1
|
Wisłowska-Stanek A, Lehner M, Tomczuk F, Gawryluk A, Kołosowska K, Sułek A, Krząśnik P, Sobolewska A, Wawer A, Płaźnik A, Skórzewska A. The effects of the recurrent social isolation stress on fear extinction and dopamine D 2 receptors in the amygdala and the hippocampus. Pharmacol Rep 2023; 75:119-127. [PMID: 36385611 PMCID: PMC9889440 DOI: 10.1007/s43440-022-00430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The present study assessed the influence of recurrent social isolation stress on the aversive memory extinction and dopamine D2 receptors (D2R) expression in the amygdala and the hippocampus subnuclei. We also analyzed the expression of epigenetic factors potentially associated with fear extinction: miRNA-128 and miRNA-142 in the amygdala. METHODS Male adult fear-conditioned rats had three episodes of 48 h social isolation stress before each fear extinction session in weeks intervals. Ninety minutes after the last extinction session, the D2R expression in the nuclei of the amygdala and the hippocampus (immunocytochemical technique), and mRNA levels for D2R in the amygdala were assessed (PCR). Moreover, we evaluated the levels of miRNA-128 and miRNA-142 in the amygdala. RESULTS It was found that recurrent social isolation stress decreased the fear extinction rate. The extinguished isolated rats were characterized by higher expression of D2R in the CA1 area of the hippocampus compared to the extinguished and the control rats. In turn, the isolated group presented higher D2R immunoreactivity in the CA1 area compared to the extinguished, the control, and the extinguished isolated animals. Moreover, the extinguished animals had higher expression of D2R in the central amygdala than the control and the extinguished isolated rats. These changes were accompanied by the increase in miRNA-128 level in the amygdala in the extinguished isolated rats compared to the control, the extinguished, and the isolated rats. Moreover, the extinguished rats had lower expression of miRNA-128 compared to the control and the isolated animals. CONCLUSIONS Our results suggest that social isolation stress impairs aversive memory extinction and coexists with changes in the D2R expression in the amygdala and hippocampus and increased expression of miRNA-128 in the amygdala.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Lehner
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Filip Tomczuk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Gawryluk
- grid.419305.a0000 0001 1943 2944Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Kołosowska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Sułek
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząśnik
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Alicja Sobolewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adriana Wawer
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
2
|
Ghanavati E, Salehinejad MA, De Melo L, Nitsche MA, Kuo MF. NMDA receptor-related mechanisms of dopaminergic modulation of tDCS-induced neuroplasticity. Cereb Cortex 2022; 32:5478-5488. [PMID: 35165699 PMCID: PMC9712712 DOI: 10.1093/cercor/bhac028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/27/2022] Open
Abstract
Dopamine is a key neuromodulator of neuroplasticity and an important neuronal substrate of learning, and memory formation, which critically involves glutamatergic N-methyl-D-aspartate (NMDA) receptors. Dopamine modulates NMDA receptor activity via dopamine D1 and D2 receptor subtypes. It is hypothesized that dopamine focuses on long-term potentiation (LTP)-like plasticity, i.e. reduces diffuse widespread but enhances locally restricted plasticity via a D2 receptor-dependent NMDA receptor activity reduction. Here, we explored NMDA receptor-dependent mechanisms underlying dopaminergic modulation of LTP-like plasticity induced by transcranial direct current stimulation (tDCS). Eleven healthy, right-handed volunteers received anodal tDCS (1 mA, 13 min) over the left motor cortex combined with dopaminergic agents (the D2 receptor agonist bromocriptine, levodopa for general dopamine enhancement, or placebo) and the partial NMDA receptor agonist D-cycloserine (dosages of 50, 100, and 200 mg, or placebo). Cortical excitability was monitored by transcranial magnetic stimulation-induced motor-evoked potentials. We found that LTP-like plasticity was abolished or converted into LTD-like plasticity via dopaminergic activation, but reestablished under medium-dose D-cycloserine. These results suggest that diffuse LTP-like plasticity is counteracted upon via D2 receptor-dependent reduction of NMDA receptor activity.
Collapse
Affiliation(s)
- Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| | - Lorena De Melo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany,International Graduate School of Neuroscience, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Min-Fang Kuo
- Corresponding address: Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr 67, 44139 Dortmund, Germany.
| |
Collapse
|
3
|
High trait anxiety in mice is associated with impaired extinction in the contextual fear conditioning paradigm. Neurobiol Learn Mem 2022; 190:107602. [DOI: 10.1016/j.nlm.2022.107602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/10/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022]
|
4
|
Nikolaus S, Beu M, Wittsack HJ, Müller-Lutz A, Antke C, Hautzel H, Mori Y, Mamlins E, Antoch G, Müller HW. GABAergic and glutamatergic effects on nigrostriatal and mesolimbic dopamine release in the rat. Rev Neurosci 2020; 31:569-588. [PMID: 32619197 DOI: 10.1515/revneuro-2019-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
In this review, a series of experiments is presented, in which γ-amino butyric acid (GABA)ergic and glutamatergic effects on dopamine function in the rat nigrostriatal and mesolimbic system was systematically assessed after pharmacological challenge with GABAA receptor (R) and and N-methyl d-aspartate (NMDA)R agonists and antagonists. In these studies, [123I]iodobenzamide binding to the D2/3R was mesured in nucleus accumbens (NAC), caudateputamen (CP), substantia nigra/ventral tegmental area (SN/VTA), frontal (FC), motor (MC) and parietal cortex (PC) as well as anterior (aHIPP) and posterior hippocampus (pHIPP) with small animal SPECT in baseline and after injection of either the GABAAR agonist muscimol (1 mg/kg), the GABAAR antagonist bicuculline (1 mg/kg), the NMDAR agonist d-cycloserine (20 mg/kg) or the NMDAR antagonist amantadine (40 mg/kg). Muscimol reduced D2/3R binding in NAC, CP, SN/VTA, THAL and pHIPP, while, after amantadine, decreases were confined to NAC, CP and THAL. In contrast, d-cycloserine elevated D2/3R binding in NAC, SN/VTA, THAL, frontal cortex, motor cortex, PC, aHIPP and pHIPP, while, after bicuculline, increases were confined to CP and THAL. Taken together, similar actions on regional dopamine levels were exterted by the GABAAR agonist and the NMDAR antagonist on the one side and by the GABAAR antagonist and the NMDAR agonist on the other, with agonistic action, however, affecting more brain regions. Thereby, network analysis suggests different roles of GABAARs and NMDARs in the mediation of nigrostriatal, nigrothalamocortical and mesolimbocortical dopamine function.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, D-40225, Essen, Germany
| | - Yuriko Mori
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Nikolaus S, Wittsack HJ, Wickrath F, Müller-Lutz A, Hautzel H, Beu M, Antke C, Mamlins E, De Souza Silva MA, Huston JP, Antoch G, Müller HW. Differential effects of D-cycloserine and amantadine on motor behavior and D 2/3 receptor binding in the nigrostriatal and mesolimbic system of the adult rat. Sci Rep 2019; 9:16128. [PMID: 31695055 PMCID: PMC6834679 DOI: 10.1038/s41598-019-52185-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/14/2019] [Indexed: 01/16/2023] Open
Abstract
D-cycloserine (DCS) and amantadine (AMA) act as partial NMDA receptor (R) agonist and antagonist, respectively. In the present study, we compared the effects of DCS and AMA on dopamine D2/3R binding in the brain of adult rats in relation to motor behavior. D2/3R binding was determined with small animal SPECT in baseline and after challenge with DCS (20 mg/kg) or AMA (40 mg/kg) with [123I]IBZM as radioligand. Immediately post-challenge, motor/exploratory behavior was assessed for 30 min in an open field. The regional binding potentials (ratios of the specifically bound compartments to the cerebellar reference region) were computed in baseline and post-challenge. DCS increased D2/3R binding in nucleus accumbens, substantia nigra/ventral tegmental area, thalamus, frontal, motor and parietal cortex as well as anterodorsal and posterior hippocampus, whereas AMA decreased D2/3R binding in nucleus accumbens, caudateputamen and thalamus. After DCS, ambulation and head-shoulder motility were decreased, while sitting was increased compared to vehicle and AMA. Moreover, DCS increased rearing relative to AMA. The regional elevations of D2/3R binding after DCS reflect a reduction of available dopamine throughout the mesolimbocortical system. In contrast, the reductions of D2/3R binding after AMA indicate increased dopamine in nucleus accumbens, caudateputamen and thalamus. Findings imply that, after DCS, nigrostriatal and mesolimbic dopamine levels are directly related to motor/exploratory activity, whereas an inverse relationship may be inferred for AMA.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany.
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Frithjof Wickrath
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Heinrich-Heine University, Auf´m Hennekamp 65, 40225, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Maria Angelica De Souza Silva
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
6
|
Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrinol 2019; 55:100783. [PMID: 31415777 DOI: 10.1016/j.yfrne.2019.100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Emotional stress leads to the development of peripheral disorders and is recognized as a modifiable risk factor for psychiatric disorders, particularly depression and anxiety. However, not all individuals develop the negative consequences of emotional stress due to different stress coping strategies and resilience to stressful stimuli. In this review, we discuss individual differences in coping styles and the potential mechanisms that contribute to individual vulnerability to stress, such as parameters of the immune system and oxidative state. Initial differences in inflammatory and oxidative processes determine resistance to stress and stress-related disorders via the alteration of neurotransmitter content in the brain and biological fluids. Differences in coping styles may serve as possible predictors of resistance to stress and stress-related disorders, even before stressful conditions. The investigation of natural variabilities in stress resilience may allow the development of new methods for preventive medicine and the personalized treatment of stress-related conditions.
Collapse
Affiliation(s)
- L S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - C P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Skórzewska A, Wisłowska-Stanek A, Lehner M, Turzyńska D, Sobolewska A, Krząścik P, Szyndler J, Maciejak P, Płaźnik A. The effect of a corticotropin-releasing factor receptor 1 antagonist on the fear conditioning response in low- and high-anxiety rats after chronic corticosterone administration. Stress 2019; 22:113-122. [PMID: 30345859 DOI: 10.1080/10253890.2018.1505857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
This study aimed to test the hypothesis that high-anxiety (HR) rats are more sensitive to the effects of chronic corticosterone administration and antalarmin (corticotropin-releasing factor (CRF) receptor 1, CRF1 antagonist) injections than low-anxiety (LR) rats, and this effect is accompanied by changes in CRF system activity in brain regions involved in the control of emotions and the hypothalamic-pituitary-adrenal (HPA) axis. Male rats were divided into LR (n = 25) and HR (n = 30) groups according to the duration of conditioned freezing in a contextual fear test. Chronic corticosterone administration (by injection, 20 mg/kg) for 21 d (except weekends) increased freezing duration and number of GR (glucocorticoid receptor)-immunoreactive nuclei in the basal amygdala (BA) and decreased GR-immunoreactive nuclei in the infralimbic cortex (IL), dentate gyrus (DG), and CA3 area, only in the HR group. Moreover, in this group, corticosterone administration decreased number of CRF-immunoreactive neurons of the parvocellular paraventricular hypothalamic nucleus (pPVN), DG, and CA1. Antalarmin (10 mg/kg, i.p., 2 injections) significantly attenuated conditioned fear responses, increased plasma corticosterone concentration, and decreased GR-immunoreactive nuclei in the BA, only in the HR group. Moreover, in this group, antalarmin increased number of GR-immunoreactive nuclei in the IL, DG, and CA3 and increased number of CRF-immunoreactive cells in the pPVN, DG, and CA1. Hence, antalarmin attenuated the fear response and restored HPA axis function in HR rats, which were more sensitive to corticosterone exposure. These data suggest that individual differences in central local CRF system activity may determine the neurobiological mechanisms related to mood and emotional disorders.
Collapse
Affiliation(s)
- Anna Skórzewska
- a Department of Neurochemistry , Institute of Psychiatry and Neurology , Warsaw , Poland
| | - Aleksandra Wisłowska-Stanek
- b Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Małgorzata Lehner
- a Department of Neurochemistry , Institute of Psychiatry and Neurology , Warsaw , Poland
| | - Danuta Turzyńska
- a Department of Neurochemistry , Institute of Psychiatry and Neurology , Warsaw , Poland
| | - Alicja Sobolewska
- a Department of Neurochemistry , Institute of Psychiatry and Neurology , Warsaw , Poland
| | - Paweł Krząścik
- b Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Janusz Szyndler
- b Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Piotr Maciejak
- a Department of Neurochemistry , Institute of Psychiatry and Neurology , Warsaw , Poland
- b Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Adam Płaźnik
- a Department of Neurochemistry , Institute of Psychiatry and Neurology , Warsaw , Poland
- b Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
8
|
Garcia R. Neurobiology of fear and specific phobias. ACTA ACUST UNITED AC 2017; 24:462-471. [PMID: 28814472 PMCID: PMC5580526 DOI: 10.1101/lm.044115.116] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized as highly debilitating, pathological fear remains insufficiently treated, indicating the importance of research on fear processing. The neurobiological basis of normal and pathological fear reactions is reviewed in this article. Innate and learned fear mechanisms, particularly those involving the amygdala, are considered. These fear mechanisms are also distinguished in specific phobias, which can indeed be nonexperiential (implicating innate, learning-independent mechanisms) or experiential (implicating learning-dependent mechanisms). Poor habituation and poor extinction are presented as dysfunctional mechanisms contributing to persistence of nonexperiential and experiential phobias, respectively.
Collapse
Affiliation(s)
- René Garcia
- Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université & Centre National de la Recherche Scientifique, 13385 Marseille, France
| |
Collapse
|
9
|
Kapolowicz MR, Thompson LT. Acute high-intensity noise induces rapid Arc protein expression but fails to rapidly change GAD expression in amygdala and hippocampus of rats: Effects of treatment with D-cycloserine. Hear Res 2016; 342:69-79. [PMID: 27702572 DOI: 10.1016/j.heares.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Tinnitus is a devastating auditory disorder impacting a growing number of people each year. The aims of the current experiment were to assess neuronal mechanisms involved in the initial plasticity after traumatic noise exposure that could contribute to the emergence of tinnitus and to test a potential pharmacological treatment to alter this early neural plasticity. Specifically, this study addressed rapid effects of acute noise trauma on amygdalo-hippocampal circuitry, characterizing biomarkers of both excitation and inhibition in these limbic regions, and compared them to expression of these same markers in primary auditory cortex shortly after acute noise trauma. To assess excitatory plasticity, activity-regulated cytoskeleton-associated (Arc) protein expression was evaluated in male rats 45 min after bilateral exposure to acute high-intensity noise (16 kHz, 115 dB SPL, for 1 h), sufficient to cause acute cochlear trauma, a common cause of tinnitus in humans and previously shown sufficient to induce tinnitus in rat models of this auditory neuropathology. Western blot analyses confirmed that up-regulation of amygdalo-hippocampal Arc expression occurred rapidly post-noise trauma, corroborating several lines of evidence from our own and other laboratories indicating that limbic brain structures, i.e. outside of the classical auditory pathways, exhibit plasticity early in the initiation of tinnitus. Western blot analyses revealed no noise-induced changes in amygdalo-hippocampal expression of glutamate decarboxylase (GAD), the biosynthetic enzyme required for GABAergic inhibition. No changes in either Arc or GAD protein expression were observed in primary auditory cortex in this immediate post-noise exposure period, confirming other reports that auditory cortical plasticity may not occur until later in the development of tinnitus. As a further control, our experiments compared Arc protein expression between groups exposed to the quiet background of a sound-proof chamber to those exposed not only to the traumatic noise described above, but also to an intermediate, non-traumatic noise level (70 dB SPL) for the same duration in each of these three brain regions. We found that non-traumatic noise did not up-regulate Arc protein expression in these brain regions. To see if changes in Arc expression due to acute traumatic noise exposure were stress-related, we compared circulating serum corticosterone in controls and rats exposed to traumatic noise at the time when changes in Arc were observed, and found no significant differences in this stress hormone in our experimental conditions. Finally, the ability of D-cycloserine (DCS; an NMDA-receptor NR1 partial agonist) to reduce or prevent the noise trauma-related plastic changes in the biomarker, Arc, was tested. D-cycloserine prevented traumatic noise-induced up-regulation of Arc protein expression in amygdala but not in hippocampus, suggesting that DCS alone is not fully effective in eliminating regionally-specific early plastic changes after traumatic noise exposure.
Collapse
Affiliation(s)
- M R Kapolowicz
- Behavioral & Brain Sciences, Neuroscience, The University of Texas at Dallas, 800W. Campbell Rd., BSB 14, Richardson, TX, 75080, USA
| | - L T Thompson
- Behavioral & Brain Sciences, Neuroscience, The University of Texas at Dallas, 800W. Campbell Rd., BSB 14, Richardson, TX, 75080, USA.
| |
Collapse
|
10
|
Skórzewska A, Lehner M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Krząścik P, Płaźnik A. GABAergic control of the activity of the central nucleus of the amygdala in low- and high-anxiety rats. Neuropharmacology 2015; 99:566-76. [DOI: 10.1016/j.neuropharm.2015.08.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022]
|
11
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Skórzewska A, Lehner M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Krząścik P, Płaźnik A. Midazolam treatment before re-exposure to contextual fear reduces freezing behavior and amygdala activity differentially in high- and low-anxiety rats. Pharmacol Biochem Behav 2014; 129:34-44. [PMID: 25482326 DOI: 10.1016/j.pbb.2014.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 12/11/2022]
Abstract
The aim of this study was to examine the effects of benzodiazepine (midazolam) administration on rat conditioned fear responses and on local brain activity (c-Fos and CRF expressions) of low- (LR) and high- (HR)anxiety rats after the first and second contextual fear test sessions. The animals were divided into LR and HR groups based on the duration of their conditioned freezing response in the first contextual fear test. The fear-re-conditioned LR and HR animals (28 days later) had increased freezing durations compared with those durations during the first conditioned fear test. These behavioral effects were accompanied by increased c-Fos expression in the medial amygdala (MeA), the basolateral amygdala (BLA), and the paraventricular hypothalamic nuclei and elevated CRF expression in the MeA. All these behavioral and immunochemical effects of fear re-conditioning were stronger in the LR group compared with the effects in the HR group. Moreover, in the LR rats, the re-conditioning led to decreased CRF expression in the primary motor cortex (M1) and to increased CRF expression in the BLA. The pretreatment of rats with midazolam before the second exposure to the aversive context significantly attenuated the conditioned fear response, lowered the serum corticosterone concentration, decreased c-Fos and CRF expressions in the MeA and in the BLA, and increased CRF complex density in M1 area only in the LR group. These studies have demonstrated that LR rats are more sensitive to re-exposure to fear stimuli and that midazolam pretreatment was associated with modified brain activity in the amygdala and in the prefrontal cortex in this group of animals. The current data may facilitate a better understanding of the neurobiological mechanisms responsible for individual differences in the psychopathological processes accompanying some anxiety disorders characterized by stronger reactivity to re-exposure to stressful challenges, e.g., posttraumatic stress disorder.
Collapse
Affiliation(s)
- Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
13
|
Skórzewska A, Lehner M, Wisłowska-Stanek A, Krząścik P, Ziemba A, Płaźnik A. The effect of chronic administration of corticosterone on anxiety- and depression-like behavior and the expression of GABA-A receptor alpha-2 subunits in brain structures of low- and high-anxiety rats. Horm Behav 2014; 65:6-13. [PMID: 24200620 DOI: 10.1016/j.yhbeh.2013.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/10/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022]
Abstract
The aim of this study was to examine changes in rat emotional behavior and determine differences in the expression of GABA-A receptor alpha-2 subunits in brain structures of low- (LR) and high-anxiety (HR) rats after the repeated corticosterone administration. The animals were divided into LR and HR groups based on the duration of their conditioned freezing in a contextual fear test. Repeated daily administration of corticosterone (20 mg/kg) for 21 days decreased activity in a forced swim test, reduced body weight and decreased prefrontal cortex corticosterone concentration in both the LR and HR groups. These effects of corticosterone administration were stronger in the HR group in comparison with the appropriate control group, and compared to LR treated and LR control animals. Moreover, in the HR group, chronic corticosterone administration increased anxiety-like behavior in the open field and elevated plus maze tests. The behavioral effects in HR rats were accompanied by a decrease in alpha-2 subunit density in the medial prefrontal cortex (prelimbic cortex and frontal association cortex) and by an increase in the expression of alpha-2 subunits in the basolateral amygdala. These studies have shown that HR rats are more susceptible to anxiogenic and depressive effects of chronic corticosterone administration, which are associated with modification of GABA-A receptor function in the medial prefrontal cortex and basolateral amygdala. The current data may help to better understand the neurobiological mechanisms responsible for individual differences in changes in mood and emotions induced by repeated administration of high doses of glucocorticoids or by elevated levels of these hormones associated with chronic stress or affective pathology.
Collapse
Affiliation(s)
- Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland
| | - Andrzej Ziemba
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Science, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland
| |
Collapse
|
14
|
Bolkan SS, Lattal KM. Opposing effects of D-cycloserine on fear despite a common extinction duration: interactions between brain regions and behavior. Neurobiol Learn Mem 2013; 113:25-34. [PMID: 24374132 DOI: 10.1016/j.nlm.2013.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/26/2013] [Accepted: 12/15/2013] [Indexed: 12/30/2022]
Abstract
A number of studies have reported that D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate glutamate receptor, can facilitate the loss of conditioned fear if it is administered during an extinction trial. Here we examine the effects of DCS injected into the hippocampus or amygdala on extinction of context-evoked freezing after contextual fear conditioning in C57BL/6 mice. We find that DCS administered prior to an extinction session decreased freezing from the outset of the session regardless of which brain region was targeted. Retention tests revealed opposite effects on fear expression despite identical behavioral treatments: intra-hippocampal DCS inhibited fear expression while intra-amygdala DCS potentiated fear expression. Following post-extinction session injections of DCS, we found a similar though less pronounced effect. Closer inspection of the data revealed that the effects of DCS interacted with the behavior of the subjects during extinction. Intra-hippocampal injections of DCS enhanced extinction in those mice that showed the greatest amount of within-session extinction, but had less pronounced effects on mice that showed the least within-session extinction. Intra-amygdala injections of DCS impaired extinction in those mice that showed the least within-session extinction, but there was some evidence that the effect in the amygdala did not depend on behavior during extinction. These findings demonstrate that even with identical extinction trial durations, the effects of DCS administered into the hippocampus and amygdala can heavily depend on the organism's behavior during the extinction session. The broader implication of these findings is that the effects of pharmacological treatments designed to enhance extinction by targeting hippocampal or amygdalar processes may depend on the responsivity of the subject to the behavioral treatment.
Collapse
Affiliation(s)
- Scott S Bolkan
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
15
|
Soeter M, Kindt M. High trait anxiety: a challenge for disrupting fear memory reconsolidation. PLoS One 2013; 8:e75239. [PMID: 24260096 PMCID: PMC3832500 DOI: 10.1371/journal.pone.0075239] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022] Open
Abstract
Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation - n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice.
Collapse
Affiliation(s)
- Marieke Soeter
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, Cognitive Science Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Nobre MJ. Changes on auditory physiology in response to the inactivation of amygdala nuclei in high anxiety rats expressing learned fear. Physiol Behav 2013; 118:80-7. [DOI: 10.1016/j.physbeh.2013.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/18/2013] [Accepted: 05/06/2013] [Indexed: 11/30/2022]
|
17
|
Wisłowska-Stanek A, Lehner M, Skórzewska A, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. Corticosterone modulates fear responses and the expression of glucocorticoid receptors in the brain of high-anxiety rats. Neurosci Lett 2013. [DOI: 10.1016/j.neulet.2012.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Wisłowska-Stanek A, Lehner M, Skórzewska A, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. Corticosterone attenuates conditioned fear responses and potentiates the expression of GABA-A receptor alpha-2 subunits in the brain structures of rats selected for high anxiety. Behav Brain Res 2012; 235:30-5. [DOI: 10.1016/j.bbr.2012.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
19
|
Ezequiel Leite L, Nobre MJ. The negative effects of alcohol hangover on high-anxiety phenotype rats are influenced by the glutamate receptors of the dorsal midbrain. Neuroscience 2012; 213:93-105. [PMID: 22516019 DOI: 10.1016/j.neuroscience.2012.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 01/31/2023]
Abstract
Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 μl) and l-glutamic acid diethyl ester - GDEE (160 nmol/0.2 μl), respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others.
Collapse
Affiliation(s)
- L Ezequiel Leite
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
20
|
Wisłowska-Stanek A, Lehner M, Skórzewska A, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. Effects of d-cycloserine and midazolam on the expression of the GABA-A alpha-2 receptor subunits in brain structures of fear conditioned rats. Behav Brain Res 2011; 225:655-9. [DOI: 10.1016/j.bbr.2011.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
|
21
|
Nobre MJ, Brandão ML. Modulation of auditory-evoked potentials recorded in the inferior colliculus by GABAergic mechanisms in the basolateral and central nuclei of the amygdala in high- and low-anxiety rats. Brain Res 2011; 1421:20-9. [PMID: 21963315 DOI: 10.1016/j.brainres.2011.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/01/2011] [Accepted: 09/08/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Manoel Jorge Nobre
- Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP 14040-901, Brazil.
| | | |
Collapse
|
22
|
Lazary J, Juhasz G, Hunyady L, Bagdy G. Personalized medicine can pave the way for the safe use of CB1 receptor antagonists. Trends Pharmacol Sci 2011; 32:270-80. [DOI: 10.1016/j.tips.2011.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/14/2011] [Accepted: 02/18/2011] [Indexed: 12/15/2022]
|
23
|
Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E. New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 2011; 100:752-74. [PMID: 21569789 DOI: 10.1016/j.pbb.2011.04.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/05/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Anxiety and stress-related disorders, namely posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), obsessive-compulsive disorder (ODC), social and specific phobias, and panic disorder, are a major public health issue. A growing body of evidence suggests that glutamatergic neurotransmission may be involved in the biological mechanisms underlying stress response and anxiety-related disorders. The glutamatergic system mediates the acquisition and extinction of fear-conditioning. Thus, new drugs targeting glutamatergic neurotransmission may be promising candidates for new pharmacological treatments. In particular, N-methyl-d-aspartate receptors (NMDAR) antagonists (AP5, AP7, CGP37849, CGP39551, LY235959, NPC17742, and MK-801), NMDAR partial agonists (DCS, ACPC), α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) antagonists (topiramate), and several allosteric modulators targeting metabotropic glutamate receptors (mGluRs) mGluR1, mGluR2/3, and mGluR5, have shown anxiolytic-like effects in several animal and human studies. Several studies have suggested that polyamines (agmatine, putrescine, spermidine, and spermine) may be involved in the neurobiological mechanisms underlying stress-response and anxiety-related disorders. This could mainly be attributed to their ability to modulate ionotropic glutamate receptors, especially NR2B subunits. The aim of this review is to establish that glutamate neurotransmission and polyaminergic system play a fundamental role in the onset of anxiety-related disorders. This may open the way for new drugs that may help to treat these conditions.
Collapse
|
24
|
Duclot F, Hollis F, Darcy MJ, Kabbaj M. Individual differences in novelty-seeking behavior in rats as a model for psychosocial stress-related mood disorders. Physiol Behav 2010; 104:296-305. [PMID: 21172365 DOI: 10.1016/j.physbeh.2010.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/12/2010] [Accepted: 12/13/2010] [Indexed: 01/09/2023]
Abstract
Most neuropsychiatric disorders, including stress-related mood disorders, are complex multi-parametric syndromes. Diagnoses are therefore hard to establish and current therapeutic strategies suffer from significant variability in effectiveness, making the understanding of inter-individual variations crucial to unveiling effective new treatments. In rats, such individual differences are observed during exposure to a novel environment, where individuals will exhibit either high or low locomotor activity and can thus be separated into high (HR) and low (LR) responders, respectively. In rodents, a long-lasting, psychosocial, stress-induced depressive state can be triggered by exposure to a social defeat procedure. We therefore analyzed the respective vulnerabilities of HR and LR animals to long-lasting, social defeat-induced behavioral alterations relevant to mood disorders. Two weeks after four daily consecutive social defeat exposures, HR animals exhibit higher anxiety levels, reduced body weight gain, sucrose preference, and a marked social avoidance. LR animals, however, remain unaffected. Moreover, while repeated social defeat exposure induces long-lasting contextual fear memory in both HR and LR animals, only HR individuals exhibit marked freezing behavior four weeks after a single social defeat. Combined, these findings highlight the critical involvement of inter-individual variations in novelty-seeking behavior in the vulnerability to stress-related mood disorders, and uncover a promising model for posttraumatic stress disorder.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
25
|
Lehner M, Wisłowska-Stanek A, Skórzewska A, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. Differences in the density of GABA-A receptor alpha-2 subunits and gephyrin in brain structures of rats selected for low and high anxiety in basal and fear-stimulated conditions, in a model of contextual fear conditioning. Neurobiol Learn Mem 2010; 94:499-508. [DOI: 10.1016/j.nlm.2010.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/27/2022]
|