerebellum, hippocampus, and caudate homolog regions, resembling the pattern in humans. In contrast, drd2 expression was reduced in cortical regions of ankk127ins/27ins being predominantly found in the hindbrain. No differences in the number of cell bodies or axonal projections detected by anti-tyrosine hydroxylase immunostaining on 3 days post fertilization (dpf) larvae were found. Behavioral analysis revealed altered sensitivity to effects of both amisulpride and apomorphine on locomotion and startle habituation, consistent with a broad loss of both pre and post synaptic receptors. Ankk127ins mutants showed reduced sensitivity to the effect of the selective dopamine receptor antagonist amisulpride on locomotor responses to acoustic startle and were differentially sensitive to the effects of the non-selective dopamine agonist apomorphine on both locomotion and habituation. Taken together, our findings strengthen the hypothesis of a functional relationship between ANKK1 and DRD2, supporting a role for ANKK1 in the maintenance and/or functioning of dopaminergic pathways. Further work is needed to disentangle ANKK1’s role at different developmental stages.
Collapse
Affiliation(s)
- Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Judit García-González
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose V. Torres-Perez
- Department of Brain Sciences, UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Havelange
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Caroline H. Brennan,
| |
Collapse
|
6
|
Mech AM, Merteroglu M, Sealy IM, Teh MT, White RJ, Havelange W, Brennan CH, Busch-Nentwich EM. Behavioral and Gene Regulatory Responses to Developmental Drug Exposures in Zebrafish. Front Psychiatry 2022; 12:795175. [PMID: 35082702 PMCID: PMC8785235 DOI: 10.3389/fpsyt.2021.795175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Developmental consequences of prenatal drug exposure have been reported in many human cohorts and animal studies. The long-lasting impact on the offspring-including motor and cognitive impairments, cranial and cardiac anomalies and increased prevalence of ADHD-is a socioeconomic burden worldwide. Identifying the molecular changes leading to developmental consequences could help ameliorate the deficits and limit the impact. In this study, we have used zebrafish, a well-established behavioral and genetic model with conserved drug response and reward pathways, to identify changes in behavior and cellular pathways in response to developmental exposure to amphetamine, nicotine or oxycodone. In the presence of the drug, exposed animals showed altered behavior, consistent with effects seen in mammalian systems, including impaired locomotion and altered habituation to acoustic startle. Differences in responses seen following acute and chronic exposure suggest adaptation to the presence of the drug. Transcriptomic analysis of exposed larvae revealed differential expression of numerous genes and alterations in many pathways, including those related to cell death, immunity and circadian rhythm regulation. Differential expression of circadian rhythm genes did not correlate with behavioral changes in the larvae, however, two of the circadian genes, arntl2 and per2, were also differentially expressed at later stages of development, suggesting a long-lasting impact of developmental exposures on circadian gene expression. The immediate-early genes, egr1, egr4, fosab, and junbb, which are associated with synaptic plasticity, were downregulated by all three drugs and in situ hybridization showed that the expression for all four genes was reduced across all neuroanatomical regions, including brain regions implicated in reward processing, addiction and other psychiatric conditions. We anticipate that these early changes in gene expression in response to drug exposure are likely to contribute to the consequences of prenatal exposure and their discovery might pave the way to therapeutic intervention to ameliorate the long-lasting deficits.
Collapse
Affiliation(s)
- Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Munise Merteroglu
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ian M. Sealy
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, England, United Kingdom
| | - Richard J. White
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - William Havelange
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Möhrle D, Wang W, Whitehead SN, Schmid S. GABA B Receptor Agonist R-Baclofen Reverses Altered Auditory Reactivity and Filtering in the Cntnap2 Knock-Out Rat. Front Integr Neurosci 2021; 15:710593. [PMID: 34489651 PMCID: PMC8417788 DOI: 10.3389/fnint.2021.710593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Altered sensory information processing, and auditory processing, in particular, is a common impairment in individuals with autism spectrum disorder (ASD). One prominent hypothesis for the etiology of ASD is an imbalance between neuronal excitation and inhibition. The selective GABAB receptor agonist R-Baclofen has been shown previously to improve social deficits and repetitive behaviors in several mouse models for neurodevelopmental disorders including ASD, and its formulation Arbaclofen has been shown to ameliorate social avoidance symptoms in some individuals with ASD. The present study investigated whether R-Baclofen can remediate ASD-related altered sensory processing reliant on excitation/inhibition imbalance in the auditory brainstem. To assess a possible excitation/inhibition imbalance in the startle-mediating brainstem underlying ASD-like auditory-evoked behaviors, we detected and quantified brain amino acid levels in the nucleus reticularis pontis caudalis (PnC) of rats with a homozygous loss-of-function mutation in the ASD-linked gene Contactin-associated protein-like 2 (Cntnap2) and their wildtype (WT) littermates using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS). Abnormal behavioral read-outs of brainstem auditory signaling in Cntnap2 KO rats were accompanied by increased levels of GABA, glutamate, and glutamine in the PnC. We then compared the effect of R-Baclofen on behavioral read-outs of brainstem auditory signaling in Cntnap2 KO and WT rats. Auditory reactivity, sensory filtering, and sensorimotor gating were tested in form of acoustic startle response input-output functions, short-term habituation, and prepulse inhibition before and after acute administration of R-Baclofen (0.75, 1.5, and 3 mg/kg). Systemic R-Baclofen treatment improved disruptions in sensory filtering in Cntnap2 KO rats and suppressed exaggerated auditory startle responses, in particular to moderately loud sounds. Lower ASR thresholds in Cntnap2 KO rats were increased in a dose-dependent fashion, with the two higher doses bringing thresholds close to controls, whereas shorter ASR peak latencies at the threshold were further exacerbated. Impaired prepulse inhibition increased across various acoustic prepulse conditions after administration of R-Baclofen in Cntnap2 KO rats, whereas R-Baclofen did not affect prepulse inhibition in WT rats. Our findings suggest that GABAB receptor agonists may be useful for pharmacologically targeting multiple aspects of sensory processing disruptions involving neuronal excitation/inhibition imbalances in ASD.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Mol Psychiatry 2021; 26:1272-1285. [PMID: 31492942 DOI: 10.1038/s41380-019-0511-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
The dopamine D2 and D3 receptors are implicated in schizophrenia and its pharmacological treatments. These receptors undergo intracellular trafficking processes that are modulated by dysbindin-1 (Dys). Indeed, Dys variants alter cognitive responses to antipsychotic drugs through D2-mediated mechanisms. However, the mechanism by which Dys might selectively interfere with the D3 receptor subtype is unknown. Here, we revealed an interaction between functional genetic variants altering Dys and D3. Specifically, both in patients with schizophrenia and in genetically modified mice, concomitant reduction in D3 and Dys functionality was associated with improved executive and working memory abilities. This D3/Dys interaction produced a D2/D3 imbalance favoring increased D2 signaling in the prefrontal cortex (PFC) but not in the striatum. No epistatic effects on the clinical positive and negative syndrome scale (PANSS) scores were evident, while only marginal effects on sensorimotor gating, locomotor functions, and social behavior were observed in mice. This genetic interaction between D3 and Dys suggests the D2/D3 imbalance in the PFC as a target for patient stratification and procognitive treatments in schizophrenia.
Collapse
|
9
|
García-González J, Brock AJ, Parker MO, Riley RJ, Joliffe D, Sudwarts A, Teh MT, Busch-Nentwich EM, Stemple DL, Martineau AR, Kaprio J, Palviainen T, Kuan V, Walton RT, Brennan CH. Identification of slit3 as a locus affecting nicotine preference in zebrafish and human smoking behaviour. eLife 2020; 9:e51295. [PMID: 32209227 PMCID: PMC7096180 DOI: 10.7554/elife.51295] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
To facilitate smoking genetics research we determined whether a screen of mutagenized zebrafish for nicotine preference could predict loci affecting smoking behaviour. From 30 screened F3 sibling groups, where each was derived from an individual ethyl-nitrosurea mutagenized F0 fish, two showed increased or decreased nicotine preference. Out of 25 inactivating mutations carried by the F3 fish, one in the slit3 gene segregated with increased nicotine preference in heterozygous individuals. Focussed SNP analysis of the human SLIT3 locus in cohorts from UK (n=863) and Finland (n=1715) identified two variants associated with cigarette consumption and likelihood of cessation. Characterisation of slit3 mutant larvae and adult fish revealed decreased sensitivity to the dopaminergic and serotonergic antagonist amisulpride, known to affect startle reflex that is correlated with addiction in humans, and increased htr1aa mRNA expression in mutant larvae. No effect on neuronal pathfinding was detected. These findings reveal a role for SLIT3 in development of pathways affecting responses to nicotine in zebrafish and smoking in humans.
Collapse
Affiliation(s)
- Judit García-González
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of PortsmouthPortsmouthUnited Kingdom
| | - Riva J Riley
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - David Joliffe
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Muy-Teck Teh
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
| | | | - Adrian R Martineau
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFEHelsinkiFinland
- Department of Public Health, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | | | - Valerie Kuan
- Institute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Robert T Walton
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| |
Collapse
|
10
|
Carnaghi MM, Starobin JM. Reaction-diffusion memory unit: Modeling of sensitization, habituation and dishabituation in the brain. PLoS One 2019; 14:e0225169. [PMID: 31805067 PMCID: PMC6894767 DOI: 10.1371/journal.pone.0225169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/30/2019] [Indexed: 11/18/2022] Open
Abstract
We propose a novel approach to investigate the effects of sensitization, habituation and dishabituation in the brain using the analysis of the reaction-diffusion memory unit (RDMU). This unit consists of Morris-Lecar-type sensory, motor, interneuron and two input excitable cables, linked by four synapses with adjustable strength defined by Hebbian rules. Stimulation of the sensory neuron through the first input cable causes sensitization by activating two excitatory synapses, C1 and C2, connected to the interneuron and motor neuron, respectively. In turn, the stimulation of the interneuron causes habituation through the activation of inhibitory synapse C3. Likewise, dishabituation is caused through the activation of another inhibitory synapse C4. We have determined sensitization-habituation (BSH) and habituation-dishabituation (BHDH) boundaries as functions between synaptic strengths C2 and C3 at various strengths of C1 and C4. When BSH and BHDH curves shift towards larger values of C2, the RDMU can be easily inhibited. On the contrary, the RDMU can be easily sensitized or dishabituated if BSH and BHDH curves shift towards smaller values of C2. Our numerical simulations readily demonstrate that higher values of the Morris-Lecar relaxation parameter, greater leakage and potassium conductances, reduced length of the interneuron, and higher values of C1 all result in easier habituation of the RDMU. In contrast, we found that at higher values of C4 the RDMU becomes significantly more prone to dishabituation. Based on these simulations one can quantify BSH and BHDH curve shifts and relate them to particular neural outcomes.
Collapse
Affiliation(s)
- Matthew M. Carnaghi
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Joseph M. Starobin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Randlett O, Haesemeyer M, Forkin G, Shoenhard H, Schier AF, Engert F, Granato M. Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. Curr Biol 2019; 29:1337-1345.e4. [PMID: 30955936 PMCID: PMC6545104 DOI: 10.1016/j.cub.2019.02.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
Habituation is a simple form of learning where animals learn to reduce their responses to repeated innocuous stimuli [1]. Habituation is thought to occur via at least two temporally and molecularly distinct mechanisms, which lead to short-term memories that last for seconds to minutes and long-term memories that last for hours or longer [1, 2]. Here, we focus on long-term habituation, which, due to the extended time course, necessitates stable alterations to circuit properties [2-4]. In its simplest form, long-term habituation could result from a plasticity event at a single point in a circuit, and many studies have focused on identifying the site and underlying mechanism of plasticity [5-10]. However, it is possible that these individual sites are only one of many points in the circuit where plasticity is occurring. Indeed, studies of short-term habituation in C. elegans indicate that in this paradigm, multiple genetically separable mechanisms operate to adapt specific aspects of behavior [11-13]. Here, we use a visual assay in which larval zebrafish habituate their response to sudden reductions in illumination (dark flashes) [14, 15]. Through behavioral analyses, we find that multiple components of the dark-flash response habituate independently of one another using different molecular mechanisms. This is consistent with a modular model in which habituation originates from multiple independent processes, each adapting specific components of behavior. This may allow animals to more specifically or flexibly habituate based on stimulus context or internal states.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Martin Haesemeyer
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Greg Forkin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Torrisi SA, Leggio GM, Drago F, Salomone S. Therapeutic Challenges of Post-traumatic Stress Disorder: Focus on the Dopaminergic System. Front Pharmacol 2019; 10:404. [PMID: 31057408 PMCID: PMC6478703 DOI: 10.3389/fphar.2019.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness developed by vulnerable individuals exposed to life-threatening events. The pharmacological unresponsiveness displayed by the vast majority of PTSD patients has raised considerable interest in understanding the poorly known pathophysiological mechanisms underlying this disorder. Most studies in the field focused, so far, on noradrenergic mechanisms, because of their well-established role in either tuning arousal or in encoding emotional memories. However, less attention has been paid to other neural systems. Manipulations of the dopaminergic system alter behavioral responses to stressful situations and recent findings suggest that dopaminergic dysfunction might play an overriding role in the pathophysiology of PTSD. In the present review, dopaminergic mechanisms relevant for the pathogenesis of PTSD, as well as potential dopaminergic-based pharmacotherapies are discussed in the context of addressing the unmet medical need for new and effective drugs for treatment of PTSD.
Collapse
Affiliation(s)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Garner AM, Norton JN, Kinard WL, Kissling GE, Reynolds RP. Vibration-induced Behavioral Responses and Response Threshold in Female C57BL/6 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:447-455. [PMID: 30060780 PMCID: PMC6159678 DOI: 10.30802/aalas-jaalas-17-00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/24/2017] [Accepted: 12/21/2017] [Indexed: 11/05/2022]
Abstract
Despite documented adverse effects, limits for rodent exposure to vibration in the laboratory animal facility have not been established. This study used female C57BL/6 mice to determine the frequencies of vibration at which mice were most sensitive to behavioral changes, the highest magnitude of vibration that would not cause behavioral changes, the behavioral changes that occur in response to vibration, and the extent to which mice habituate to vibration. Mice were exposed to frequencies of vibration between 20 and 190 Hz at accelerations of 0.05 to 1.0 m/s2. Behavioral responses were videorecorded and subsequently scored. Mice showed the most behavioral responses at 1.0 m/s2. At intermediate accelerations of 0.5 and 0.75 m/s2, behavioral responses were most prevalent at frequencies of 70 to 100 Hz. In contrast, at an acceleration of 0.05 m/s2, mice did not show any discernible behavioral response. Behavioral responses induced by the initiation of vibration were transient, generally lasting only 2 to 10 s. Behaviors in awake mice included abrupt freezing of motion, hunched posture, and surveying the cage environment. In mice that were asleep, responses consisted of lifting the head suddenly with or without prior shifting of body position. When exposed to multiple periods of vibration over a short time, responses seemed to decrease. In summary, mice were particularly sensitive to vibration between 70 to 100 Hz, did not respond to the slowest acceleration (0.05 m/s2), and exhibited transient responses at the initiation of vibration.
Collapse
Affiliation(s)
- Angela M Garner
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina
| | - John N Norton
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina
| | | | - Grace E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Randall P Reynolds
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina;,
| |
Collapse
|
14
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
15
|
Abstract
Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.
Collapse
|
16
|
Marsden KC, Granato M. In Vivo Ca(2+) Imaging Reveals that Decreased Dendritic Excitability Drives Startle Habituation. Cell Rep 2015; 13:1733-40. [PMID: 26655893 DOI: 10.1016/j.celrep.2015.10.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/15/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023] Open
Abstract
Exposure to repetitive startling stimuli induces habitation, a simple form of learning. Despite its simplicity, the precise cellular mechanisms by which repeated stimulation converts a robust behavioral response to behavioral indifference are unclear. Here, we use head-restrained zebrafish larvae to monitor subcellular Ca(2+) dynamics in Mauthner neurons, the startle command neurons, during startle habituation in vivo. Using the Ca(2+) reporter GCaMP6s, we find that the amplitude of Ca(2+) signals in the lateral dendrite of the Mauthner neuron determines startle probability and that depression of this dendritic activity rather than downstream inhibition mediates glycine and N-methyl-D-aspartate (NMDA)-receptor-dependent short-term habituation. Combined, our results suggest a model for habituation learning in which increased inhibitory drive from feedforward inhibitory neurons combined with decreased excitatory input from auditory afferents decreases dendritic and Mauthner neuron excitability.
Collapse
Affiliation(s)
- Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Holle D, Schulte-Steinberg B, Wurthmann S, Naegel S, Ayzenberg I, Diener HC, Katsarava Z, Obermann M. Persistent Postural-Perceptual Dizziness: A Matter of Higher, Central Dysfunction? PLoS One 2015; 10:e0142468. [PMID: 26569392 PMCID: PMC4646356 DOI: 10.1371/journal.pone.0142468] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/22/2015] [Indexed: 02/01/2023] Open
Abstract
Objective Persistent postural-perceptual dizziness (PPPD) is the most common vestibular disorder in the age group between 30 and 50 years. It is considered to be based on a multisensory maladjustment involving alterations of sensory response pattern including vestibular, visual and motion stimuli. Previous data supported a link between vestibular and pain mechanism. The aim of the study was to investigate whether other sensory inputs such as pain stimuli might be altered in terms of a more widespread central perception dysfunction in this disorder. Methods Nociceptive blink reflex was measured in 27 patients with PPPD and compared with 27 healthy, age and gender matched controls. The habituation of the R2 component of the blink reflex was evaluated as the percentage area-under-the curve (AUC) decrease in ten consecutive blocks of five averaged rectified responses. Additionally, clinical characteristics were evaluated. Results In patients with PPPD a lack of habituation was observed compared to healthy controls. Relative AUC decreased between the first and the tenth block by 19.48% in PPPD patients and by 31.63% (p = 0.035) in healthy controls. There was no correlation between clinical data (course of disease, comorbid depression, medication, trigger factors) or electrophysiological data (perception threshold, pain threshold, stimulus intensity) and habituation pattern. No trigeminal sensitization in terms of facilitation of absolute values could be detected. Conclusion Our study results supports the hypothesis of the multisensory dimension of impaired sensory processing in patients with PPPD extends beyond vestibular/visual motion stimuli and reflexive postural/oculomotor control mechanisms to other sensory inputs such as pain perception in terms of a more generalized disturbed habituation pattern.
Collapse
Affiliation(s)
- Dagny Holle
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | | | | | - Steffen Naegel
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Ilya Ayzenberg
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | | | - Zaza Katsarava
- Department of Neurology, Evangelical hospital Unna, Unna, Germany
| | - Mark Obermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Wolman MA, Jain RA, Marsden KC, Bell H, Skinner J, Hayer KE, Hogenesch JB, Granato M. A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron 2015; 85:1200-11. [PMID: 25754827 DOI: 10.1016/j.neuron.2015.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 02/12/2015] [Indexed: 01/15/2023]
Abstract
Habituation represents a fundamental form of learning, yet the underlying molecular genetic mechanisms are not well defined. Here we report on a genome-wide genetic screen, coupled with whole-genome sequencing, that identified 14 zebrafish startle habituation mutants including mutants of the vertebrate-specific gene pregnancy-associated plasma protein-aa (pappaa). PAPP-AA encodes an extracellular metalloprotease known to increase IGF bioavailability, thereby enhancing IGF receptor signaling. We find that pappaa is expressed by startle circuit neurons, and expression of wild-type but not a metalloprotease-inactive version of pappaa restores habituation in pappaa mutants. Furthermore, acutely inhibiting IGF1R function in wild-type reduces habituation, while activation of IGF1R downstream effectors in pappaa mutants restores habituation, demonstrating that pappaa promotes learning by acutely and locally increasing IGF bioavailability. In sum, our results define the first functional gene set for habituation learning in a vertebrate and identify PAPPAA-regulated IGF signaling as a novel mechanism regulating habituation learning.
Collapse
Affiliation(s)
- Marc A Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Zoology, University of Wisconsin; 213 Zoology Research Building, 1117 West Johnson Street, Madison, WI 53706, USA
| | - Roshan A Jain
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Katharina E Hayer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Wolf EJ, Mitchell KS, Logue MW, Baldwin CT, Reardon AF, Aiello A, Galea S, Koenen KC, Uddin M, Wildman D, Miller MW. The dopamine D3 receptor gene and posttraumatic stress disorder. J Trauma Stress 2014; 27:379-87. [PMID: 25158632 PMCID: PMC4147673 DOI: 10.1002/jts.21937] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). The aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed White, non-Hispanic U.S. veterans and their trauma-exposed intimate partners (N = 491); 60.3% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants living in Detroit, Michigan; 23.6% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, 4 single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (OR range = 0.59 to 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (OR = 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors could potentially explain this association.
Collapse
Affiliation(s)
- Erika J. Wolf
- National Center for PTSD at VA Boston Healthcare System
- Boston University School of Medicine, Department of Psychiatry
| | - Karen S. Mitchell
- National Center for PTSD at VA Boston Healthcare System
- Boston University School of Medicine, Department of Psychiatry
| | - Mark W. Logue
- Biomedical Genetics, Boston University School of Medicine
- Department of Biostatistics, Boston University School of Public Health
| | - Clinton T. Baldwin
- Biomedical Genetics, Boston University School of Medicine
- Center for Human Genetics, Boston University School of Medicine
| | | | - Alison Aiello
- Department of Epidemiology, University of Michigan School of Public Health
| | - Sandro Galea
- Department of Epidemiology, Columbia University Mailman School of Public Health
| | - Karestan C. Koenen
- Department of Epidemiology, Columbia University Mailman School of Public Health
| | - Monica Uddin
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine
| | - Derek Wildman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine
| | - Mark W. Miller
- National Center for PTSD at VA Boston Healthcare System
- Boston University School of Medicine, Department of Psychiatry
| |
Collapse
|
20
|
Barnes SA, Der-Avakian A, Markou A. Anhedonia, avolition, and anticipatory deficits: assessments in animals with relevance to the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 2014; 24:744-58. [PMID: 24183826 PMCID: PMC3986268 DOI: 10.1016/j.euroneuro.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/30/2013] [Accepted: 10/05/2013] [Indexed: 12/11/2022]
Abstract
Schizophrenia represents a complex, heterogeneous disorder characterized by several symptomatic domains that include positive and negative symptoms and cognitive deficits. Negative symptoms reflect a cluster of symptoms that remains therapeutically unresponsive to currently available medications. Therefore, the development of animal models that may contribute to the discovery of novel and efficacious treatment strategies is essential. An animal model consists of both an inducing condition or manipulation (i.e., independent variable) and an observable measure(s) (i.e., dependent variables) that are used to assess the construct(s) under investigation. The objective of this review is to describe currently available experimental procedures that can be used to characterize constructs relevant to the negative symptoms of schizophrenia in experimental animals. While negative symptoms can encompass aspects of social withdrawal and emotional blunting, this review focuses on the assessment of reward deficits that result in anhedonia, avolition, and abnormal reward anticipation. The development and utilization of animal procedures that accurately assess reward-based constructs related to negative symptomatology in schizophrenia will provide an improved understanding of the neural substrates involved in these processes.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Andre Der-Avakian
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA.
| |
Collapse
|
21
|
de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 2014; 10:144-55. [PMID: 24535465 DOI: 10.1038/nrneurol.2014.14] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes.
Collapse
Affiliation(s)
| | - Anna Ambrosini
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | - Armando Perrotta
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Francesco Pierelli
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Acheson DT, Geyer MA, Risbrough VB. Psychophysiology in the study of psychological trauma: where are we now and where do we need to be? Curr Top Behav Neurosci 2014; 21:157-183. [PMID: 25158622 DOI: 10.1007/7854_2014_346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a major public health concern, which has been seeing increased recent attention partly due to the wars in Iraq and Afghanistan. Historically, research attempting to understand the etiology and treatment of PTSD has made frequent use of psychophysiological measures of arousal as they provide a number of advantages in providing objective, non-self-report outcomes that are closely related to proposed neurobiological mechanisms and provide opportunity for cross-species translation. Further, the ongoing shift in classification of psychiatric illness based on symptom clusters to specific biological, physiological, and behavioral constructs, as outlined in the US National Institute of Mental Health (NIMH) Research Domain Criteria project (RDoC), promises that psychophysiological research will continue to play a prominent role in research on trauma-related illnesses. This review focuses on the current state of the knowledge regarding psychophysiological measures and PTSD with a focus on physiological markers associated with current PTSD symptoms, as well as markers of constructs thought to be relevant to PTSD symptomatology (safety signal learning, fear extinction), and psychophysiological markers of risk for developing PTSD following trauma. Future directions and issues for the psychophysiological study of trauma including traumatic brain injury (TBI), treatment outcome studies, and new wearable physiological monitoring technologies are also discussed.
Collapse
Affiliation(s)
- D T Acheson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. Mail Code 0804, La Jolla, CA, 92093-0804, USA
| | | | | |
Collapse
|
23
|
Prepulse inhibition predicts working memory performance whilst startle habituation predicts spatial reference memory retention in C57BL/6 mice. Behav Brain Res 2013; 242:166-77. [DOI: 10.1016/j.bbr.2012.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022]
|
24
|
Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 2012; 17:85-98. [PMID: 20956979 PMCID: PMC3388848 DOI: 10.1038/mp.2010.106] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysbindin-1 regulates D2-receptor trafficking and is implicated in schizophrenia and related cognitive abnormalities, but whether this molecular effect mediates the clinical manifestations of the disorder is unknown. We explored in dysbindin-1-deficient mice (dys-/-) (1) schizophrenia-related behaviors, (2) molecular and electrophysiological changes in medial prefrontal cortex (mPFC) and (3) the dependence of these on D2-receptor stimulation. Dysbindin-1 disruption altered dopamine-related behaviors and impaired working memory under challenging/stressful conditions. Dys-/- pyramidal neurons in mPFC layers II/III were hyperexcitable at baseline but hypoexcitable following D2 stimulation. Dys-/- were also respectively more and less sensitive to D2 agonist- and antagonist-induced behavioral effects. Dys-/- had reduced expression of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and CaMKKβ in mPFC. Chronic D2 agonist treatment reproduced these changes in protein expression, and some of the dys-/- behavioral effects. These results elucidate dysbindin's modulation of D2-related behavior, cortical activity and mPFC CaMK components, implicating cellular and molecular mechanisms of the association of dysbindin with psychosis.
Collapse
Affiliation(s)
- F Papaleo
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | - F Yang
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA,Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - S Garcia
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - J Chen
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - B Lu
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - JN Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - DR Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Ziermans TB, Schothorst PF, Sprong M, Magnée MJCM, van Engeland H, Kemner C. Reduced prepulse inhibition as an early vulnerability marker of the psychosis prodrome in adolescence. Schizophr Res 2012; 134:10-5. [PMID: 22085828 DOI: 10.1016/j.schres.2011.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 10/04/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND The onset of psychosis is thought to be preceded by neurodevelopmental changes in the brain. However, the timing and nature of these changes have not been established. The aim of the present study was to determine whether three "classic" neurophysiological markers of schizophrenia are also characteristic of young adolescents (12-18 years) at ultra-high risk for psychosis (UHR). METHODS 63 young UHR individuals and 68 typically developing, age-, sex- and IQ-matched controls were recruited for neurophysiological assessment. Data for P50 suppression, prepulse inhibition (PPI) and smooth pursuit eye movements (SPEM) were gathered and compared. RESULTS UHR individuals showed reduced PPI compared to controls, which became more pronounced when controls were directly compared to medication-naive UHR individuals (N=39). There were no group differences in P50 or SPEM measures. CONCLUSIONS These results suggest that PPI is a relatively early vulnerability marker, while changes in other neurophysiological measures may only be detected or affected later during the illness course. Antipsychotic and antidepressant medication may aid in elevating PPI levels and potentially have a neuroprotective effect.
Collapse
Affiliation(s)
- Tim B Ziermans
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Redgrave P, Vautrelle N, Reynolds J. Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement. Neuroscience 2011; 198:138-51. [DOI: 10.1016/j.neuroscience.2011.07.060] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 12/31/2022]
|
27
|
Stahlman WD, Chan AAYH, Blumstein DT, Fast CD, Blaisdell AP. Auditory stimulation dishabituates anti-predator escape behavior in hermit crabs (Coenobita clypeatus). Behav Processes 2011; 88:7-11. [DOI: 10.1016/j.beproc.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 05/21/2011] [Accepted: 06/20/2011] [Indexed: 11/16/2022]
|
28
|
Abstract
Whole organism-based small-molecule screens have proven powerful in identifying novel therapeutic chemicals, yet this approach has not been exploited to identify new cognitive enhancers. Here we present an automated high-throughput system for measuring nonassociative learning behaviors in larval zebrafish. Using this system, we report that spaced training blocks of repetitive visual stimuli elicit protein synthesis-dependent long-term habituation in larval zebrafish, lasting up to 24 h. Moreover, repetitive acoustic stimulation induces robust short-term habituation that can be modulated by stimulation frequency and instantaneously dishabituated through cross-modal stimulation. To characterize the neurochemical pathways underlying short-term habituation, we screened 1,760 bioactive compounds with known targets. Although we found extensive functional conservation of short-term learning between larval zebrafish and mammalian models, we also discovered several compounds with previously unknown roles in learning. These compounds included a myristic acid analog known to interact with Src family kinases and an inhibitor of cyclin dependent kinase 2, demonstrating that high-throughput chemical screens combined with high-resolution behavioral assays provide a powerful approach for the discovery of novel cognitive modulators.
Collapse
|
29
|
Messerotti Benvenuti S, Bianchin M, Angrilli A. Effects of simulated microgravity on brain plasticity: a startle reflex habituation study. Physiol Behav 2011; 104:503-6. [PMID: 21627974 DOI: 10.1016/j.physbeh.2011.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
There is limited but increasing evidence that space environment, namely weightless condition, may affect astronauts' cerebral neurotransmitters and cognitive performance. The present experiment hypothesized that learning and brain plasticity are affected by simulated microgravity condition. To this aim, 22 male subjects matching astronauts' characteristics were divided in two groups, Head-Down Bed Rest (HDBR) and Sitting Control. After 3-h bed rest (or sitting condition) subjects started a picture viewing task during which 30 acoustic startle probes (100 dBA loudness), divided into three consecutive blocks, were delivered through headphones while startle reflex amplitude was measured from the EMG of the orbicularis oculi muscle. Habituation analysis of the startle reflex showed a normal reflex inhibition across blocks in sitting controls and no habituation in HDBR subjects. Results point to a microgravity-induced lack of startle reflex plasticity in subjects matching astronauts, a learning deficit which may affect the success of long-term space missions.
Collapse
|
30
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Waddington JL. Susceptibility genes for schizophrenia: mutant models, endophenotypes and psychobiology. Curr Top Behav Neurosci 2011; 12:209-50. [PMID: 22367925 DOI: 10.1007/7854_2011_194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Schizophrenia is characterised by a multifactorial aetiology that involves genetic liability interacting with epigenetic and environmental factors to increase risk for developing the disorder. A consensus view is that the genetic component involves several common risk alleles of small effect and/or rare but penetrant copy number variations. Furthermore, there is increasing evidence for broader, overlapping genetic-phenotypic relationships in psychosis; for example, the same susceptibility genes also confer risk for bipolar disorder. Phenotypic characterisation of genetic models of candidate risk genes and/or putative pathophysiological processes implicated in schizophrenia, as well as examination of epidemiologically relevant gene × environment interactions in these models, can illuminate molecular and pathobiological mechanisms involved in schizophrenia. The present chapter outlines both the evidence from phenotypic studies in mutant mouse models related to schizophrenia and recently described mutant models addressing such gene × environment interactions. Emphasis is placed on evaluating the extent to which mutant phenotypes recapitulate the totality of the disease phenotype or model selective endophenotypes. We also discuss new developments and trends in relation to the functional genomics of psychosis which might help to inform on the construct validity of mutant models of schizophrenia and highlight methodological challenges in phenotypic evaluation that relate to such models.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland,
| | | | | | | |
Collapse
|
31
|
Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry 2010; 68:801-10. [PMID: 20723887 PMCID: PMC2955812 DOI: 10.1016/j.biopsych.2010.06.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/21/2010] [Accepted: 06/08/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recent genome-wide association studies have associated polymorphisms in the gene CACNA1C, which codes for Ca(v)1.2, with a bipolar disorder and depression diagnosis. METHODS The behaviors of wild-type and Cacna1c heterozygous mice of both sexes were evaluated in a number of tests. Based upon sex differences in our mouse data, we assessed a gene × sex interaction for diagnosis of mood disorders in human subjects. Data from the National Institute of Mental Health Genetics Initiative Bipolar Disorder Consortium and the Genetics of Recurrent Early-Onset Major Depression Consortium were examined using a combined dataset that included 2021 mood disorder cases (1223 female cases) and 1840 control subjects (837 female subjects). RESULTS In both male and female mice, Cacna1c haploinsufficiency was associated with lower exploratory behavior, decreased response to amphetamine, and antidepressant-like behavior in the forced swim and tail suspension tests. Female, but not male, heterozygous mice displayed decreased risk-taking behavior or increased anxiety in multiple tests, greater attenuation of amphetamine-induced hyperlocomotion, decreased development of learned helplessness, and a decreased acoustic startle response, indicating a sex-specific role of Cacna1c. In humans, sex-specific genetic association was seen for two intronic single nucleotide polymorphisms, rs2370419 and rs2470411, in CACNA1C, with effects in female subjects (odds ratio = 1.64, 1.32) but not in male subjects (odds ratio = .82, .86). The interactions by sex were significant after correction for testing 190 single nucleotide polymorphisms (p = 1.4 × 10⁻⁴, 2.1 × 10⁻⁴; p(corrected) = .03, .04) and were consistent across two large datasets. CONCLUSIONS Our preclinical results support a role for CACNA1C in mood disorder pathophysiology, and the combination of human genetic and preclinical data support an interaction between sex and genotype.
Collapse
|
32
|
Hart PC, Bergner CL, Smolinsky AN, Dufour BD, Egan RJ, Laporte JL, Kalueff AV. Experimental models of anxiety for drug discovery and brain research. Methods Mol Biol 2010; 602:299-321. [PMID: 20012406 DOI: 10.1007/978-1-60761-058-8_18] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.
Collapse
Affiliation(s)
- Peter C Hart
- Department of Physiology, Georgetown University Medical School, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|