1
|
Zhou P, Peng S, Wen S, Lan Q, Zhuang Y, Li X, Shi M, Zhang C. The Cerebellum-Ventral Tegmental Area Microcircuit and Its Implications for Autism Spectrum Disorder: A Narrative Review. Neuropsychiatr Dis Treat 2024; 20:2039-2048. [PMID: 39494383 PMCID: PMC11531233 DOI: 10.2147/ndt.s485487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The cerebellum has long been implicated in the etiopathogenesis of autism spectrum disorder (ASD), and emerging evidence suggests a significant contribution by reciprocal neural circuits between the cerebellum and ventral tegmental area (VTA) in symptom expression. This review provides a concise overview of morphological and functional alterations in the cerebellum and VTA associated with ASD symptoms, primarily focusing on human studies while also integrating mechanistic insights from animal models. We propose that cerebello-VTA circuit dysfunctional is a major contributor to ASD symptoms and that these circuits are promising targets for drugs and therapeutic brain stimulation methods.
Collapse
Affiliation(s)
- Peiling Zhou
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Shiyu Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Sizhe Wen
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Qinghui Lan
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Yingyin Zhuang
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Xuyan Li
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Mengliang Shi
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
- School of Education, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Changzheng Zhang
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| |
Collapse
|
2
|
Hoffman LJ, Foley JM, Leong JK, Sullivan-Toole H, Elliott BL, Olson IR. A Virtual In Vivo Dissection and Analysis of Socioaffective Symptoms Related to Cerebellum-Midbrain Reward Circuitry in Humans. J Neurosci 2024; 44:e1031242024. [PMID: 39256045 PMCID: PMC11466071 DOI: 10.1523/jneurosci.1031-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Emerging research in nonhuman animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white matter connectivity in a cohort of men and women using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections between the cerebellum and VTA predominantly originate in the right cerebellar hemisphere, interposed nucleus, and paravermal cortex and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared with other lobules. We discovered a mediolateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socioaffective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socioaffective regulation.
Collapse
Affiliation(s)
- Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Julia M Foley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Josiah K Leong
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - Holly Sullivan-Toole
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
3
|
Hoffman LJ, Foley JM, Leong JK, Sullivan-Toole H, Elliott BL, Olson IR. An in vivo Dissection, and Analysis of Socio-Affective Symptoms related to Cerebellum-Midbrain Reward Circuitry in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560239. [PMID: 38798382 PMCID: PMC11118266 DOI: 10.1101/2023.09.29.560239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Emerging research in non-human animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white-matter connectivity in humans using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections from the cerebellum to the VTA predominantly originate in the right hemisphere, interposed nucleus, and paravermal cortex, and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared to other lobules. We discovered a medial-to-lateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socio-affective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socio-affective regulation.
Collapse
Affiliation(s)
- Linda J. Hoffman
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Julia M. Foley
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Josiah K. Leong
- University of Arkansas, Department of Psychological Science, Fayetteville, AR, USA
| | - Holly Sullivan-Toole
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Blake L. Elliott
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Ingrid R. Olson
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| |
Collapse
|
4
|
Caragea VM, Méndez-Couz M, Manahan-Vaughan D. Dopamine receptors of the rodent fastigial nucleus support skilled reaching for goal-directed action. Brain Struct Funct 2024; 229:609-637. [PMID: 37615757 PMCID: PMC10978667 DOI: 10.1007/s00429-023-02685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023]
Abstract
The dopaminergic (DA) system regulates both motor function, and learning and memory. The cerebellum supports motor control and the acquisition of procedural memories, including goal-directed behavior, and is subjected to DA control. Its fastigial nucleus (FN) controls and interprets body motion through space. The expression of dopamine receptors has been reported in the deep cerebellar nuclei of mice. However, the presence of dopamine D1-like (D1R) and D2-like (D2R) receptors in the rat FN has not yet been verified. In this study, we first confirmed that DA receptors are expressed in the FN of adult rats and then targeted these receptors to explore to what extent the FN modulates goal-directed behavior. Immunohistochemical assessment revealed expression of both D1R and D2R receptors in the FN, whereby the medial lateral FN exhibited higher receptor expression compared to the other FN subfields. Bilateral treatment of the FN with a D1R antagonist, prior to a goal-directed pellet-reaching task, significantly impaired task acquisition and decreased task engagement. D2R antagonism only reduced late performance post-acquisition. Once task acquisition had occurred, D1R antagonism had no effect on successful reaching, although it significantly decreased reaching speed, task engagement, and promoted errors. Motor coordination and ambulation were, however, unaffected as neither D1R nor D2R antagonism altered rotarod latencies or distance and velocity in an open field. Taken together, these results not only reveal a novel role for the FN in goal-directed skilled reaching, but also show that D1R expressed in FN regulate this process by modulating motivation for action.
Collapse
Affiliation(s)
- Violeta-Maria Caragea
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Marta Méndez-Couz
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
5
|
Chin PW, Augustine GJ. The cerebellum and anxiety. Front Cell Neurosci 2023; 17:1130505. [PMID: 36909285 PMCID: PMC9992220 DOI: 10.3389/fncel.2023.1130505] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Although the cerebellum is traditionally known for its role in motor functions, recent evidence points toward the additional involvement of the cerebellum in an array of non-motor functions. One such non-motor function is anxiety behavior: a series of recent studies now implicate the cerebellum in anxiety. Here, we review evidence regarding the possible role of the cerebellum in anxiety-ranging from clinical studies to experimental manipulation of neural activity-that collectively points toward a role for the cerebellum, and possibly a specific topographical locus within the cerebellum, as one of the orchestrators of anxiety responses.
Collapse
Affiliation(s)
- Pei Wern Chin
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Yoshida J, Oñate M, Khatami L, Vera J, Nadim F, Khodakhah K. Cerebellar Contributions to the Basal Ganglia Influence Motor Coordination, Reward Processing, and Movement Vigor. J Neurosci 2022; 42:8406-8415. [PMID: 36351826 PMCID: PMC9665921 DOI: 10.1523/jneurosci.1535-22.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Both the cerebellum and the basal ganglia are known for their roles in motor control and motivated behavior. These two systems have been classically considered as independent structures that coordinate their contributions to behavior via separate cortico-thalamic loops. However, recent evidence demonstrates the presence of a rich set of direct connections between these two regions. Although there is strong evidence for connections in both directions, for brevity we limit our discussion to the better-characterized connections from the cerebellum to the basal ganglia. We review two sets of such connections: disynaptic projections through the thalamus and direct monosynaptic projections to the midbrain dopaminergic nuclei, the VTA and the SNc. In each case, we review the evidence for these pathways from anatomic tracing and physiological recordings, and discuss their potential functional roles. We present evidence that the disynaptic pathway through the thalamus is involved in motor coordination, and that its dysfunction contributes to motor deficits, such as dystonia. We then discuss how cerebellar projections to the VTA and SNc influence dopamine release in the respective targets of these nuclei: the NAc and the dorsal striatum. We argue that the cerebellar projections to the VTA may play a role in reward-based learning and therefore contribute to addictive behavior, whereas the projection to the SNc may contribute to movement vigor. Finally, we speculate how these projections may explain many of the observations that indicate a role for the cerebellum in mental disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maritza Oñate
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Leila Khatami
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Farzan Nadim
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
7
|
Campbell A, Morris G, Sanfeliu A, Augusto J, Langa E, Kesavan JC, Nguyen NT, Conroy RM, Worm J, Kielpinski L, Jensen MA, Miller MT, Kremer T, Reschke CR, Henshall DC. AntimiR targeting of microRNA-134 reduces seizures in a mouse model of Angelman syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:514-529. [PMID: 35592499 PMCID: PMC9092865 DOI: 10.1016/j.omtn.2022.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/15/2022] [Indexed: 10/26/2022]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder featuring ataxia, cognitive impairment, and drug-resistant epilepsy. AS is caused by mutations or deletion of the maternal copy of the paternally imprinted UBE3A gene, with current precision therapy approaches focusing on re-expression of UBE3A. Certain phenotypes, however, are difficult to rescue beyond early development. Notably, a cluster of microRNA binding sites was reported in the untranslated Ube3a1 transcript, including for miR-134, suggesting that AS may be associated with microRNA dysregulation. Here, we report levels of miR-134 and key targets are normal in the hippocampus of mice carrying a maternal deletion of Ube3a (Ube3a m-/p+ ). Nevertheless, intracerebroventricular injection of an antimiR oligonucleotide inhibitor of miR-134 (Ant-134) reduced audiogenic seizure severity over multiple trials in 21- and 42-day-old AS mice. Interestingly, Ant-134 also improved distance traveled and center crossings of AS mice in the open-field test. Finally, we show that silencing miR-134 can upregulate targets of miR-134 in neurons differentiated from Angelman patient-derived induced pluripotent stem cells. These findings indicate that silencing miR-134 and possibly other microRNAs could be useful to treat clinically relevant phenotypes with a later developmental window in AS.
Collapse
Affiliation(s)
- Aoife Campbell
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Gareth Morris
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Albert Sanfeliu
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Joana Augusto
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jaideep C Kesavan
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ronan M Conroy
- Department of Public Health and Epidemiology, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jesper Worm
- Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, F. Hoffmann-La Roche Ltd, DK-2970 Hørsholm, Denmark
| | - Lukasz Kielpinski
- Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, F. Hoffmann-La Roche Ltd, DK-2970 Hørsholm, Denmark
| | - Mads Aaboe Jensen
- Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, F. Hoffmann-La Roche Ltd, DK-2970 Hørsholm, Denmark
| | - Meghan T Miller
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Thomas Kremer
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Cristina R Reschke
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,School of Pharmacy and Biomedical Sciences, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
8
|
Jung SJ, Vlasov K, D’Ambra AF, Parigi A, Baya M, Frez EP, Villalobos J, Fernandez-Frentzel M, Anguiano M, Ideguchi Y, Antzoulatos EG, Fioravante D. Novel Cerebello-Amygdala Connections Provide Missing Link Between Cerebellum and Limbic System. Front Syst Neurosci 2022; 16:879634. [PMID: 35645738 PMCID: PMC9136059 DOI: 10.3389/fnsys.2022.879634] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
The cerebellum is emerging as a powerful regulator of cognitive and affective processing and memory in both humans and animals and has been implicated in affective disorders. How the cerebellum supports affective function remains poorly understood. The short-latency (just a few milliseconds) functional connections that were identified between the cerebellum and amygdala—a structure crucial for the processing of emotion and valence—more than four decades ago raise the exciting, yet untested, possibility that a cerebellum-amygdala pathway communicates information important for emotion. The major hurdle in rigorously testing this possibility is the lack of knowledge about the anatomy and functional connectivity of this pathway. Our initial anatomical tracing studies in mice excluded the existence of a direct monosynaptic connection between the cerebellum and amygdala. Using transneuronal tracing techniques, we have identified a novel disynaptic circuit between the cerebellar output nuclei and the basolateral amygdala. This circuit recruits the understudied intralaminar thalamus as a node. Using ex vivo optophysiology and super-resolution microscopy, we provide the first evidence for the functionality of the pathway, thus offering a missing mechanistic link between the cerebellum and amygdala. This discovery provides a connectivity blueprint between the cerebellum and a key structure of the limbic system. As such, it is the requisite first step toward obtaining new knowledge about cerebellar function in emotion, thus fundamentally advancing understanding of the neurobiology of emotion, which is perturbed in mental and autism spectrum disorders.
Collapse
Affiliation(s)
- Se Jung Jung
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Ksenia Vlasov
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Alexa F. D’Ambra
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Abhijna Parigi
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Mihir Baya
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Edbertt Paul Frez
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | | | | | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Yoichiro Ideguchi
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Evan G. Antzoulatos
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Diasynou Fioravante
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
- *Correspondence: Diasynou Fioravante
| |
Collapse
|
9
|
Ayers-Ringler J, McDonald JS, Connors MA, Fisher CR, Han S, Jakaitis DR, Scherer B, Tutor G, Wininger KM, Dai D, Choi DS, Salisbury JL, Jannetto PJ, Bornhorst JA, Kadirvel R, Kallmes DF, McDonald RJ. Neurologic Effects of Gadolinium Retention in the Brain after Gadolinium-based Contrast Agent Administration. Radiology 2021; 302:676-683. [PMID: 34931861 PMCID: PMC8893178 DOI: 10.1148/radiol.210559] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Concerns over the neurotoxic potential of retained gadolinium in brain tissues after intravenous gadolinium-based contrast agent (GBCA) administration have led to pronounced worldwide use changes, yet the clinical sequelae of gadolinium retention remain undefined. Purpose To assess clinical and neurologic effects and potential neurotoxicity of gadolinium retention in rats after administration of various GBCAs. Materials and Methods From March 2017 through July 2018, 183 male Wistar rats received 20 intravenous injections of 2.5 mmol per kilogram of body weight (80 human equivalent doses) of various GBCAs (gadodiamide, gadobenate, gadopentetate, gadoxetate, gadobutrol, gadoterate, and gadoteridol) or saline over 4 weeks. Rats were evaluated 6 and 34 weeks after injection with five behavioral tests, and inductively coupled plasma mass spectrometry, transmission electron microscopy, and histopathology were performed on urine, serum, cerebrospinal fluid (CSF), basal ganglia, dentate nucleus, and kidney samples. Dunnett post hoc test and Wilcoxon rank sum test were used to compare differences between treatment groups. Results No evidence of differences in any behavioral test was observed between GBCA-exposed rats and control animals at either 6 or 34 weeks (P = .08 to P = .99). Gadolinium concentrations in both neuroanatomic locations were higher in linear GBCA-exposed rats than macrocyclic GBCA-exposed rats at 6 and 34 weeks (P < .001). Gadolinium clearance over time varied among GBCAs, with gadobutrol having the largest clearance (median: 62% for basal ganglia, 70% for dentate) and gadodiamide having no substantial clearance. At 34 weeks, gadolinium was largely cleared from the CSF and serum of gadodiamide-, gadobenate-, gadoterate-, and gadobutrol-exposed rats, especially for the macrocyclic agents (range: 70%-98% removal for CSF, 34%-94% removal for serum), and was nearly completely removed from urine (range: 96%-99% removal). Transmission electron microscopy was used to detect gadolinium foci in linear GBCA-exposed brain tissue, but no histopathologic differences were observed for any GBCA. Conclusion In this rat model, no clinical evidence of neurotoxicity was observed after exposure to linear and macrocyclic gadolinium-based contrast agents at supradiagnostic doses. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Jennifer Ayers-Ringler
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Jennifer S. McDonald
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Margaret A. Connors
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Cody R. Fisher
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Susie Han
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Daniel R. Jakaitis
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Bradley Scherer
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Gabriel Tutor
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Katheryn M. Wininger
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Daying Dai
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Doo-Sup Choi
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Jeffrey L. Salisbury
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Paul J. Jannetto
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Joshua A. Bornhorst
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Ram Kadirvel
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - David F. Kallmes
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Robert J. McDonald
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
10
|
Cho IH, Yoo JH, Chun JW, Cho H, Kim JY, Choi J, Kim DJ. Reduced Volume of a Brainstem Substructure in Adolescents with Problematic Smartphone Use. Soa Chongsonyon Chongsin Uihak 2021; 32:137-143. [PMID: 34671186 PMCID: PMC8499038 DOI: 10.5765/jkacap.210007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Objectives Despite the growing concern regarding the adverse effects related to problematic smartphone use (PSU), little is known about underlying morphologic changes in the brain. The brainstem is a deep brain structure that consists of several important nuclei associated with emotions, sensations, and motor functions. In this study, we sought to examine the difference in the volume of brainstem substructures among adolescents with and without PSU. Methods A total of 87 Korean adolescents participated in this study. The PSU group (n=20, age=16.2±1.1, female:male=12:8) was designated if participants reported a total Smartphone Addiction Proneness Scale (SAPS) score of ≥42, whereas the remaining participants were assigned to the control group (n=67, age=15.3±1.7, female:male=19:48). High-resolution T1 magnetic resonance imaging was performed, and the volume of each of the four brainstem substructures [midbrain, pons, medulla, and superior cerebellar peduncle (SCP)] was measured. Analysis of covariance was conducted to reveal group differences after adjusting for effects of age, gender, whole brain-stem volume, depressive symptoms, and impulsivity. Results The PSU group showed a significantly smaller volume of the SCP than the control group (F=8.273, p=0.005). The volume of the SCP and the SAPS score were negatively correlated (Pearson’s r=-0.218, p=0.047). Conclusion The present study is the first to reveal an altered volume of the brainstem substructure among adolescents with PSU. This finding suggests that the altered white matter structure in the brainstem could be one of the neurobiological mechanisms underlying behavioral changes in PSU.
Collapse
Affiliation(s)
- In Hee Cho
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Hyun Yoo
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Won Chun
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Cho
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-Young Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihye Choi
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Jiang P, Sun J, Zhou X, Lu L, Li L, Huang X, Li J, Kendrick K, Gong Q. Functional connectivity abnormalities underlying mood disturbances in male abstinent methamphetamine abusers. Hum Brain Mapp 2021; 42:3366-3378. [PMID: 33939234 PMCID: PMC8249885 DOI: 10.1002/hbm.25439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Anxiety and depression are the most common withdrawal symptoms of methamphetamine (METH) abuse, which further exacerbate relapse of METH abuse. To date, no effective pharmacotherapy exists for METH abuse and its withdrawal symptoms. Therefore, understanding the neuromechanism underlying METH abuse and its withdrawal symptoms is essential for developing clinical strategies and improving patient care. The aims of this study were to investigate brain network abnormalities in METH abusers (MAs) and their associations with affective symptoms. Forty-eight male abstinent MAs and 48 age-gender matched healthy controls were recruited and underwent resting state functional magnetic resonance imaging (fMRI). The severity of patient anxiety and depressive symptoms were measured by Hamilton anxiety and depression rating scales, which decreased across the duration of abstinence. Independent component analysis was used to investigate the brain network functional connectivity (FC) properties. Compared with healthy controls, MAs demonstrated hypo-intra-network FC in the cerebellar network and hyper-intra-network FC in the posterior salience network. A whole-brain regression analysis revealed that FC strength of clusters located in the right rostral anterior cingulate cortex (rACC) within the ventromedial network (VMN) was associated with affective symptoms in the patients. Importantly, the intra-network FC strength of the rACC in VMN mediated the association between abstinence duration and the severity level of affective symptoms. Our results demonstrate alterations in brain functional networks underlying METH abuse, and that the FC of rACC within VMN serve as a neural substrate in the association between abstinence length and affective symptom severity in the MAs.
Collapse
Affiliation(s)
- Ping Jiang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Jiayu Sun
- Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Xiaobo Zhou
- Department of PsychosomaticsAcademy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuanChina
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Jing Li
- Mental Health CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Keith Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| |
Collapse
|
12
|
Holloway ZR, Paige NB, Comstock JF, Nolen HG, Sable HJ, Lester DB. Cerebellar Modulation of Mesolimbic Dopamine Transmission Is Functionally Asymmetrical. THE CEREBELLUM 2020; 18:922-931. [PMID: 31478166 DOI: 10.1007/s12311-019-01074-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral and cerebellar hemispheres are known to be asymmetrical in structure and function, and previous literature supports that asymmetry extends to the neural dopamine systems. Using in vivo fixed potential amperometry with carbon fiber microelectrodes in anesthetized mice, the current study assessed hemispheric lateralization of stimulation-evoked dopamine in the nucleus accumbens (NAc) and the influence of the cerebellum in regulating this reward-associated pathway. Our results suggest that cerebellar output can modulate mesolimbic dopamine transmission, and this modulation contributes to asymmetrically lateralized dopamine release. Dopamine release did not differ between hemispheres when evoked by medial forebrain bundle (MFB) stimulation; however, dopamine release was significantly greater in the right NAc relative to the left when evoked by electrical stimulation of the cerebellar dentate nucleus (DN). Furthermore, cross-hemispheric talk between the left and right cerebellar DN does not seem to influence mesolimbic release given that lidocaine infused into the DN opposite to the stimulated DN did not alter release. These studies may provide a neurochemical mechanism for studies identifying the cerebellum as a relevant node for reward, motivational behavior, saliency, and inhibitory control. An increased understanding of the lateralization of dopaminergic systems may reveal novel targets for pharmacological interventions in neuropathology of the cerebellum and extending projections.
Collapse
Affiliation(s)
- Zade R Holloway
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Nick B Paige
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Josiah F Comstock
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Hunter G Nolen
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Helen J Sable
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Deranda B Lester
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA.
| |
Collapse
|
13
|
Caligiore D, Arbib MA, Miall RC, Baldassarre G. The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neurosci Biobehav Rev 2019; 100:19-34. [DOI: 10.1016/j.neubiorev.2019.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
|
14
|
Locke TM, Soden ME, Miller SM, Hunker A, Knakal C, Licholai JA, Dhillon KS, Keene CD, Zweifel LS, Carlson ES. Dopamine D 1 Receptor-Positive Neurons in the Lateral Nucleus of the Cerebellum Contribute to Cognitive Behavior. Biol Psychiatry 2018; 84:401-412. [PMID: 29478701 PMCID: PMC6072628 DOI: 10.1016/j.biopsych.2018.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Studies in humans and nonhuman primates have identified a region of the dentate nucleus of the cerebellum, or the lateral cerebellar nucleus (LCN) in rodents, activated during performance of cognitive tasks involving complex spatial and sequential planning. Whether such a subdivision exists in rodents is not known. Dopamine and its receptors, which are implicated in cognitive function, are present in the cerebellar nuclei, but their function is unknown. METHODS Using viral and genetic strategies in mice, we examined cellular phenotypes of dopamine D1 receptor-positive (D1R+) cells in the LCN with whole-cell patch clamp recordings, messenger RNA profiling, and immunohistochemistry to examine D1R expression in mouse LCN and human dentate nucleus of the cerebellum. We used chemogenetics to inhibit D1R+ neurons and examined behaviors including spatial navigation, social recognition memory, prepulse inhibition of the acoustic startle reflex, response inhibition, and working memory to test the necessity of these neurons in these behaviors. RESULTS We identified a population of D1R+ neurons that are localized to an anatomically distinct region of the LCN. We also observed D1R+ neurons in human dentate nucleus of the cerebellum, which suggests an evolutionarily conserved population of dopamine-receptive neurons in this region. The genetic, electrophysiological, and anatomical profile of mouse D1R neurons is consistent with a heterogeneous population of gamma-aminobutyric acidergic, and to a lesser extent glutamatergic, cell types. Selective inhibition of D1R+ LCN neurons impairs spatial navigation memory, response inhibition, working memory, and prepulse inhibition of the acoustic startle reflex. CONCLUSIONS Collectively, these data demonstrate a functional link between genetically distinct neurons in the LCN and cognitive behaviors.
Collapse
Affiliation(s)
- Timothy M. Locke
- University of Washington, Department of Psychiatry and Behavioral Sciences
| | | | | | - Avery Hunker
- University of Washington, Department of Pharmacology
| | - Cerise Knakal
- University of Washington, Department of Pharmacology
| | | | - Karn S. Dhillon
- University of Washington, Department of Biological Chemistry
| | | | - Larry S. Zweifel
- University of Washington, Department of Psychiatry and Behavioral Sciences,University of Washington, Department of Pharmacology
| | - Erik S. Carlson
- University of Washington, Department of Psychiatry and Behavioral Sciences,Correspondence: Erik Sean Carlson M.D., Ph.D. Department of Psychiatry and Behavioral Sciences University of Washington 1959 NE Pacific Street, Box 356560 Seattle, WA, 98195-6560 Telephone: 612-387-7304 Fax: 206-543-9520
| |
Collapse
|
15
|
Bambico FR, Comai S, Diwan M, Hasan SN, Conway JD, Darvish-Ghane S, Hamani C, Gobbi G, Nobrega JN. High frequency stimulation of the anterior vermis modulates behavioural response to chronic stress: involvement of the prefrontal cortex and dorsal raphe? Neurobiol Dis 2018; 116:166-178. [DOI: 10.1016/j.nbd.2018.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/17/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022] Open
|
16
|
Oliveira AN, Pinheiro AM, Belém-Filho IJA, Fernandes LMP, Cartágenes SC, Ribera PC, Fontes-Júnior EA, Crespo-Lopez ME, Monteiro MC, Lima MO, Maia CSF. Unravelling motor behaviour hallmarks in intoxicated adolescents: methylmercury subtoxic-dose exposure and binge ethanol intake paradigm in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21937-21948. [PMID: 29797195 DOI: 10.1007/s11356-018-2235-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is a hazardous environmental pollutant, affecting Amazon basin communities by anthropogenic activities. The exact safe level of MeHg exposure is unclear, despite the efforts of health international societies to avoid mercury (Hg) poisoning. Central nervous system is severely impacted by Hg intoxication, reflecting on motor impairment. In addition, alcohol has been associated to an overall brain damage. According to lifestyle of Amazon riverside communities, alcohol intake occurs frequently. Thus, we investigated if continuous MeHg exposure at low doses during adolescence displays motor deficits (experiment 1). In the experiment 2, we examine if the co-intoxication (i.e. MeHg plus ethanol exposure) during adolescence intensify motor damage. In the experiment 1, Wistar adolescent rats (31 days old) received chronic exposure to low dose (CELD) of MeHg (40 μg/kg/day) for 35 days. For the experiment 2, five sessions of alcohol binge drinking paradigm (3ON-4OFF; 3.0 g/kg/day) were employed associated to MeHg intoxication. Motor behaviour was evaluated by the open field, pole test, beam walking and rotarod paradigms. CELDS of MeHg display motor function damage, related to hypoactivity, bradykinesia-like behaviour, coordination deficits and motor learning impairment. Co-intoxication of MeHg plus ethanol reduced cerebellar Hg content, however also resulted in motor behavioural impairment, as well as additive effects on bradykinesia and fine motor evaluation.
Collapse
Affiliation(s)
- Aline Nascimento Oliveira
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Alana Miranda Pinheiro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Ivaldo Jesus Almeida Belém-Filho
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Sabrina Carvalho Cartágenes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Paula Cardoso Ribera
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | | | - Marta Chagas Monteiro
- Laboratório de Microbiologia e Imunologia Clinica, Faculdade de Ciências Farmacêuticas, UFPA, Belém, Brazil
| | - Marcelo Oliveira Lima
- Laboratório de Toxicologia, Seção de Meio Ambiente, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil.
| |
Collapse
|
17
|
Objective assessment of exploratory behaviour in schizophrenia using wireless motion capture. Schizophr Res 2018; 195:122-129. [PMID: 28954705 DOI: 10.1016/j.schres.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/09/2017] [Accepted: 09/10/2017] [Indexed: 11/22/2022]
Abstract
Motivation deficits are a prominent feature of schizophrenia and have substantial consequences for functional outcome. The impact of amotivation on exploratory behaviour has not been extensively assessed by entirely objective means. This study evaluated deficits in exploratory behaviour in an open-field setting using wireless motion capture. Twenty-one stable adult outpatients with schizophrenia and twenty matched healthy controls completed the Novelty Exploration Task, in which participants explored a novel environment containing familiar and uncommon objects. Objective motion data were used to index participants' locomotor activity and tendency for visual and tactile object exploration. Clinical assessments of positive and negative symptoms, apathy, cognition, depression, medication side-effects, and community functioning were also administered. Relationships between task performance and clinical measures were evaluated using Spearman correlations, and group differences were evaluated using multivariate analysis of covariance tests. Although locomotor activity and tactile exploration were similar between the schizophrenia and healthy control groups, schizophrenia participants exhibited reduced visual object exploration (F(2,35)=3.40, p=0.045). Further, schizophrenia participants' geometric pattern of locomotion, visual exploration, and tactile exploration were correlated with overall negative symptoms (|ρ|=0.46-0.64, p<=0.039) and apathy (|ρ|=0.49-0.62, p<=0.028), and both visual and tactile exploration were also correlated with community functioning (|ρ|=0.46-0.48, p<=0.043). The Novelty Exploration Task may be a valuable tool to quantify exploratory behaviour beyond what is captured through standard clinical instruments and human observer ratings. Findings from this initial study suggest that locomotor activity and object interaction tendencies are impacted by motivation, and reveal deficits specifically in visual exploration in schizophrenia.
Collapse
|
18
|
Online LI-rTMS during a Visual Learning Task: Differential Impacts on Visual Circuit and Behavioral Plasticity in Adult Ephrin-A2A5 -/- Mice. eNeuro 2018; 5:eN-NRS-0163-17. [PMID: 29464193 PMCID: PMC5815844 DOI: 10.1523/eneuro.0163-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces plasticity in normal and abnormal neural circuitries, an effect that may be influenced by intrinsic brain activity during treatment. Here, we study potential synergistic effects between low-intensity rTMS (LI-rTMS) and concurrent neural activity in promoting circuit reorganization and enhancing visual behavior. We used ephrin-A2A5–/– mice, which are known to possess visuotopic mapping errors that are ameliorated by LI-rTMS, and assessed the impact of stimulation when mice were engaged in a visual learning task. A detachable coil was affixed to each mouse, and animals underwent 2 wk of 10-min daily training in a two-choice visual discrimination task with concurrent LI-rTMS or sham stimulation. No-task controls (+LI-rTMS/sham) were placed in the task arena without visual task training. At the end of the experiment, visuomotor tracking behavior was assessed, and corticotectal and geniculocortical pathway organization was mapped by injections of fluorescent tracers into the primary visual cortex. Consistent with previous results, LI-rTMS alone improved geniculocortical and corticotectal topography, but combining LI-rTMS with the visual learning task prevented beneficial corticotectal reorganization and had no additional effect on geniculocortical topography or visuomotor tracking performance. Unexpectedly, there was a significant increase in the total number of trials completed by task + LI-rTMS mice in the visual learning task. Comparison with wild-type mice revealed that ephrin-A2A5–/– mice had reduced accuracy and response rates, suggesting a goal-directed behavioral deficit, which was improved by LI-rTMS. Our results suggest that concurrent brain activity during behavior interacts with LI-rTMS, altering behavior and different visual circuits in an abnormal system.
Collapse
|
19
|
Huguet G, Kadar E, Temel Y, Lim LW. Electrical Stimulation Normalizes c-Fos Expression in the Deep Cerebellar Nuclei of Depressive-like Rats: Implication of Antidepressant Activity. THE CEREBELLUM 2017; 16:398-410. [PMID: 27435250 DOI: 10.1007/s12311-016-0812-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The electrical stimulation of specific brain targets has been shown to induce striking antidepressant effects. Despite that recent data have indicated that cerebellum is involved in emotional regulation, the mechanisms by which stimulation improved mood-related behaviors in the cerebellum remained largely obscure. Here, we investigated the stimulation effects of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAc), and lateral habenular nucleus on the c-Fos neuronal activity in various deep cerebellar and vestibular nuclei using the unpredictable chronic mild stress (CMS) animal model of depression. Our results showed that stressed animals had increased number of c-Fos cells in the cerebellar dentate and fastigial nuclei, as well as in the spinal vestibular nucleus. To examine the stimulation effects, we found that vmPFC stimulation significantly decreased the c-Fos activity within the cerebellar fastigial nucleus as compared to the CMS sham. Similarly, there was also a reduction of c-Fos expression in the magnocellular part of the medial vestibular nucleus in vmPFC- and NAc core-stimulated animals when compared to the CMS sham. Correlational analyses showed that the anxiety measure of home-cage emergence escape latency was positively correlated with the c-Fos neuronal activity of the cerebellar fastigial and magnocellular and parvicellular parts of the interposed nuclei in CMS vmPFC-stimulated animals. Interestingly, there was a strong correlation among activation in these cerebellar nuclei, indicating that the antidepressant-like behaviors were possibly mediated by the vmPFC stimulation-induced remodeling within the forebrain-cerebellar neurocircuitry.
Collapse
Affiliation(s)
- Gemma Huguet
- Department of Biology, University of Girona, Girona, Spain
| | - Elisabet Kadar
- Department of Biology, University of Girona, Girona, Spain.
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, Maastricht, The Netherlands
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China. .,Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
20
|
Stamenkovic V, Stamenkovic S, Jaworski T, Gawlak M, Jovanovic M, Jakovcevski I, Wilczynski GM, Kaczmarek L, Schachner M, Radenovic L, Andjus PR. The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment. Brain Struct Funct 2017; 222:393-415. [PMID: 27089885 DOI: 10.1007/s00429-016-1224-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/04/2016] [Indexed: 02/05/2023]
Abstract
The importance of the extracellular matrix (ECM) glycoprotein tenascin-C (TnC) and the ECM degrading enzymes, matrix metalloproteinases (MMPs) -2 and -9, in cerebellar histogenesis is well established. This study aimed to examine whether there is a functional relationship between these molecules in regulating structural plasticity of the lateral deep cerebellar nucleus. To this end, starting from postnatal day 21, TnC- or MMP-9-deficient mice were exposed to an enriched environment (EE). We show that 8 weeks of exposure to EE leads to reduced lectin-based staining of perineuronal nets (PNNs), reduction in the size of GABAergic and increase in the number and size of glutamatergic synaptic terminals in wild-type mice. Conversely, TnC-deficient mice showed reduced staining of PNNs compared to wild-type mice maintained under standard conditions, and exposure to EE did not further reduce, but even slightly increased PNN staining. EE did not affect the densities of the two types of synaptic terminals in TnC-deficient mice, while the size of inhibitory, but not excitatory synaptic terminals was increased. In the time frame of 4-8 weeks, MMP-9, but not MMP-2, was observed to influence PNN remodeling and cerebellar synaptic plasticity as revealed by measurement of MMP-9 activity and colocalization with PNNs and synaptic markers. These findings were supported by observations on MMP-9-deficient mice. The present study suggests that TnC contributes to the regulation of structural plasticity in the cerebellum and that interactions between TnC and MMP-9 are likely to be important for these processes to occur.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Stefan Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Tomasz Jaworski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Maciej Gawlak
- Laboratory of Physiology and Pathophysiology, Center for Preclinical Research and Technology, The Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Milos Jovanovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Igor Jakovcevski
- Experimental Neurophysiology, University Hospital Cologne, 50931, Cologne, Germany
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, 53175, Bonn, Germany
| | - Grzegorz M Wilczynski
- Laboratory of Neuromorphology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Lidija Radenovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Pavle R Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
21
|
Holland AA, Hughes CW, Harder L, Silver C, Bowers DC, Stavinoha PL. Effect of motivation on academic fluency performance in survivors of pediatric medulloblastoma. Child Neuropsychol 2015; 22:570-86. [PMID: 25825959 DOI: 10.1080/09297049.2015.1023272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It has been proposed previously that extrinsic motivation may enable survivors of childhood medulloblastoma to significantly improve aspects of neurocognitive performance. In healthy populations, enhanced motivation has been shown to promote academic fluency, a domain likely more relevant to the educational outcomes of pediatric medulloblastoma survivors than academic skill development. The present study investigates the effect of enhanced extrinsic motivation on fluent (i.e., accurate and efficient) academic performance in pediatric medulloblastoma survivors. Participants were 36 children, ages 7-18, who had completed treatment for medulloblastoma. Participants completed a neuropsychological battery that included administration of equivalent tasks on Forms A and B of the Woodcock-Johnson III Tests of Achievement. Half were randomly assigned to an incentive condition prior to the administration of Form B. Provision of a performance-based incentive resulted in statistically significant improvement, but not normalization of function, in performance on measures of academic fluency. No demographic, treatment-related, academic, neuropsychological, or self-perception variables predicted response to incentive. Findings suggest that academic performance of survivors may significantly improve under highly motivating conditions. In addition to implications for educational services, this finding raises the novel possibility that decreased motivation represents an inherent neuropsychological deficit in this population and provides a rationale for further investigation of factors affecting individual differences in motivational processes. Further, by examining effort in a context where effort is not inherently suspect, present findings also significantly contribute to the debate regarding the effects of effort and motivation on neuropsychological performance.
Collapse
Affiliation(s)
- Alice Ann Holland
- a Department of Psychology , Children's Medical Center Dallas , Dallas , TX , USA.,b Department of Psychiatry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Carroll W Hughes
- b Department of Psychiatry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Lana Harder
- a Department of Psychology , Children's Medical Center Dallas , Dallas , TX , USA.,b Department of Psychiatry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheryl Silver
- c Department of Rehabilitation Science , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Daniel C Bowers
- d Department of Neuro-Oncology , Children's Medical Center Dallas , Dallas , TX , USA.,e Department of Pediatrics , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Peter L Stavinoha
- a Department of Psychology , Children's Medical Center Dallas , Dallas , TX , USA.,b Department of Psychiatry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
22
|
Mowery TM, Wilson SM, Kostylev PV, Dina B, Buchholz JB, Prieto AL, Garraghty PE. Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. Int J Dev Neurosci 2014; 40:15-23. [PMID: 25447790 DOI: 10.1016/j.ijdevneu.2014.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/26/2014] [Accepted: 10/23/2014] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorders (ASD) is diagnosed in males at a much higher rate than females. For this reason, the majority of autism research has used male subjects exclusively. However; more recent studies using genetic sex as a factor find that the development of the male and female brain is differentially affected by ASD. That is, the natural sex-specific differences that exist between male and female brains lead to sexually dimorphic expressions of autism. Here we investigate the putative sexual dimorphism that exists in the deep cerebellar nuclei of male and female rats exposed to valproic acid (VPA) on embryological day 12.5. We find natural sex-specific differences in adult nucleus area, length, and estimated cell populations. Therefore VPA exposure during embryology creates some sex-specific deficits such as higher cell counts in the VPA males and lower cell counts in the VPA females. At the same time, some effects of VPA exposure occur regardless of sex. That is, smaller nucleus area and length lead to truncated nuclei in both VPA males and females. These deficits are more pronounced in the VPA males suggesting that genetic sex could play a role in teratogenic susceptibility to VPA. Taken together our results suggests that VPA exposure induces sexually dimorphic aberrations in morphological development along a mediolateral gradient at a discrete region of the hindbrain approximate to rhombomere (R) 1 and 2. Sex-specific disruption of the local and long-range projections emanating from this locus of susceptibility could offer a parsimonious explanation for the brain-wide neuroanatomical variance reported in males and females with ASD.
Collapse
Affiliation(s)
- Todd M Mowery
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Sarah M Wilson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Polina V Kostylev
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Blair Dina
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Jennifer B Buchholz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Anne L Prieto
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Preston E Garraghty
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States
| |
Collapse
|
23
|
Vonder Haar C, Maass WR, Jacobs EA, Hoane MR. Deficits in discrimination after experimental frontal brain injury are mediated by motivation and can be improved by nicotinamide administration. J Neurotrauma 2014; 31:1711-20. [PMID: 24934504 DOI: 10.1089/neu.2014.3459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Restorative Neuroscience Laboratory, Center for Integrated Research in Cognitive and Neural Sciences, Department of Psychology, Southern Illinois University , Carbondale, Illinois
| | | | | | | |
Collapse
|
24
|
Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol 2014; 19:317-31. [PMID: 24851284 DOI: 10.1111/adb.12101] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although cerebellar alterations have been consistently noted in the addiction literature, the pathophysiology of this link remains unclear. The cerebellum is commonly classified as a motor structure, but human functional neuroimaging along with clinical observations in cerebellar stroke patients and anatomical tract tracing in non-human primates suggests its involvement in cognitive and affective processing. A comprehensive literature search on the role of the cerebellum in addiction was performed. This review article (1) considers the potential role of the cerebellum in addiction; (2) summarizes the cerebellar structural alterations linked to addiction; (3) presents the functional neuroimaging evidence linking the cerebellum with addiction; and (4) proposes a model for addiction that underscores the role of the cerebellum. The data implicate the cerebellum as an intermediary between motor and reward, motivation and cognitive control systems, as all are relevant etiologic factors in addiction. Furthermore, consideration of these findings could contribute to deeper and more sophisticated insights into normal reward and motivational function. The goal of this review is to spread awareness of cerebellar involvement in addictive processes, and to suggest a preliminary model for its potential role.
Collapse
Affiliation(s)
- Eric A. Moulton
- P.A.I.N. Group; Center for Pain and the Brain; Boston Children's Hospital; Massachusetts General Hospital, McLean Hospital, Harvard Medical School; Boston MA USA
| | - Igor Elman
- Providence Veterans Administration Medical Center; Providence RI USA
- Department of Psychiatry; Cambridge Health Alliance, Harvard Medical School; Cambridge MA USA
| | - Lino R. Becerra
- P.A.I.N. Group; Center for Pain and the Brain; Boston Children's Hospital; Massachusetts General Hospital, McLean Hospital, Harvard Medical School; Boston MA USA
| | | | - David Borsook
- P.A.I.N. Group; Center for Pain and the Brain; Boston Children's Hospital; Massachusetts General Hospital, McLean Hospital, Harvard Medical School; Boston MA USA
| |
Collapse
|
25
|
Cerebellar dentate nuclei lesions alter prefrontal cortex dendritic spine morphology. Brain Res 2014; 1544:15-24. [DOI: 10.1016/j.brainres.2013.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/22/2013] [Accepted: 11/29/2013] [Indexed: 11/15/2022]
|
26
|
The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plast 2013; 2013:908741. [PMID: 24198973 PMCID: PMC3806519 DOI: 10.1155/2013/908741] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022] Open
Abstract
Traditionally, the pathophysiology of cervical dystonia has been regarded mainly in relation to neurochemical abnormities in the basal ganglia. Recently, however, substantial evidence has emerged for cerebellar involvement. While the absence of neurological "cerebellar signs" in most dystonia patients may be considered at least provoking, there are more subtle indications of cerebellar dysfunction in complex, demanding tasks. Specifically, given the role of the cerebellum in the neural representation of time, in the millisecond range, dysfunction to this structure is considered to be of greater importance than dysfunction of the basal ganglia. In the current study, we investigated the performance of cervical dystonia patients on a computer task known to engage the cerebellum, namely, the interception of a moving target with changing parameters (speed, acceleration, and angle) with a simple response (pushing a button). The cervical dystonia patients achieved significantly worse results than a sample of healthy controls. Our results suggest that the cervical dystonia patients are impaired at integrating incoming visual information with motor responses during the prediction of upcoming actions, an impairment we interpret as evidence of cerebellar dysfunction.
Collapse
|
27
|
Filip P, Lungu OV, Bareš M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol 2013; 124:1269-76. [PMID: 23422326 DOI: 10.1016/j.clinph.2013.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/06/2013] [Accepted: 01/08/2013] [Indexed: 11/17/2022]
Abstract
Although dystonia has traditionally been regarded as a basal ganglia dysfunction, recent provocative evidence has emerged of cerebellar involvement in the pathophysiology of this enigmatic disease. This review synthesizes the data suggesting that the cerebellum plays an important role in dystonia etiology, from neuroanatomical research of complex networks showing that the cerebellum is connected to a wide range of other central nervous system structures involved in movement control to animal models indicating that signs of dystonia are due to cerebellum dysfunction and completely disappear after cerebellectomy, and finally to clinical observations in secondary dystonia patients with various types of cerebellar lesions. We propose that dystonia is a large-scale dysfunction, involving not only cortico-basal ganglia-thalamo-cortical pathways, but the cortico-ponto-cerebello-thalamo-cortical loop as well. Even in the absence of traditional "cerebellar signs" in most dystonia patients, there are more subtle indications of cerebellar dysfunction. It is clear that as long as the cerebellum's role in dystonia genesis remains unexamined, it will be difficult to significantly improve the current standards of dystonia treatment or to provide curative treatment.
Collapse
Affiliation(s)
- Pavel Filip
- Central European Institute of Technology, CEITEC MU, Behavioral and Social Neuroscience Research Group, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
28
|
Jung YC, Schulte T, Müller-Oehring EM, Hawkes W, Namkoong K, Pfefferbaum A, Sullivan EV. Synchrony of anterior cingulate cortex and insular-striatal activation predicts ambiguity aversion in individuals with low impulsivity. Cereb Cortex 2013; 24:1397-408. [PMID: 23355606 DOI: 10.1093/cercor/bht008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Personal attitude toward ambiguity contributes to individual differences in decision making in uncertain situations. Operationally, these attitudes reflect the various coping strategies elected to overcome the limited information. A key brain region involved in cognitive control for performance adjustments is the dorsal anterior cingulate cortex (dACC). To test how dACC functional network connectivity would be modulated by uncertainty and differ between individuals, 24 healthy participants underwent functional MRI in 3 sequential runs: 1 resting-state and 2 decision-making task runs. Individuals with lower nonplanning impulsiveness made greater use of a Pass option and avoided uncertain ambiguous situations. Seed-based functional connectivity analysis during the task runs revealed that stronger activation synchrony between the left dACC and the right anterior insula correlated with greater use of a Pass response option. During the resting-state, stronger resting-state functional connectivity between the left dACC and the ventral striatum predicted the adoption of Pass as a behavioral strategy and correlated with stronger task-activated synchrony between the dACC and the right anterior insula. Our findings indicate that that the synchrony between the dACC and insula-striatal circuitry was greater in individuals with low compared with high nonplanning impulsiveness and contributed to adopting Pass as a useful behavioral strategy.
Collapse
Affiliation(s)
- Young-Chul Jung
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Swain RA, Kerr AL, Thompson RF. The cerebellum: a neural system for the study of reinforcement learning. Front Behav Neurosci 2011; 5:8. [PMID: 21427778 PMCID: PMC3049318 DOI: 10.3389/fnbeh.2011.00008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/21/2011] [Indexed: 11/13/2022] Open
Abstract
In its strictest application, the term “reinforcement learning” refers to a computational approach to learning in which an agent (often a machine) interacts with a mutable environment to maximize reward through trial and error. The approach borrows essentials from several fields, most notably Computer Science, Behavioral Neuroscience, and Psychology. At the most basic level, a neural system capable of mediating reinforcement learning must be able to acquire sensory information about the external environment and internal milieu (either directly or through connectivities with other brain regions), must be able to select a behavior to be executed, and must be capable of providing evaluative feedback about the success of that behavior. Given that Psychology informs us that reinforcers, both positive and negative, are stimuli or consequences that increase the probability that the immediately antecedent behavior will be repeated and that reinforcer strength or viability is modulated by the organism's past experience with the reinforcer, its affect, and even the state of its muscles (e.g., eyes open or closed); it is the case that any neural system that supports reinforcement learning must also be sensitive to these same considerations. Once learning is established, such a neural system must finally be able to maintain continued response expression and prevent response drift. In this report, we examine both historical and recent evidence that the cerebellum satisfies all of these requirements. While we report evidence from a variety of learning paradigms, the majority of our discussion will focus on classical conditioning of the rabbit eye blink response as an ideal model system for the study of reinforcement and reinforcement learning.
Collapse
Affiliation(s)
- Rodney A Swain
- Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | | | | |
Collapse
|