1
|
Moreira ALP, Menezes FP, da Silva Junior FC, Luchiari AC. Duration of aversive memory in zebrafish after a single shock. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111182. [PMID: 39471884 DOI: 10.1016/j.pnpbp.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Studies on memory consolidation and reconsolidation, memory loss, and the associated biochemical mechanisms have garnered interest in the past decades due to knowledge of memory performance-affecting factors such as stress, emotions, sleep, age, several neurological diseases, drugs, and chemical pollutants. Memory research has been using animal models, with increased interest in the zebrafish model. This freshwater fish species shows a wide range of behaviors relevant to memory research such as social behavior, aggression, and predator avoidance; however, few studies have investigated the duration of long-term memory. Hence, we designed an experiment to test memory duration by exposing zebrafish to avoidance conditioning using electroshock as the aversive stimulus. Zebrafish were trained to avoid the black side of a black-and-white tank and subsequently tested for aversive memory at 24 h, 48 h, 72 h, 96 h, 168 h, and 240 h. At the 72 h-interval, another zebrafish group was trained and exposed to MK-801(NMDAr antagonist) and then tested. The fish retained memories of the task and avoided the black side of the tank for up to 7 days. At 10 days post-training, the animals could no longer retrieve the aversive memory. Zebrafish treated with MK-801 did not retrieve memory. Knowledge of memory and of long-term memory duration is crucial for optimizing the zebrafish model for use in research investigating cognitive impairments such as memory loss and its ramifications. Additionally, identifying a long-term aversive memory lasting up to 7 days in zebrafish enables further research into the neuronal changes underlying this persistence. Such in-depth investigation could bring valuable insights into memory mechanisms and facilitate targeted interventions for memory-related conditions.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Pharmaceutical and Medicine Research Institute (IPeFarM), Psychopharmacology Laboratory, Federal University of Paraíba, Brazil
| | - Fabiano Peres Menezes
- Brazilian Institute of Environmental and Renewable natural Resources (IBAMA), Rio Grande, 96200-180, RS, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
2
|
de Sousa EB, Heymbeeck JAA, Feitosa LM, Xavier AGO, Dos Santos Campos K, do Socorro Dos Santos Rodrigues L, de Freitas LM, do Carmo Silva RX, Ikeda SR, de Nazaré Dos Santos Silva S, Rocha SP, do Nascimento WL, da Silva Moraes ER, Herculano AM, Maximino C, Pereira A, Lima-Maximino M. Activation of NOS-cGMP pathways promotes stress-induced sensitization of behavioral responses in zebrafish. Pharmacol Biochem Behav 2024; 243:173816. [PMID: 38971472 DOI: 10.1016/j.pbb.2024.173816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nitric oxide (NO) is a molecule involved in plasticity across levels and systems. The role of NOergic pathways in stress-induced sensitization (SIS) of behavioral responses, in which a particular stressor triggers a state of hyper-responsiveness to other stressors after an incubation period, was assessed in adult zebrafish. In this model, adult zebrafish acutely exposed to a fear-inducing conspecific alarm substance (CAS) and left undisturbed for an incubation period show increased anxiety-like behavior 24 h after exposure. CAS increased forebrain glutamate immediately after stress and 30 min after stress, an effect that was accompanied by increased nitrite levels immediately after stress, 30 min after stress, 90 min after stress, and 24 h after stress. CAS also increased nitrite levels in the head kidney, where cortisol is produced in zebrafish. CAS-elicited nitrite responses in the forebrain 90 min (but not 30 min) after stress were prevented by a NOS-2 blocker. Blocking NOS-1 30 min after stress prevents SIS; blocking NOS-2 90 min after stress also prevents stress-induced sensitization, as does blocking calcium-activated potassium channels in this latter time window. Stress-induced sensitization is also prevented by blocking guanylate cyclase activation in both time windows, and cGMP-dependent channel activation in the second time window. These results suggest that different NO-related pathways converge at different time windows of the incubation period to induce stress-induced sensitization.
Collapse
Affiliation(s)
- Eveline Bezerra de Sousa
- Laboratório de Bacteriologia e Neuropatologia, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - João Alphonse Apóstolo Heymbeeck
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Leonardo Miranda Feitosa
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | | | - Kimberly Dos Santos Campos
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Larissa Mota de Freitas
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Rhayra Xavier do Carmo Silva
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Saulo Rivera Ikeda
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Sueslene Prado Rocha
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Wilker Leite do Nascimento
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá, PA, Brazil.
| | - Antonio Pereira
- Laboratório de Processamento de Sinais, Instituto de Tecnologia, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| |
Collapse
|
3
|
Santos LW, Canzian J, Resmim CM, Fontana BD, Rosemberg DB. Contextual fear conditioning in zebrafish: Influence of different shock frequencies, context, and pharmacological modulation on behavior. Neurobiol Learn Mem 2024; 214:107963. [PMID: 39059760 DOI: 10.1016/j.nlm.2024.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Contextual fear conditioning is a protocol used to assess associative learning across species, including fish. Here, our goal was to expand the analysis of behavioral parameters that may reflect aversive behaviors in a contextual fear conditioning protocol using adult zebrafish (Danio rerio) and to verify how such parameters can be modulated. First, we analyzed the influence of an aversive stimulus (3 mild electric shocks for 5 s each at frequencies of 10, 100 or 1000 Hz) on fish behavior, and their ability to elicit fear responses in the absence of shock during a test session. To confirm whether the aversive responses are context-dependent, behaviors were also measured in a different experimental environment in a test session. Furthermore, we investigated the effects of dizocilpine (MK-801, 2 mg/kg, i.p.) on fear-related responses. Zebrafish showed significant changes in baseline activity immediately after shock exposure in the training session, in which 100 Hz induced robust contextual fear responses during the test session. Importantly, when introduced to a different environment, animals exposed to the aversive stimulus did not show any differences in locomotion and immobility-related parameters. MK-801 administered after the training session reduced fear responses during the test, indicating that glutamate NMDA-receptors play a key role in the consolidation of contextual fear-related memory in zebrafish. In conclusion, by further exploring fear-related behaviors in a contextual fear conditioning task, we show the effects of different shock frequencies and confirm the importance of context on aversive responses for associative learning in zebrafish. Additionally, our data support the use of zebrafish in contextual fear conditioning tasks, as well as for advancing pharmacological studies related to associative learning in translational neurobehavioral research.
Collapse
Affiliation(s)
- Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
4
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2024:revneuro-2024-0093. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
5
|
Kolesnikova TO, Demin KA, Costa FV, de Abreu MS, Kalueff AV. Zebrafish models for studying cognitive enhancers. Neurosci Biobehav Rev 2024; 164:105797. [PMID: 38971515 DOI: 10.1016/j.neubiorev.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.
Collapse
Affiliation(s)
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; West Caspian University, Baku, Azerbaijan.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Suzhou Key Laboratory on Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
6
|
Carneiro Romão I, Costa Siqueira SM, Amâncio Ferreira MK, Wlisses da Silva A, Machado Marinho M, Ferreira Ribeiro WH, de Castro Gomes AF, Alencar de Menezes JES, Dos Santos HS. Effect of Cinnamaldehyde Chalcone on Behavior in Adult Zebrafish (Danio rerio): In Silico Approach. Chem Biodivers 2024; 21:e202400935. [PMID: 38818650 DOI: 10.1002/cbdv.202400935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The study focuses on the anxiolytic potential of chalcone (2E,4E)-1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one (CHALCNM) in adult zebrafish. Successfully synthesized in 58 % yield, CHALCNM demonstrated no toxicity after 96 h of exposure. In behavioral tests, CHALCNM (40 mg/kg) reduced locomotor activity and promoted less anxious behavior in zebrafish, confirmed by increased permanence in the light zone of the aquarium. Flumazenil reversed its anxiolytic effect, indicating interaction with GABAA receptors. Furthermore, CHALCNM (4 and 20 mg/kg) preserved zebrafish memory in inhibitory avoidance tests. Virtual screening and ADMET profile studies suggest high oral bioavailability, access to the CNS, favored by low topological polarity (TPSA≤75 Å2) and low incidence of hepatotoxicity, standing out as a promising pharmacological agent against the GABAergic system. In molecular coupling, CHALCNM demonstrated superior affinity to diazepam for the GABAA receptor. These results reinforce the therapeutic potential of CHALCNM in the treatment of anxiety, highlighting its possible future clinical application.
Collapse
Affiliation(s)
- Ivana Carneiro Romão
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, Ceará, Brazil
| | - Sônia Maria Costa Siqueira
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, Ceará, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, Ceará, Brazil
| | - Antonio Wlisses da Silva
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, Ceará, Brazil
| | - Márcia Machado Marinho
- Grupo de Química Teórica e Eletroquímica -, GQTE, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, Ceará, Brazil Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, Ceará, Brazil Curso de Química, Universidade Estadual Vale do Acaraú, Sobral, Ceará, Brazil
| | - Walber Henrique Ferreira Ribeiro
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, Ceará, Brazil Curso de Química, Universidade Estadual Vale do Acaraú, Sobral, Ceará, Brazil
| | - Andreia Ferreira de Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal Centro de Biologia Molecular e Ambiental, Universidade do Minho, Escola de Ciências, Departamento de Biologia, Braga, Portugal
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, Ceará, Brazil
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, Ceará, Brazil Curso de Química, Universidade Estadual Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
7
|
Borba JV, Canzian J, Resmim CM, Silva RM, Duarte MCF, Mohammed KA, Schoenau W, Adedara IA, Rosemberg DB. Towards zebrafish models to unravel translational insights of obsessive-compulsive disorder: A neurobehavioral perspective. Neurosci Biobehav Rev 2024; 162:105715. [PMID: 38734195 DOI: 10.1016/j.neubiorev.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating illness that has been considered a polygenic and multifactorial disorder, challenging effective therapeutic interventions. Although invaluable advances have been obtained from human and rodent studies, several molecular and mechanistic aspects of OCD etiology are still obscure. Thus, the use of non-traditional animal models may foster innovative approaches in this field, aiming to elucidate the underlying mechanisms of disease from an evolutionary perspective. The zebrafish (Danio rerio) has been increasingly considered a powerful organism in translational neuroscience research, especially due to the intrinsic features of the species. Here, we outline target mechanisms of OCD for translational research, and discuss how zebrafish-based models can contribute to explore neurobehavioral aspects resembling those found in OCD. We also identify possible advantages and limitations of potential zebrafish-based models, as well as highlight future directions in both etiological and therapeutic research. Lastly, we reinforce the use of zebrafish as a promising tool to unravel the biological basis of OCD, as well as novel pharmacological therapies in the field.
Collapse
Affiliation(s)
- João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maria C F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - William Schoenau
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
8
|
Bertoncello KT, Rodrigues G, Bonan CD. Berberine and hesperidin prevent the memory consolidation impairment induced by pentylenetetrazole in zebrafish. Behav Brain Res 2024; 466:114981. [PMID: 38580198 DOI: 10.1016/j.bbr.2024.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rodrigues
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Cavallino L, Florencia Scaia M, Gabriela Pozzi A, Eugenia Pedreira M. Recognizing the opponent: The consolidation of long-term social memory in zebrafish males. Neurobiol Learn Mem 2024; 212:107939. [PMID: 38762038 DOI: 10.1016/j.nlm.2024.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.
Collapse
Affiliation(s)
- Luciano Cavallino
- Laboratorio de Neuroendocrinología y comportamiento en peces y anfibios, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina; Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Laboratorio26 (C1428EHA), Argentina.
| | - María Florencia Scaia
- Laboratorio de Neuroendocrinología y comportamiento en peces y anfibios, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina; Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Laboratorio26 (C1428EHA), Argentina
| | - Andrea Gabriela Pozzi
- Laboratorio de Neuroendocrinología y comportamiento en peces y anfibios, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina; Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Laboratorio26 (C1428EHA), Argentina
| | - María Eugenia Pedreira
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Wiprich MT, da Rosa Vasques R, Gusso D, Rübensam G, Kist LW, Bogo MR, Bonan CD. Locomotor Behavior and Memory Dysfunction Induced by 3-Nitropropionic Acid in Adult Zebrafish: Modulation of Dopaminergic Signaling. Mol Neurobiol 2024; 61:609-621. [PMID: 37648841 DOI: 10.1007/s12035-023-03584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease characterized by neuropsychiatric disturbance, cognitive impairment, and locomotor dysfunction. In the early stage (chorea) of HD, expression of dopamine D2 receptors (D2R) is reduced, whereas dopamine (DA) levels are increased. Contrary, in the late stage (bradykinesia), DA levels and the expression of D2R and dopamine D1 receptors (D1R) are reduced. 3-Nitropropionic acid (3-NPA) is a toxin that may replicate HD behavioral phenotypes and biochemical aspects. This study assessed the neurotransmitter levels, dopamine receptor gene expression, and the effect of acute exposure to quinpirole (D2R agonist) and eticlopride (D2R antagonist) in an HD model induced by 3-NPA in adult zebrafish. Quinpirole and eticlopride were acutely applied by i.p. injection in adult zebrafish after chronic treatment of 3-NPA (60 mg/kg). 3-NPA treatment caused a reduction in DA, glutamate, and serotonin levels. Quinpirole reversed the bradykinesia and memory loss induced by 3-NPA. Together, these data showed that 3-NPA acts on the dopaminergic system and causes biochemical alterations similar to late-stage HD. These data reinforce the hypothesis that DA levels are linked with locomotor and memory deficits. Thus, these findings may suggest that the use of DA agonists could be a pharmacological strategy to improve the bradykinesia and memory deficits in the late-stage HD.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência E Tecnologia Em Doenças Cerebrais, Excitotoxicidade E Neuroproteção, Porto Alegre, RS, Brazil
| | - Rafaela da Rosa Vasques
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rübensam
- Centro de Pesquisa Em Toxicologia E Farmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Laboratório de Biologia Genômica E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Reis Bogo
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Laboratório de Biologia Genômica E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Instituto Nacional de Ciência E Tecnologia Em Doenças Cerebrais, Excitotoxicidade E Neuroproteção, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Buatois A, Siddiqi Z, Naim S, Marawi T, Gerlai R. A simple semi-automated home-tank method and procedure to explore classical associative learning in adult zebrafish. Behav Res Methods 2024; 56:736-749. [PMID: 36814006 PMCID: PMC10830691 DOI: 10.3758/s13428-023-02076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
The zebrafish is a laboratory species that gained increasing popularity the last decade in a variety of subfields of biology, including toxicology, ecology, medicine, and the neurosciences. An important phenotype often measured in these fields is behaviour. Consequently, numerous new behavioural apparati and paradigms have been developed for the zebrafish, including methods for the analysis of learning and memory in adult zebrafish. Perhaps the biggest obstacle in these methods is that zebrafish is particularly sensitive to human handling. To overcome this confound, automated learning paradigms have been developed with varying success. In this manuscript, we present a semi-automated home tank-based learning/memory test paradigm utilizing visual cues, and show that it is capable of quantifying classical associative learning performance in zebrafish. We demonstrate that in this task, zebrafish successfully acquire the association between coloured-light and food reward. The hardware and software components of the task are easy and cheap to obtain and simple to assemble and set up. The procedures of the paradigm allow the test fish to remain completely undisturbed by the experimenter for several days in their home (test) tank, eliminating human handling or human interference induced stress. We demonstrate that the development of cheap and simple automated home-tank-based learning paradigms for the zebrafish is feasible. We argue that such tasks will allow us to better characterize numerous cognitive and mnemonic features of the zebrafish, including elemental as well as configural learning and memory, which will, in turn, also enhance our ability to study neurobiological mechanisms underlying learning and memory using this model organism.
Collapse
Affiliation(s)
- Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
- Institute of Neuroscience and Physiology, Department of Neurochemistry and Psychiatry, University of Gothenburg, Su Sahlgrenska, 41345, Göteborg, Sweden.
| | - Zahra Siddiqi
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Sadia Naim
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Tulip Marawi
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
12
|
Clevenger T, Paz J, Stafford A, Amos D, Hayes AW. An Evaluation of Zebrafish, an Emerging Model Analyzing the Effects of Toxicants on Cognitive and Neuromuscular Function. Int J Toxicol 2024; 43:46-62. [PMID: 37903286 DOI: 10.1177/10915818231207966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.
Collapse
Affiliation(s)
| | - Jakob Paz
- Florida College, Temple Terrace, FL, USA
| | | | | | - A Wallace Hayes
- College of Public Health, University of South Florida, Temple Terrace, FL, USA
| |
Collapse
|
13
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
14
|
Moreira ALP, Paiva WS, de Souza AM, Pereira MCG, Rocha HAO, de Medeiros SRB, Luchiari AC. Benzophenone-3 causes oxidative stress in the brain and impairs aversive memory in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104164. [PMID: 37245610 DOI: 10.1016/j.etap.2023.104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 μg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Maria Clara Galvão Pereira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
15
|
Nabinger DD, Altenhofen S, Buatois A, Facciol A, Peixoto JV, da Silva JMK, Chatterjee D, Rübensam G, Gerlai R, Bonan CD. Acute administration of a dopamine D2/D3 receptor agonist alters behavioral and neural parameters in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110753. [PMID: 36934998 DOI: 10.1016/j.pnpbp.2023.110753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
The dopaminergic neurotransmitter system is implicated in several brain functions and behavioral processes. Alterations in it are associated with the pathogenesis of several human neurological disorders. Pharmacological agents that interact with the dopaminergic system allow the investigation of dopamine-mediated cellular and molecular responses and may elucidate the biological bases of such disorders. Zebrafish, a translationally relevant biomedical research organism, has been successfully employed in prior psychopharmacology studies. Here, we evaluated the effects of quinpirole (dopamine D2/D3 receptor agonist) in adult zebrafish on behavioral parameters, brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Zebrafish received intraperitoneal injections of 0.5, 1.0, or 2.0 mg/kg quinpirole or saline (control group) twice with an inter-injection interval of 48 h. All tests were performed 24 h after the second injection. After this acute quinpirole administration, zebrafish exhibited decreased locomotor activity, increased anxiety-like behaviors and memory impairment. However, quinpirole did not affect social and aggressive behavior. Quinpirole-treated fish exhibited stereotypic swimming, characterized by repetitive behavior followed by immobile episodes. Moreover, quinpirole treatment also decreased the number of BDNF-immunoreactive cells in the zebrafish brain. Analysis of neurotransmitter levels demonstrated a significant increase in glutamate and a decrease in serotonin, while no alterations were observed in dopamine. These findings demonstrate that dopaminergic signaling altered by quinpirole administration results in significant behavioral and neuroplastic changes in the central nervous system of zebrafish. Thus, we conclude that the use of quinpirole administration in adult zebrafish may be an appropriate tool for the analysis of mechanisms underlying neurological disorders related to the dopaminergic system.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Julia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gabriel Rübensam
- Centro de Pesquisa em Toxicologia e Farmacologia (INTOX), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Reemst K, Shahin H, Shahar OD. Learning and memory formation in zebrafish: Protein dynamics and molecular tools. Front Cell Dev Biol 2023; 11:1120984. [PMID: 36968211 PMCID: PMC10034119 DOI: 10.3389/fcell.2023.1120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Research on learning and memory formation at the level of neural networks, as well as at the molecular level, is challenging due to the immense complexity of the brain. The zebrafish as a genetically tractable model organism can overcome many of the current challenges of studying molecular mechanisms of learning and memory formation. Zebrafish have a translucent, smaller and more accessible brain than that of mammals, allowing imaging of the entire brain during behavioral manipulations. Recent years have seen an extensive increase in published brain research describing the use of zebrafish for the study of learning and memory. Nevertheless, due to the complexity of the brain comprising many neural cell types that are difficult to isolate, it has been difficult to elucidate neural networks and molecular mechanisms involved in memory formation in an unbiased manner, even in zebrafish larvae. Therefore, data regarding the identity, location, and intensity of nascent proteins during memory formation is still sparse and our understanding of the molecular networks remains limited, indicating a need for new techniques. Here, we review recent progress in establishing learning paradigms for zebrafish and the development of methods to elucidate neural and molecular networks of learning. We describe various types of learning and highlight directions for future studies, focusing on molecular mechanisms of long-term memory formation and promising state-of-the-art techniques such as cell-type-specific metabolic labeling.
Collapse
Affiliation(s)
- Kitty Reemst
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Heba Shahin
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Or David Shahar
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
- *Correspondence: Or David Shahar,
| |
Collapse
|
17
|
Xu H, Tang X, Chen J, Shi Y, Liu J, Han C, Zhu X, Zhang T, Zhou J, Miao W. Development and optimization of an effective method for evaluating habituation learning behavior in larval zebrafish. J Neurosci Methods 2023; 386:109793. [PMID: 36640926 DOI: 10.1016/j.jneumeth.2023.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Habituation learning is a simple and conserved behavior in all organisms which could be induced by repeated stimuli. However, no standard and universal methods for training and evaluating the habituation learning behavior in larval zebrafish were available. NEW METHOD This study aims to establish effective training and detection protocols for habituation learning behavior in larval zebrafish by using the ViewPoint system. For this purpose, the detection threshold of velocity-a parameter for distinguishing the escape reaction and the spontaneous motion, the detection sensitivity-a parameter for determining the size of the identified object, the number of stimuli, and the age of larvae were optimized to obtain the best performance. RESULTS In this study, the optimized parameters were as follows: the detection threshold of velocity at 13, the luminous intensity at 8 %, the detection sensitivity at 32, the number of stimuli at 150, and the age of larvae at 6 dpf. Furthermore, we validated the utility of the established protocol by showing a consistent memory impairment induced by cycloheximide (CHX). COMPARISON WITH EXISTING METHOD A similar method was reported previously. However, the equipment used in those assays, including the hardware and software, were neither standard nor universal, which might impede the extensive application of the habituation learning assays. Here, we developed an alternative method for studying the habituation learning behavior in larval zebrafish using the ViewPoint system. CONCLUSIONS Our study provided an alternative method for studying the habituation learning behavior in larval zebrafish.
Collapse
Affiliation(s)
- Huifang Xu
- Otolaryngology Department, Zhejiang Provincial Hospital of Traditional Chinese Medical, Hangzhou, China
| | - Xuxia Tang
- Otolaryngology Department, Zhejiang Provincial Hospital of Traditional Chinese Medical, Hangzhou, China
| | - Jingjing Chen
- Otolaryngology Department, Zhejiang Provincial Hospital of Traditional Chinese Medical, Hangzhou, China
| | - Ya Shi
- Otolaryngology Department, Zhejiang Provincial Hospital of Traditional Chinese Medical, Hangzhou, China
| | - Jun Liu
- Otolaryngology Department, Zhejiang Provincial Hospital of Traditional Chinese Medical, Hangzhou, China
| | - Cheng Han
- Hunter Biotechnology, Hangzhou, China
| | | | - Tao Zhang
- Hunter Biotechnology, Hangzhou, China
| | - Jinghe Zhou
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenyu Miao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China; Hunter Biotechnology, Hangzhou, China.
| |
Collapse
|
18
|
Bertoncello KT, Bonan CD. The Effect of Adenosine Signaling on Memory Impairment Induced by Pentylenetetrazole in Zebrafish. Neurochem Res 2023; 48:1889-1899. [PMID: 36729312 DOI: 10.1007/s11064-023-03867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Epilepsy is characterized by the manifestation of spontaneous and recurrent seizures. The high prevalence of comorbidities associated with epilepsy, such as cognitive dysfunction, affects the patients quality of life. Adenosine signaling modulation might be an effective alternative to control seizures and epilepsy-associated comorbidities. This study aimed to verify the role of adenosine modulation on the seizure development and cognitive impairment induced by pentylenetetrazole (PTZ) in zebrafish. At first, animals were submitted to a training session in the inhibitory avoidance test and, after 10 min, they received an intraperitoneal injection of valproate, adenosine A1 receptor agonist cyclopentyladenosine (CPA), adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), adenosine A2A receptor antagonist ZM 241385, adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nony1)-adenine hydrochloride (EHNA) or the nucleoside transporter inhibitor dipyridamole. Thirty min after the intraperitoneal injection, the animals were exposed to 7.5 mM PTZ for 10 min, where they were evaluated for latency to reach the seizure stages (I, II, and III). Finally, 24 h after the training session, the animals were submitted to the inhibitory avoidance test to verify their cognitive performance during the test session. Valproate, CPA, and EHNA showed antiseizure effects and prevented the memory impairment induced by PTZ exposure. DPCPX, ZM 241385, and dipyridamole pretreatments caused no changes in seizure development; however, these drugs prevented memory impairment without altering locomotion. Our results reinforce the antiseizure effects of adenosine signaling and support the idea that the involvement of adenosine in memory processes may be a target for preventive strategies against cognitive impairment associated with epilepsy.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Wiprich MT, Altenhofen S, Gusso D, Vasques RDR, Zanandrea R, Kist LW, Bogo MR, Bonan CD. Modulation of adenosine signaling reverses 3-nitropropionic acid-induced bradykinesia and memory impairment in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110602. [PMID: 35843370 DOI: 10.1016/j.pnpbp.2022.110602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, characterized by motor dysfunction, psychiatric disturbance, and cognitive decline. In the early stage of HD, occurs a decrease in dopamine D2 receptors and adenosine A2A receptors (A2AR), while in the late stage also occurs a decrease in dopamine D1 receptors and adenosine A1 receptors (A1R). Adenosine exhibits neuromodulatory and neuroprotective effects in the brain and is involved in motor control and memory function. 3-Nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce HD behavioral phenotypes and biochemical characteristics. This study investigated the effects of acute exposure to CPA (A1R agonist), CGS 21680 (A2AR agonist), caffeine (non-selective of A1R and A2AR antagonist), ZM 241385 (A2AR antagonist), DPCPX (A1R antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in an HD pharmacological model induced by 3-NPA in adult zebrafish. CPA, CGS 21680, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered via i.p. in zebrafish after 3-NPA (at dose 60 mg/kg) chronic treatment. Caffeine and ZM 241385 reversed the bradykinesia induced by 3-NPA, while CGS 21680 potentiated the bradykinesia caused by 3-NPA. Moreover, CPA, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA reversed the 3-NPA-induced memory impairment. Together, these data support the hypothesis that A2AR antagonists have an essential role in modulating locomotor function, whereas the activation of A1R and blockade of A2AR and A1R and modulation of adenosine levels may reduce the memory impairment, which could be a potential pharmacological strategy against late-stage symptoms HD.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Rafaela da Rosa Vasques
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Magnus G, Xing J, Zhang Y, Han VZ. Diversity of cellular physiology and morphology of Purkinje cells in the adult zebrafish cerebellum. J Comp Neurol 2022; 531:461-485. [PMID: 36453181 DOI: 10.1002/cne.25435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 12/04/2022]
Abstract
This study was designed to explore the functional circuitry of the adult zebrafish cerebellum, focusing on its Purkinje cells and using whole-cell patch recordings and single cell labeling in slice preparations. Following physiological characterizations, the recorded single cells were labeled for morphological identification. It was found that the zebrafish Purkinje cells are surprisingly diverse. Based on their physiology and morphology, they can be classified into at least three subtypes: Type I, a narrow spike cell, which fires only narrow Na+ spikes (<3 ms in duration), and has a single primary dendrite with an arbor restricted to the distal molecular layer; Type II, a broad spike cell, which fires broad Ca2+ spikes (5-7 ms in duration) and has a primary dendrite with limited branching in the inner molecular layer and then further radiates throughout the molecular layer; and Type III, a very broad spike cell, which fires very broad Ca2+ spikes (≥10 ms in duration) and has a dense proximal dendritic arbor that is either restricted to the inner molecular layer (Type IIIa), or radiates throughout the entire molecular layer (Type IIIb). The graded paired-pulse facilitation of these Purkinje cells' responses to parallel fiber activations and the all-or-none, paired-pulse depression of climbing fiber activation are largely similar to those reported for mammals. The labeled axon terminals of these Purkinje cells end locally, as reported for larval zebrafish. The present study provides evidence that the corresponding functional circuitry and information processing differ from what has been well-established in the mammalian cerebellum.
Collapse
Affiliation(s)
- Gerhard Magnus
- Department of Biology University of Washington Seattle Washington USA
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
| | - Junling Xing
- Department of Pediatrics and Neuroscience Xijing Hospital Xi'an China
| | - Yueping Zhang
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
- Department of Pediatrics and Neuroscience Xijing Hospital Xi'an China
| | - Victor Z. Han
- Department of Biology University of Washington Seattle Washington USA
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
| |
Collapse
|
21
|
Tan JK, Nazar FH, Makpol S, Teoh SL. Zebrafish: A Pharmacological Model for Learning and Memory Research. Molecules 2022; 27:7374. [PMID: 36364200 PMCID: PMC9657833 DOI: 10.3390/molecules27217374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/25/2023] Open
Abstract
Learning and memory are essential to organism survival and are conserved across various species, especially vertebrates. Cognitive studies involving learning and memory require using appropriate model organisms to translate relevant findings to humans. Zebrafish are becoming increasingly popular as one of the animal models for neurodegenerative diseases due to their low maintenance cost, prolific nature and amenability to genetic manipulation. More importantly, zebrafish exhibit a repertoire of neurobehaviors comparable to humans. In this review, we discuss the forms of learning and memory abilities in zebrafish and the tests used to evaluate the neurobehaviors in this species. In addition, the pharmacological studies that used zebrafish as models to screen for the effects of neuroprotective and neurotoxic compounds on cognitive performance will be summarized here. Lastly, we discuss the challenges and perspectives in establishing zebrafish as a robust model for cognitive research involving learning and memory. Zebrafish are becoming an indispensable model in learning and memory research for screening neuroprotective agents against cognitive impairment.
Collapse
Affiliation(s)
- Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Faris Hazwan Nazar
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Precise timing of ERK phosphorylation/dephosphorylation determines the outcome of trial repetition during long-term memory formation. Proc Natl Acad Sci U S A 2022; 119:e2210478119. [PMID: 36161885 DOI: 10.1073/pnas.2210478119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-trial learning in Aplysia reveals nonlinear interactions between training trials: A single trial has no effect, but two precisely spaced trials induce long-term memory. Extracellularly regulated kinase (ERK) activity is essential for intertrial interactions, but the mechanism remains unresolved. A combination of immunochemical and optogenetic tools reveals unexpected complexity of ERK signaling during the induction of long-term synaptic facilitation by two spaced pulses of serotonin (5-hydroxytryptamine, 5HT). Specifically, dual ERK phosphorylation at its activating TxY motif is accompanied by dephosphorylation at the pT position, leading to a buildup of inactive, singly phosphorylated pY-ERK. Phosphorylation and dephosphorylation occur concurrently but scale differently with varying 5HT concentrations, predicting that mixed two-trial protocols involving both "strong" and "weak" 5HT pulses should be sensitive to the precise order and timing of trials. Indeed, long-term synaptic facilitation is induced only when weak pulses precede strong, not vice versa. This may represent a physiological mechanism to prioritize memory of escalating threats.
Collapse
|
23
|
Physical exercise prevents behavioral alterations in a reserpine-treated zebrafish: A putative depression model. Pharmacol Biochem Behav 2022; 220:173455. [PMID: 36063969 DOI: 10.1016/j.pbb.2022.173455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
Abstract
Major depressive disorder (MDD) has increasingly reached the world population with an expressive increase in recent years due to the COVID-19 pandemic. Here we used adult zebrafish (Danio rerio) as a model to verify the effects of reserpine on behavior and neurotransmitter levels. We observed an increase in the immobile time and time spent in the bottom zone of the tank in reserpine-exposed animals. The results demonstrated a decrease in distance traveled and velocity. Reserpine exposure did not induce changes in memory and social interaction compared to the control group. We also evaluated the influence of exposure to fluoxetine, a well-known antidepressant, on the behavior of reserpine-exposed animals. We observed a reversal of behavioral alterations caused by reserpine. To verify whether behavioral alterations in the putative depression model induced by reserpine could be prevented, the animals were subjected to physical exercise for 6 weeks. The results showed a protective effect of the physical exercise against the behavioral changes caused by reserpine in zebrafish. In addition, we observed a reduction in dopamine and serotonin levels and an increase in the 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the brain. Physical exercise was able to prevent the changes in dopamine and serotonin levels, reinforcing that the preventive effect promoted by physical exercise is related to the modulation of neurotransmitter levels. Our findings showed that reserpine was effective in the induction of a putative depression model in zebrafish and that physical exercise may be an alternative to prevent the effects induced by reserpine.
Collapse
|
24
|
Bertoncello KT, Zanandrea R, Bonan CD. Pentylenetetrazole-induced seizures cause impairment of memory acquisition and consolidation in zebrafish (Danio rerio). Behav Brain Res 2022; 432:113974. [PMID: 35738339 DOI: 10.1016/j.bbr.2022.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Epilepsy is characterized by the occurrence seizures, and the high prevalence of epilepsy-associated comorbidities affects the quality of patients' life. We investigated the effects of pentylenetetrazole (PTZ) exposure in zebrafish cognitive performance on inhibitory avoidance test. The animals were exposed to the 7.5mM PTZ for 10minutes, in the acquisition (before training) and in the consolidation memory phases (after training). In the acquisition phase, the animals were submitted to PTZ-induced seizures and trained in periods of 1, 24, or 48hours after exposure, and 24hours after training were tested. In the consolidation phase, animals were trained and exposed to PTZ 10minutes after training and were tested 24hours later. Control groups in periods of 1, 24, or 48hours before or 10minutes after training showed a significantly increased latency to enter the dark compartment. The latencies between training and test sessions did not differ in PTZ groups of animals exposed and trained 1 and 24hours or exposed to PTZ 10minutes after training. At 48hours, animals exposed to PTZ showed an increased latency to enter the dark compartment. Animals exposed to PTZ and trained 1h after increased the traveled distance, when compared to the control group. Traveled distance did not differ in animals that were exposed to PTZ and trained 24 and 48hours, or 10minutes after training. Our findings indicate that PTZ causes a cognitive deficit in the pre-and post-training phase, allowing us to explore the influence of seizures at different memory phases.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Canzian J, Gonçalves FLS, Müller TE, Franscescon F, Santos LW, Adedara IA, Rosemberg DB. Zebrafish as a potential non-traditional model organism in translational bipolar disorder research: Genetic and behavioral insights. Neurosci Biobehav Rev 2022; 136:104620. [PMID: 35300991 DOI: 10.1016/j.neubiorev.2022.104620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
Bipolar disorder (BD) is a severe and debilitating illness that affects 1-2% of the population worldwide. BD is characterized by recurrent and extreme mood swings, including mania/hypomania and depression. Animal experimental models have been used to elucidate the mechanisms underlying BD and different strategies have been proposed to assess BD-like symptoms. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the genetic tractability, molecular/physiological conservation, and well-characterized behavioral responses. In this review, we discuss how zebrafish-based models can be successfully used to understand molecular, biochemical, and behavioral alterations paralleling those found in BD. We also outline some advantages and limitations of this aquatic species to examine BD-like phenotypes in translational neurobehavioral research. Overall, we reinforce the use of zebrafish as a promising tool to investigate the neural basis associated with BD-like behaviors, which may foster the discovery of novel pharmacological therapies.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L S Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
26
|
Michelotti P, Franscescon F, Müller TE, Rosemberg DB, Pereira ME. Ketamine acutely impairs memory consolidation and repeated exposure promotes stereotyped behavior without changing anxiety- and aggression-like parameters in adult zebrafish. Physiol Behav 2022; 247:113708. [DOI: 10.1016/j.physbeh.2022.113708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/21/2023]
|
27
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
28
|
Amyloid-β 42 oligomeric forms: AFM nanoscale structural characterization and impact on long-term memory of young and aged zebrafish. Neuroscience 2022; 497:271-281. [PMID: 35272003 DOI: 10.1016/j.neuroscience.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022]
Abstract
The contribution of amyloid-β (Aβ) soluble forms to Alzheimer's Disease (AD) is undergoing revision and the characterization of monomeric, oligomeric and protofibrillar Aβ forms used in vivo to model AD is a critical step to ensure data interpretation. Atomic force microscopy (AFM) was used to characterize the nanoscale morphology of different Aβ42 forms also used for cerebroventricular injection (cvi) in young (6mo) and aged (36mo) adult zebrafish behavioral and cognitive tests. On the AFM, monomeric solution deposited onto mica resulted mostly in thin filamentous structures and shorter monomeric agglomerates with heights around or below 1.5 nm, as expected for single Aβ42. The oligomeric form was dominated by particles with globular morphology and a few short aggregates around 1 nm high and 8-12 nm long. The protofibrillar form had micrometer-long twisted fibrils of varying diameters (4.5 to 10nm) and large entangled clusters with sizes of up to several tens of micrometers. On the Open Tank used to test exploratory parameters, no differences were observed between injected animals and their age-matched controls, except for a reduced distance travelled by aged individuals that received the Aβ42 oligomeric form. Long-term memory (LTM) for the inhibitory avoidance task was not influenced by monomers cvi, whilst oligomeric and fibrillar Aβ42 hindered LTM formation in young and aged groups. Our findings support current views of deleterious effects of Aβ42 soluble forms on cognition and ensures that preparations were structurally unique and within expected morphologies and dimensions.
Collapse
|
29
|
Pusceddu MM, Hernandez-Baixauli J, Puiggrós F, Arola L, Caimari A, Del Bas JM, Baselga L. Mediterranean natural extracts improved cognitive behavior in zebrafish and healthy rats and ameliorated lps-induced cognitive impairment in a sex dependent manner. Behav Brain Funct 2022; 18:5. [PMID: 35216588 PMCID: PMC8876132 DOI: 10.1186/s12993-022-00190-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/12/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Several findings suggest neuroinflammation as a contributing factor for the onset of psychiatric disorders such as Alzheimer's disease, depression, and anxiety. There is increasing evidence pointing out that the Mediterranean diet influences brain and behavior. Mediterranean herbs and spices have been shown to be within those components of the Mediterranean diet involved in cognitive enhancement. Thus, we investigated the influence of Mediterranean natural extracts (MNE), Rosemary extract (RE) and Glycyrrhiza glabra root extract (GGRE), on cognitive behavior. RESULTS Adult zebrafish were exposed to RE or GGRE (100 and 250 mg/L) treatments. Both MNE improved memory retention during the T-maze test, although no improvements were observed during the novel object preference. Similarly, chronic administration of RE (150 mg/Kg) and GGRE (150 mg/Kg) improved, respectively, spatial and retention memory, as assessed by the Morris Water Maze (MWM), and the Elevated Plus Maze (EPM) in healthy male rats. However, no improvements were observed during the novel object recognition. Finally, male, and female rats were chronically treated with lipopolysaccharide [(LPS) 300 ug/kg] and orally administered with RE. Interestingly, RE reversed LPS-induced cognitive deficit during the MWM and EPM in female rats. CONCLUSIONS We found that MNE improved cognition in both zebrafish and rats. Moreover, MNE rescued LPS-induced cognitive impairment in a gender-specific manner. Therefore, our study supports the view that zebrafish represent a valuable preclinical model for drug discovery in neuroscience. These findings contribute to an exciting and growing body of research suggesting that MNE may play an important role in the prevention of cognitive impairment.
Collapse
Affiliation(s)
- Matteo M Pusceddu
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició I Salut, Reus, Spain.
| | | | - Francesc Puiggrós
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició I Salut, Reus, Spain
| | - Lluis Arola
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició I Salut, Reus, Spain.,Departament de Bioquímica I Biotecnologia, Grup de Recerca en Nutrigenòmica, Universitat Rovira I Virgili, Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició I Salut, Reus, Spain.
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició I Salut, Reus, Spain.
| | - Laura Baselga
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició I Salut, Reus, Spain
| |
Collapse
|
30
|
Petersen BD, Bertoncello KT, Bonan CD. Standardizing Zebrafish Behavioral Paradigms Across Life Stages: An Effort Towards Translational Pharmacology. Front Pharmacol 2022; 13:833227. [PMID: 35126165 PMCID: PMC8810815 DOI: 10.3389/fphar.2022.833227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is a prominent vertebrate model, with many of its advantages related to its development, life cycle, and translational ability. While a great number of behavioral phenotypes and tasks to evaluate them are available, longitudinal studies across zebrafish life stages are scarce and made challenging because of the differences between protocols and endpoints assessed at each life stage. In this mini review, we highlight the relevance that longitudinal studies could have for neurobehavioral pharmacology using this model. We also present possible strategies to standardize behavior endpoints in domains related to human diseases throughout the life cycle, especially between larvae and adult fish. Furthermore, we discuss the remaining difficulties of these analyses and explore future advances needed to bridge this knowledge gap.
Collapse
Affiliation(s)
- Barbara Dutra Petersen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Carla Denise Bonan,
| |
Collapse
|
31
|
Araújo JRC, Campos AR, Ferreira MKA, Santos SAAR, de Barros Mamede Vidal Damasceno M, Magalhães FEA, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Dioclea Altissima Seed Lectin (DAL) Prevents Anxiety-like Behavioral Responses in Adult Zebrafish (Danio Rerio): Involvement of GABAergic and 5-HT Systems. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:95-103. [PMID: 33583388 DOI: 10.2174/1871527320666210212112651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant lectins have shown promising neuropharmacological activities in animal models. OBJECTIVE This study evaluated the effect of Dioclea altissima seed lectin (DAL) on adult zebrafish behavior. METHOD Zebrafish (n=6/group) were treated (i.p.; 20 μL) with DAL (0.025; 0.05 or 0.1 mg/mL), vehicle or diazepam (DZP) and submitted to several tests (open field, light/dark preference or novel tank). Flumazenil, pizotifen or granisetron were administered 15 min before DAL (0.05 mg/mL), and the animals were evaluated on light/dark preference test. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates. RESULTS DAL decreased the locomotor activity of adult zebrafish (0.025; 0.05 or 0.1 mg/mL), increased the time spent in the upper region of the aquarium (0.025 mg/mL), and decreased the latency time of adult zebrafish to enter the upper region on the novel tank test. DAL (0.05 mg/mL) also increased their permanence in the light zone of the light/dark preference test. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and was prevented by pizotifen, granizetron and flumazenil. CONCLUSION DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors.
Collapse
Affiliation(s)
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceará,Brazil
| | | | | | | | - Francisco Ernani Alves Magalhães
- Laboratory of Natural Products Chemistry, Synthesis and Biocatalysis of Organic Compounds (LBPNSB), State University of Vale do Acaraú, Betânia Campus, Sobral, Ceará,Brazil
| | | | | |
Collapse
|
32
|
Free and nanoencapsulated curcumin prevents scopolamine-induced cognitive impairment in adult zebrafish. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Dogra N, Nagpal D, Aeri V, Ahmad S, Pande Katare D. Evaluating the synergistic effect of Mucuna prurines extract and sesame oil against the Parkinson’s disease zebrafish model: in-vivo/in-silico approach. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1994472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Nitu Dogra
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Dheeraj Nagpal
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Vidhu Aeri
- Depatment of Pharmacognosy & Phytochemistry, Jamia Hamdard, New Delhi, India
| | - Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Deepshikha Pande Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
34
|
Nabinger DD, Altenhofen S, Peixoto JV, da Silva JMK, Bonan CD. Long-lasting behavioral effects of quinpirole exposure on zebrafish. Neurotoxicol Teratol 2021; 88:107034. [PMID: 34600099 DOI: 10.1016/j.ntt.2021.107034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 01/11/2023]
Abstract
The human brain matures into a complex structure, and to reach its complete development, connections must occur along exact paths. If at any stage, the processes are altered, interrupted, or inhibited, the consequences can be permanent. Dopaminergic signaling participates in the control of physiological functions and behavioral processes, and alterations in this signaling pathway are related to the pathogenesis of several neurological disorders. For this reason, the use of pharmacological agents able to interact with the dopaminergic signaling may elucidate the biological bases of such disorders. We investigated the long-lasting behavioral effects on adult zebrafish after quinpirole (a dopamine D2/D3 receptor agonist) exposure during early life stages of development (24 h exposure at 5 days post-fertilization, dpf) to better understand the mechanisms underlying neurological disorders related to the dopaminergic system. Quinpirole exposure at the early life stages of zebrafish led to late behavioral alterations. When evaluated at 120 dpf, zebrafish presented increased anxiety-like behaviors. At the open tank test, fish remained longer at the bottom of the tank, indicating anxiety-like behavior. Furthermore, quinpirole-treated fish exhibited increased absolute turn angle, likely an indication of elevated erratic movements and a sign of increased fear or anxiety. Quinpirole-treated fish also showed altered swimming patterns, characterized by stereotypic swimming. During the open tank test, exposed zebrafish swims from corner to corner in a repetitive manner at the bottom of the tank. Moreover, quinpirole exposure led to memory impairment compared to control fish. However, quinpirole administration had no effects on social and aggressive behavior. These findings demonstrate that dopaminergic signaling altered by quinpirole administration in the early life stages of development led to late alterations in behavioral parameters of adult zebrafish.
Collapse
Affiliation(s)
- Debora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Short-term high-fat diet induces cognitive decline, aggression, and anxiety-like behavior in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110288. [PMID: 33626334 DOI: 10.1016/j.pnpbp.2021.110288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Obesity is a global health problem with high prevalence and defined by a high body mass index (BMI). Several comorbidities affecting the central nervous system (CNS) are associated with obesity (e.g., neurodegenerative diseases, cognitive deficit, and psychobehavioral disturbs). The zebrafish (Danio rerio) has been considered a suitable model organism to investigate the neurobehavioral features of various human diseases. Here, we verify the impact of a high-fat diet (HFD) on the CNS by specifically assessing the effects of short-term HFD on anxiety-like responses, aggression, social preference, and memory, which are essential behaviors for survival and reproduction. Animals were separated in three experimental groups. The standard diet group (SD) received 7.5 mg/fish of dry food, while HFD groups received 5 mg/fish dry food plus 7.5 (HFD-7.5) or 15 mg/fish (HFD-15) of chicken egg yolk daily. Dietary fat content (w/w) was approximately 6.5%, 16.9%, and 21.1%, respectively. We performed behavioral tests and morphometric analyses after two weeks of HFD. In comparison to SD animals, HFD groups showed typical obesogenic responses with increases in BMI, abdominal length, and body weight. HFD individuals also showed increased aggression and anxiety-like behaviors in the mirror-induced aggression and novel tank diving tests, respectively. Interestingly, HFD did not change the social preference behavior, mean swimming speed or spontaneous activity levels, while the HFD-15 group showed cognitive deficits in the inhibitory avoidance test. Collectively, this "proof-of-concept" study is the first report to characterize the effects of short-term HFD on different behavioral domains of zebrafish with high degree of face validity. Moreover, our data reinforce the growing utility of zebrafish to explore the neurobehavioral basis of obesity, providing clinically translatable data, complementing the existing rodent models and supporting future mechanistic studies.
Collapse
|
36
|
Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari AC. Embryonic Exposure to Ethanol Increases Anxiety-Like Behavior in Fry Zebrafish. Alcohol Alcohol 2021; 55:581-590. [PMID: 32886092 DOI: 10.1093/alcalc/agaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol (Eth) exposure during embryonic development, including several conditions from malformation to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain disorders and drug screening studies due to its genetic and physiology homology to humans added to its transparent eggs and fast development. In this study, we investigated how early ethanol exposure affects zebrafish behavior during the initial growth phase. METHODS Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization. Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance protocol to inquire about morphology and behavioral alterations. RESULTS Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morphological malformations and did not impair associative learning but increased anxiety-like behavior responses and lower exploratory behavior when compared to the control. CONCLUSION Our results demonstrate that one can detect behavioral abnormalities in the zebrafish induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases anxious behavior during young development in zebrafish.
Collapse
Affiliation(s)
| | - Thais Agues-Barbosa
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| |
Collapse
|
37
|
Goi LDS, Altenhofen S, Nabinger DD, Bonan CD, Sato DK. Decreased convulsive threshold and memory loss after anti-NMDAR positive CSF injection in zebrafish. J Neuroimmunol 2021; 359:577689. [PMID: 34384966 DOI: 10.1016/j.jneuroim.2021.577689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis initially promotes memory deficits, behavioral changes, and epileptic seizures. We developed a new animal model of anti-NMDAR encephalitis using a single cerebroventricular injection of CSF from patients in adult zebrafish. We observed a reduction of the seizure threshold and recent memory deficits in those animals injected with CSF from patients with anti-NMDAR encephalitis. The locomotor activity was similar in the CSF and control groups. This zebrafish model consistently recapitulates symptoms seen in patients with anti-NMDAR encephalitis. It may provide a reliable, fast and cost-effective platform to investigate new therapeutic strategies to anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Leise D S Goi
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- School of Sciences, Graduate Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Debora D Nabinger
- School of Sciences, Graduate Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carla D Bonan
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; School of Sciences, Graduate Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Douglas K Sato
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Zanandrea R, Wiprich MT, Altenhofen S, Rubensam G, Dos Santos TM, Wyse ATS, Bonan CD. Paternal exposure to excessive methionine altered behavior and neurochemical activities in zebrafish offspring. Amino Acids 2021; 53:1153-1167. [PMID: 34156542 DOI: 10.1007/s00726-021-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
An increase in plasma L-methionine (Met) levels, even if transitory, can cause important toxicological alterations in the affected individuals. Met is essential in the regulation of epigenetic mechanisms and its influence on the subsequent generation has been investigated. However, few studies have explored the influence of a temporary increase in Met levels in parents on their offspring. This study evaluated the behavioral and neurochemical effects of parental exposure to high Met concentration (3 mM) in zebrafish offspring. Adult zebrafish were exposed to Met for 7 days, maintained for additional 7 days in tanks that contained only water, and then used for breeding. The offspring obtained from these fish (F1) were tested in this study. During the early stages of offspring development, morphology, heart rate, survival, locomotion, and anxiety-like behavior were assessed. When these animals reached the adult stage, locomotion, anxiety, aggression, social interaction, memory, oxidative stress, and levels of amino acids and neurotransmitters were analyzed. F1 larvae Met group presented an increase in the distance and mean speed when compared to the control group. F1 adult Met group showed decreased anxiety-like behavior and locomotion. An increase in reactive oxygen species was also observed in the F1 adult Met group whereas lipid peroxidation and antioxidant enzymes did not change when compared to the control group. Dopamine, serotonin, glutamate, and glutathione levels were increased in the F1 adult Met group. Taken together, our data show that even a transient increase in Met in parents can cause behavioral and neurochemical changes in the offspring, promoting transgenerational effects.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Gabriel Rubensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Benvenutti R, Marcon M, Gallas-Lopes M, de Mello AJ, Herrmann AP, Piato A. Swimming in the maze: An overview of maze apparatuses and protocols to assess zebrafish behavior. Neurosci Biobehav Rev 2021; 127:761-778. [PMID: 34087275 DOI: 10.1016/j.neubiorev.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 12/09/2022]
Abstract
Most preclinical behavioral assays use rodents as model animals, leaving room for species-specific biases that could be avoided by an expanded cross-species approach. In this context, zebrafish emerges as an alternative model organism to study neurobiological mechanisms of anxiety, preference, learning, and memory, as well as other phenotypes with relevance to neuropsychiatric disorders. In recent years, several zebrafish studies using different types of mazes have been published. However, the protocols and apparatuses' shapes and dimensions vary widely in the literature. This variation may puzzle researchers attempting to implement maze behavioral assays and challenges the reproducibility across institutions. This review aims to provide an overview of the behavioral paradigms assessed in different types of mazes in zebrafish reported in the last couple of decades. Also, this review aims to contribute to a better characterization of multi-behavioral assessment in zebrafish.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Marcon
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Anna Julie de Mello
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
40
|
Razali K, Othman N, Mohd Nasir MH, Doolaanea AA, Kumar J, Ibrahim WN, Mohamed Ibrahim N, Mohamed WMY. The Promise of the Zebrafish Model for Parkinson's Disease: Today's Science and Tomorrow's Treatment. Front Genet 2021; 12:655550. [PMID: 33936174 PMCID: PMC8082503 DOI: 10.3389/fgene.2021.655550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
The second most prevalent neurodegenerative disorder in the elderly is Parkinson's disease (PD). Its etiology is unclear and there are no available disease-modifying medicines. Therefore, more evidence is required concerning its pathogenesis. The use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is the basis of most animal models of PD. MPTP is metabolized by monoamine oxidase B (MAO B) to MPP + and induces the loss of dopaminergic neurons in the substantia nigra in mammals. Zebrafish have been commonly used in developmental biology as a model organism, but owing to its perfect mix of properties, it is now emerging as a model for human diseases. Zebrafish (Danio rerio) are cheap and easy to sustain, evolve rapidly, breed transparent embryos in large amounts, and are readily manipulated by different methods, particularly genetic ones. Furthermore, zebrafish are vertebrate species and mammalian findings obtained from zebrafish may be more applicable than those derived from genetic models of invertebrates such as Drosophila melanogaster and Caenorhabditis elegans. The resemblance cannot be taken for granted, however. The goal of the present review article is to highlight the promise of zebrafish as a PD animal model. As its aminergic structures, MPTP mode of action, and PINK1 roles mimic those of mammalians, zebrafish seems to be a viable model for studying PD. The roles of zebrafish MAO, however, vary from those of the two types of MAO present in mammals. The benefits unique to zebrafish, such as the ability to perform large-scale genetic or drug screens, should be exploited in future experiments utilizing zebrafish PD models.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | | | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| |
Collapse
|
41
|
Petersen BD, Pereira TCB, Altenhofen S, Nabinger DD, Ferreira PMDA, Bogo MR, Bonan CD. Antibiotic drugs alter zebrafish behavior. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108936. [PMID: 33160041 DOI: 10.1016/j.cbpc.2020.108936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Antibiotics are widely used drugs in human and veterinary health as well as in the food industry. The majority of these compounds are, however, excreted unchanged and found as contaminants in water bodies. Although the toxicity of these drugs was previously studied in aquatic organisms, the behavioral effects of these pollutants have not been fully explored. Here we exposed adult zebrafish to environmentally relevant concentrations of different classes of antibiotics (Chlortetracycline, Ciprofloxacin, and Ceftazidime) and assessed zebrafish exploratory, cognitive, aggressive, and social behaviors. Ciprofloxacin, Chlortetracycline, and Ceftazidime exposure induced hyperlocomotion, which was characterized by an increase in the distance traveled in zebrafish. These antibiotics promoted cognitive decline and exacerbated aggressive behavior. In summary, this study shows that antibiotic contamination may impact zebrafish behavior in a short-time manner.
Collapse
Affiliation(s)
- Barbara Dutra Petersen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Maria de Abreu Ferreira
- Laboratório de Ecologia de Interações, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Cleal M, Fontana BD, Ranson DC, McBride SD, Swinny JD, Redhead ES, Parker MO. The Free-movement pattern Y-maze: A cross-species measure of working memory and executive function. Behav Res Methods 2021; 53:536-557. [PMID: 32748238 PMCID: PMC8062322 DOI: 10.3758/s13428-020-01452-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous neurodegenerative and psychiatric disorders are associated with deficits in executive functions such as working memory and cognitive flexibility. Progress in developing effective treatments for disorders may benefit from targeting these cognitive impairments, the success of which is predicated on the development of animal models with validated behavioural assays. Zebrafish offer a promising model for studying complex brain disorders, but tasks assessing executive function are lacking. The Free-movement pattern (FMP) Y-maze combines aspects of the common Y-maze assay, which exploits the inherent motivation of an organism to explore an unknown environment, with analysis based on a series of sequential two-choice discriminations. We validate the task as a measure of working memory and executive function by comparing task performance parameters in adult zebrafish treated with a range of glutamatergic, cholinergic and dopaminergic drugs known to impair working memory and cognitive flexibility. We demonstrate the cross-species validity of the task by assessing performance parameters in adapted versions of the task for mice and Drosophila, and finally a virtual version in humans, and identify remarkable commonalities between vertebrate species' navigation of the maze. Together, our results demonstrate that the FMP Y-maze is a sensitive assay for assessing working memory and cognitive flexibility across species from invertebrates to humans, providing a simple and widely applicable behavioural assay with exceptional translational relevance.
Collapse
Affiliation(s)
- Madeleine Cleal
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Daniel C Ranson
- Medicines Research Group, University of East London, London, UK
| | | | - Jerome D Swinny
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Edward S Redhead
- School of Psychology, University of Southampton, Southampton, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
43
|
Benvenutti R, Gallas-Lopes M, Marcon M, Reschke CR, Herrmann AP, Piato A. Glutamate Nmda Receptor Antagonists With Relevance To Schizophrenia: A Review Of Zebrafish Behavioral Studies. Curr Neuropharmacol 2021; 20:494-509. [PMID: 33588731 PMCID: PMC9608229 DOI: 10.2174/1570159x19666210215121428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Matheus Marcon
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Cristina R Reschke
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| |
Collapse
|
44
|
Campos A, Alexandre A, de Castro F, Alves Batista F, Rodrigues Santos SA, Mendes FDS, Gonçalves G, Monteiro-Moreira ADO, Queiroz de Souza A, Canuto K, Alves Magalhães F. Chemical profile and anxiolytic- and anticonvulsant-like effects of Miconia albicans (Sw.) Triana (Melastomataceae) leaves in adult zebrafish. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_176_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Menezes FP, Padilha de Sousa I, Luchiari AC. Early Mistreatment Contributes to Social Behavior Disorders in Zebrafish. Front Behav Neurosci 2020; 14:578242. [PMID: 33177998 PMCID: PMC7596165 DOI: 10.3389/fnbeh.2020.578242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Adverse experiences during childhood have been the focus of a series of studies due to the psychological damage observed in individuals who suffered abuse during their youth. Studies with model animals that can mimic these observations can significantly contribute to understanding the mechanisms behind this phenomenon. In our experiments, young zebrafish (20 dpf) were exposed to aggressive alcoholized male adults for 30 min for 10 days. At 30 dpf, the animals were tested for shoal formation, and at 60 dpf, locomotion and aggression were evaluated. Animals that suffered oppression from adults showed greater group cohesion and lower attack emission and higher distance from the image in the mirror test. Locomotor parameters were not changed. These results show that the stress caused by aggression exposure in the juvenile phase led to increased fear and avoidance behavior later in life. Moreover, we confirm the importance of the zebrafish as a sensitive tool for studies on the effects of early mistreatment and its consequences to adult behavior.
Collapse
Affiliation(s)
- Fabiano Peres Menezes
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Igo Padilha de Sousa
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
46
|
Samaras A, Pavlidis M. Behavioural and physiological responses to a conditioning protocol for adult zebrafish, Danio rerio, held in groups. Behav Processes 2020; 179:104201. [DOI: 10.1016/j.beproc.2020.104201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
|
47
|
Kuroda T, Gilroy SP, Cançado CR, Podlesnik CA. Effects of punishing target response during extinction on resurgence and renewal in zebrafish (Danio rerio). Behav Processes 2020; 178:104191. [DOI: 10.1016/j.beproc.2020.104191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
|
48
|
Gómez Y, Vargas JP, López JC, Portavella M. Inhibition of brain NOS activity impair spatial learning acquisition in fish. Brain Res Bull 2020; 164:29-36. [PMID: 32814090 DOI: 10.1016/j.brainresbull.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
Nitric oxide plays a role in the long term potentiation mechanisms produced in the mammalian hippocampus during spatial learning. A great deal of data has demonstrated that the dorsolateral telencephalon of fish could be homologous to the mammalian hippocampus sharing functional similarities. In the present study, we analyzed the role of nitric oxide in spatial learning in teleost fish. In Experiment 1, we studied the effects of the inhibition of telencephalic nitric oxide in goldfish during the acquisition of a spatial task. The results showed that nitric oxide is involved in the learning of a spatial task. Experiment 2 evaluated the effects of the inhibition of telencephalic nitric oxide in goldfish for the retrieval of a learned spatial response. The results indicated that the retrieval of the information previously stored is not dependent of the nitric oxide. The last experiment analyzed the role of the telencephalic nitric oxide in place and cue learning. Results showed a clear impairment in place but not in cue learning. As a whole, these results indicate that fish and mammals, could have a relational memory system mediated by similar biochemical mechanisms.
Collapse
Affiliation(s)
- Yolanda Gómez
- Laboratorio de Conducta Animal y Neurociencia, Dpt. Psicología Experimental, Universidad de Sevilla, Camilo Jose Cela s/n., 41018, Sevilla, Spain
| | - Juan Pedro Vargas
- Laboratorio de Conducta Animal y Neurociencia, Dpt. Psicología Experimental, Universidad de Sevilla, Camilo Jose Cela s/n., 41018, Sevilla, Spain.
| | - Juan Carlos López
- Laboratorio de Conducta Animal y Neurociencia, Dpt. Psicología Experimental, Universidad de Sevilla, Camilo Jose Cela s/n., 41018, Sevilla, Spain
| | - Manuel Portavella
- Laboratorio de Conducta Animal y Neurociencia, Dpt. Psicología Experimental, Universidad de Sevilla, Camilo Jose Cela s/n., 41018, Sevilla, Spain
| |
Collapse
|
49
|
Macrì S, Karakaya M, Spinello C, Porfiri M. Zebrafish exhibit associative learning for an aversive robotic stimulus. Lab Anim (NY) 2020; 49:259-264. [PMID: 32778807 DOI: 10.1038/s41684-020-0599-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Zebrafish have quickly emerged as a species of choice in preclinical research, holding promise to advance the field of behavioral pharmacology through high-throughput experiments. Besides biological and heuristic considerations, zebrafish also constitute a fundamental tool that fosters the replacement of mammals with less sentient experimental subjects. Notwithstanding these features, experimental paradigms to investigate emotional and cognitive domains in zebrafish are still limited. Studies on emotional memories have provided sound methodologies to investigate fear conditioning in zebrafish, but these protocols may still benefit from a reconsideration of the independent variables adopted to elicit aversion. Here, we designed a fear-conditioning paradigm in which wild-type zebrafish were familiarized over six training sessions with an empty compartment and a fear-eliciting one. The fearful stimulus was represented by three zebrafish replicas exhibiting a fully synchronized and polarized motion as they were maneuvered along 3D trajectories by a robotic platform. When allowed to freely swim between the two compartments in the absence of the robotic stimulus (test session), zebrafish displayed a marked avoidance of the stimulus-paired one. To investigate whether fear conditioning was modulated by psychoactive compounds, two groups of zebrafish were administered ethanol (0.25% and 1.00%, ethanol/water, by volume) a few minutes before the test session. We observed that ethanol administration abolished the conditioned avoidance of the stimulus-paired compartment. Ultimately, this study confirms that robotic stimuli may be used in the design of fear-conditioning paradigms, which are sensitive to pharmacological manipulations.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.,Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Chiara Spinello
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA. .,Department of Biomedical Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
50
|
Wiprich MT, Zanandrea R, Altenhofen S, Bonan CD. Influence of 3-nitropropionic acid on physiological and behavioral responses in zebrafish larvae and adults. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108772. [PMID: 32353558 DOI: 10.1016/j.cbpc.2020.108772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
Long-term treatment with 3-nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce symptoms and biochemical characteristics of Huntington's disease (HD). Our study evaluated the effects of 3-NPA on the physiological and behavioral responses in zebrafish larvae and adults. Larvae exposed to 0.1, 0.2, or 0.5 mM 3-NPA exhibited an increase in heart rate at 2- and 5-days post-fertilization (dpf). There was a decrease in the ocular distance at 5 dpf with 0.05 mM 3-NPA treatment. However, 3-NPA did not alter larval locomotor parameters. Adult zebrafish received 3-NPA intraperitoneal injections (a total of seven injections at doses 10, 20, or 60 mg/kg every 96 h) and showed a decrease in body weight , locomotion and aggressive behavior. No changes were observed in anxiety-like behavior and social interaction between 3-NPA-exposed animals and control groups. However, 3-NPA-treated animals (at 60 mg/kg) demonstrated impaired long-term aversive memory. Overall, 3-NPA exposure induced morphological and heart rate alterations in zebrafish larvae. Additionally, our study showed behavioral changes in zebrafish that were submitted to long-term 3-NPA treatment, which could be related to HD symptoms.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|