1
|
Ell MA, Schiele MA, Iovino N, Domschke K. Epigenetics of Fear, Anxiety and Stress - Focus on Histone Modifications. Curr Neuropharmacol 2024; 22:843-865. [PMID: 36946487 PMCID: PMC10845084 DOI: 10.2174/1570159x21666230322154158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 03/23/2023] Open
Abstract
Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.
Collapse
Affiliation(s)
- Marco A. Ell
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicola Iovino
- Department of Chromation Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
3
|
Shang A, Bieszczad KM. Epigenetic mechanisms regulate cue memory underlying discriminative behavior. Neurosci Biobehav Rev 2022; 141:104811. [PMID: 35961385 DOI: 10.1016/j.neubiorev.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the "here and now" to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience.
Collapse
Affiliation(s)
- Andrea Shang
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kasia M Bieszczad
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ 08854, USA; Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA.
| |
Collapse
|
4
|
Epigenetic correlates of the psychological interventions outcomes: A systematic review and meta-analysis. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Schiele MA, Thiel C, Deckert J, Zaudig M, Berberich G, Domschke K. Monoamine Oxidase A Hypomethylation in Obsessive-Compulsive Disorder: Reversibility By Successful Psychotherapy? Int J Neuropsychopharmacol 2020; 23:319-323. [PMID: 32133483 PMCID: PMC7251630 DOI: 10.1093/ijnp/pyaa016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epigenetic markers such as DNA methylation of the monoamine oxidase A (MAOA) gene have previously been shown to be altered in anxiety- and stress-related disorders and to constitute a potential mechanism of action of psychotherapeutic interventions such as cognitive behavioral therapy in these disorders. The present study for the first time, to our knowledge, investigated MAOA methylation in patients with obsessive-compulsive disorder applying a longitudinal psychotherapy-epigenetic approach. METHODS The present sample comprised 14 unmedicated female patients with primary obsessive-compulsive disorder and 14 age- and sex-matched healthy controls. MAOA promoter methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from whole blood before and after an 8- to 10-week semi-standardized, obsessive-compulsive disorder-specific cognitive behavioral therapy. Clinical response was assessed by means of the Yale-Brown Obsessive Compulsive Scale. RESULTS Significantly lower MAOA promoter methylation was discerned in obsessive-compulsive disorder patients relative to healthy controls. Data were available for 12 patients with obsessive-compulsive disorder and 14 controls. Furthermore, following cognitive behavioral therapy, clinical improvement, i.e., decreases in obsessive-compulsive disorder symptoms as indicated by lower scores on the Yale-Brown Obsessive Compulsive Scale was found to be significantly correlated with increases in MAOA methylation levels in patients (data available for n = 7). CONCLUSIONS The present pilot data suggest MAOA hypomethylation as a potential risk marker of obsessive-compulsive disorder and an increase in MAOA methylation levels as a possible mechanistic correlate of response to cognitive behavioral therapy in obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christiane Thiel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | | | | | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Correspondence: Prof. Katharina Domschke, MA, MD, PhD, Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany ()
| |
Collapse
|
6
|
Ziegler C, Grundner-Culemann F, Schiele MA, Schlosser P, Kollert L, Mahr M, Gajewska A, Lesch KP, Deckert J, Köttgen A, Domschke K. The DNA methylome in panic disorder: a case-control and longitudinal psychotherapy-epigenetic study. Transl Psychiatry 2019; 9:314. [PMID: 31754096 PMCID: PMC6872551 DOI: 10.1038/s41398-019-0648-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/23/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
In panic disorder (PD), epigenetic mechanisms such as DNA methylation of candidate genes have been suggested to play a key role at the intersection of genetic and environmental factors. On an epigenome-wide level, however, only two studies in PD patients have been published so far, while to date no study has intra-individually analyzed dynamic epigenetic correlates of treatment-response in PD on a DNA methylome level. Here, an epigenome-wide association study (EWAS) was performed in a sample of 57 PD patients and matched healthy controls using the Illumina MethylationEPIC BeadChip, along with a longitudinal approach assessing changes on the DNA methylome level corresponding to clinical effects of a manualized six-week cognitive-behavioral therapy (CBT) in PD. While no epigenome-wide significant hits could be discerned, top suggestive evidence was observed for decreased methylation in PD at cg19917903 in the Cilia and Flagella Associated Protein 46 (CFAP46) gene, and for an increase in methylation after CBT at cg06943668 in the Interleukin 1 Receptor Type 1 (IL1R1) gene in treatment responders to CBT. Additional exploratory analyses based on biological validity and a combined statistical/biological ranking point to further new potential PD risk genes such as the CCL4L1 or GMNN genes, and suggest dynamic methylation of, e.g., the ZFP622 and the SLC43A2 genes along with response to CBT. These EWAS and first longitudinal epigenome-wide pilot data in PD add to the emerging candidate gene-based body of evidence for epigenetic mechanisms to be involved in PD pathogenesis and to possibly constitute dynamic biological correlates of therapeutic interventions.
Collapse
Affiliation(s)
- Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- 0000 0000 9428 7911grid.7708.8Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- 0000 0000 9428 7911grid.7708.8Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Leonie Kollert
- 0000 0001 1958 8658grid.8379.5Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Marina Mahr
- 0000 0001 1958 8658grid.8379.5Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Agnieszka Gajewska
- 0000 0001 1958 8658grid.8379.5Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- 0000 0001 1958 8658grid.8379.5Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany ,0000 0001 2288 8774grid.448878.fLaboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia ,0000 0001 0481 6099grid.5012.6Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Jürgen Deckert
- 0000 0001 1958 8658grid.8379.5Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Anna Köttgen
- 0000 0000 9428 7911grid.7708.8Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
General anesthetic neurotoxicity in the young: Mechanism and prevention. Neurosci Biobehav Rev 2019; 107:883-896. [PMID: 31606415 DOI: 10.1016/j.neubiorev.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
General anesthesia (GA) is usually considered to safely induce a reversible unconscious state allowing surgery to be performed without pain. A growing number of studies, in particular pre-clinical studies, however, demonstrate that general anesthetics can cause neuronal death and even long-term neurological deficits. Herein, we report our literature review and meta-analysis data of the neurological outcomes after anesthesia in the young. We also review available mechanistic and epigenetic data of GA exposure related to cognitive impairment per se and the potential preventive strategies including natural herbal compounds to attenuate those side effects. In summary, anesthetic-induced neurotoxicity may be treatable and natural herbal compounds and other medications may have great potential for such use but warrants further study before clinical applications can be initiated.
Collapse
|
8
|
Zhang R, Jia W, Wang Y, Zhu Y, Liu F, Li B, Liu F, Wang H, Tan Q. A glutamatergic insular-striatal projection regulates the reinstatement of cue-associated morphine-seeking behavior in mice. Brain Res Bull 2019; 152:257-264. [PMID: 31351159 DOI: 10.1016/j.brainresbull.2019.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Recently, the insular cortex (IC) was identified as part of the neuronal circuit responsible for the reward expectations in cue-triggered behaviours. Moreover, there are evidences that connections between the IC and the ventral striatum, particularly with the nucleus accumbens (NAc), may mediate the retrieval and performance of actions based on incentive memory. However, the precise role of the IC-NAc connections in cue-related drug-seeking behaviour remains unclear. We used the morphine-induced conditioned place preference (CPP) paradigm to assess the formation and relapse of cue-related drug-seeking. cFos immunostaining was used to determine the activation of the brain regions. Chemogenetic and optogenetic methods were used to manipulate the activity of IC-to-NAc projection neurons. The result showed that neurons in IC and NAc core but not NAc shell were activated following cue-induced morphine-seeking behaviour. Negligible effect of inhibition of IC-to-NAc core projection (IC→NAc core) on morphine CPP expression, whereas chemogenetic inactivation of this projection potently blocked the reinstatement of expressed morphine CPP. Furthermore, optogenetic inhibition of glutamatergic IC→NAc core inputs significant suppressed the CPP reinstatement without significant effect on CPP expression. We demonstrated here, for the first time, that IC→NAc core glutamatergic projection is required for the reinstatement of cue-associated drug seeking behaviour in mice. The present study provide insights into modulations of relapse of cue-associated drug-seeking behaviour following repeated overexposure to opioids in humans.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Psychosomatic, Xijing Hospital, Air Force Medical University, China; Department of Psychiatry, Xi'an Mental Health Center, China.
| | - Wei Jia
- Department of Psychiatry, Xi'an Mental Health Center, China
| | - Yunpeng Wang
- College of Forensic Science, Xi'an Jiaotong University, China
| | - Yongsheng Zhu
- College of Forensic Science, Xi'an Jiaotong University, China
| | - Feihu Liu
- Department of Psychiatry, Xi'an Mental Health Center, China
| | - Baojun Li
- Department of Psychiatry, Xi'an Mental Health Center, China
| | - Fei Liu
- Department of Psychiatry, Xi'an Mental Health Center, China
| | - Huaning Wang
- Department of Psychosomatic, Xijing Hospital, Air Force Medical University, China.
| | - Qingrong Tan
- Department of Psychosomatic, Xijing Hospital, Air Force Medical University, China.
| |
Collapse
|
9
|
Marshall PR, Bredy TW. Neuroepigenetic mechanisms underlying fear extinction: emerging concepts. Psychopharmacology (Berl) 2019; 236:133-142. [PMID: 30506235 PMCID: PMC7293886 DOI: 10.1007/s00213-018-5084-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
An understanding of how memory is acquired and how it can be modified in fear-related anxiety disorders, with the enhancement of failing memories on one side and a reduction or elimination of traumatic memories on the other, is a key unmet challenge in the fields of neuroscience and neuropsychiatry. The latter process depends on an important form of learning called fear extinction, where a previously acquired fear-related memory is decoupled from its ability to control behaviour through repeated non-reinforced exposure to the original fear-inducing cue. Although simple in description, fear extinction relies on a complex pattern of brain region and cell-type specific processes, some of which are unique to this form of learning and, for better or worse, contribute to the inherent instability of fear extinction memory. Here, we explore an emerging layer of biology that may compliment and enrich the synapse-centric perspective of fear extinction. As opposed to the more classically defined role of protein synthesis in the formation of fear extinction memory, a neuroepigenetic view of the experience-dependent gene expression involves an appreciation of dynamic changes in the state of the entire cell: from a transient change in plasticity at the level of the synapse, to potentially more persistent long-term effects within the nucleus. A deeper understanding of neuroepigenetic mechanisms and how they influence the formation and maintenance of fear extinction memory has the potential to enable the development of more effective treatment approaches for fear-related neuropsychiatric conditions.
Collapse
Affiliation(s)
- Paul R Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Abstract
Considering that growing population of very young children is exposed to general anesthesia every year, it is of utmost importance to understand how and whether such practice may affect the development and growth of their very immature and vulnerable brains. Compelling evidence from animal studies suggests that an early exposure to general anesthesia is detrimental to normal brain development leading to structural and functional impairments of neurons and glia, and long-lasting impairments in normal emotional and cognitive development. Although the evidence from animal studies is overwhelming and confirmed across species examined from rodents to non-human primates, the evidence from human studies is inconsistent and not conclusive at present. In this review we focus on new developments in animal studies of anesthesia-induced developmental neurotoxicity and summarize recent clinical studies while focusing on outcome measures and exposure variables in terms of their utility for assessing cognitive and behavioral development in children.
Collapse
Affiliation(s)
| | - Ansgar Brambrick
- Department of Anesthesiology, Columbia University Medical Center, New York, NY USA
| |
Collapse
|
11
|
Schiele MA, Ziegler C, Kollert L, Katzorke A, Schartner C, Busch Y, Gromer D, Reif A, Pauli P, Deckert J, Herrmann MJ, Domschke K. Plasticity of Functional MAOA Gene Methylation in Acrophobia. Int J Neuropsychopharmacol 2018; 21:822-827. [PMID: 30169842 PMCID: PMC6119289 DOI: 10.1093/ijnp/pyy050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022] Open
Abstract
Epigenetic mechanisms have been proposed to mediate fear extinction in animal models. Here, MAOA methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells before and after a 2-week exposure therapy in a sample of n = 28 female patients with acrophobia as well as in n = 28 matched healthy female controls. Clinical response was measured using the Acrophobia Questionnaire and the Attitude Towards Heights Questionnaire. The functional relevance of altered MAOA methylation was investigated by luciferase-based reporter gene assays. MAOA methylation was found to be significantly decreased in patients with acrophobia compared with healthy controls. Furthermore, MAOA methylation levels were shown to significantly increase after treatment and correlate with treatment response as reflected by decreasing Acrophobia Questionnaire/Attitude Towards Heights Questionnaire scores. Functional analyses revealed decreased reporter gene activity in presence of methylated compared with unmethylated pCpGfree_MAOA reporter gene vector constructs. The present proof-of-concept psychotherapy-epigenetic study for the first time suggests functional MAOA methylation changes as a potential epigenetic correlate of treatment response in acrophobia and fosters further investigation into the notion of epigenetic mechanisms underlying fear extinction.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Leonie Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Andrea Katzorke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Christoph Schartner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany,Department of Physiology, University of California, San Francisco, California
| | - Yasmin Busch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Daniel Gromer
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt, Germany
| | - Paul Pauli
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Correspondence: Katharina Domschke, MA, MD, PhD, Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany ()
| |
Collapse
|
12
|
Heinig I, Pittig A, Richter J, Hummel K, Alt I, Dickhöver K, Gamer J, Hollandt M, Koelkebeck K, Maenz A, Tennie S, Totzeck C, Yang Y, Arolt V, Deckert J, Domschke K, Fydrich T, Hamm A, Hoyer J, Kircher T, Lueken U, Margraf J, Neudeck P, Pauli P, Rief W, Schneider S, Straube B, Ströhle A, Wittchen HU. Optimizing exposure-based CBT for anxiety disorders via enhanced extinction: Design and methods of a multicentre randomized clinical trial. Int J Methods Psychiatr Res 2017; 26:e1560. [PMID: 28322476 PMCID: PMC6877126 DOI: 10.1002/mpr.1560] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
Exposure-based psychological interventions currently represent the empirically best established first line form of cognitive-behavioural therapy for all types of anxiety disorders. Although shown to be highly effective in both randomized clinical and other studies, there are important deficits: (1) the core mechanisms of action are still under debate, (2) it is not known whether such treatments work equally well in all forms of anxiety disorders, including comorbid diagnoses like depression, (3) it is not known whether an intensified treatment with more frequent sessions in a shorter period of time provides better outcome than distributed sessions over longer time intervals. This paper reports the methods and design of a large-scale multicentre randomized clinical trial (RCT) involving up to 700 patients designed to answer these questions. Based on substantial advances in basic research we regard extinction as the putative core candidate model to explain the mechanism of action of exposure-based treatments. The RCT is flanked by four add-on projects that apply experimental neurophysiological and psychophysiological, (epi)genetic and ecological momentary assessment methods to examine extinction and its potential moderators. Beyond the focus on extinction we also involve stakeholders and routine psychotherapists in preparation for more effective dissemination into clinical practice.
Collapse
Affiliation(s)
- Ingmar Heinig
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Andre Pittig
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Jan Richter
- Department of Psychology, Universität Greifswald, Greifswald, Germany
| | - Katrin Hummel
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Isabel Alt
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Dickhöver
- Center of Mental Health, Department of Biological Psychology, Clinical Psychology, and Psychotherapy, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jennifer Gamer
- Center of Mental Health, Department of Biological Psychology, Clinical Psychology, and Psychotherapy, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Maike Hollandt
- Department of Psychology, Universität Greifswald, Greifswald, Germany
| | - Katja Koelkebeck
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Münster, Münster, Germany
| | - Anne Maenz
- Clinical Psychology and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Sophia Tennie
- Clinical Psychology and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Christina Totzeck
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Münster, Münster, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany.,Department of Psychiatry, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Thomas Fydrich
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alfons Hamm
- Department of Psychology, Universität Greifswald, Greifswald, Germany
| | - Jürgen Hoyer
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Lueken
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Paul Pauli
- Center of Mental Health, Department of Biological Psychology, Clinical Psychology, and Psychotherapy, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Winfried Rief
- Clinical Psychology and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Silvia Schneider
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
General Anesthesia Causes Epigenetic Histone Modulation of c-Fos and Brain-derived Neurotrophic Factor, Target Genes Important for Neuronal Development in the Immature Rat Hippocampus. Anesthesiology 2017; 124:1311-1327. [PMID: 27028464 DOI: 10.1097/aln.0000000000001111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early postnatal exposure to general anesthesia (GA) may be detrimental to brain development, resulting in long-term cognitive impairments. Older literature suggests that in utero exposure of rodents to GA causes cognitive impairments in the first-generation as well as in the second-generation offspring never exposed to GA. Thus, the authors hypothesize that transient exposure to GA during critical stages of synaptogenesis causes epigenetic changes in chromatin with deleterious effects on transcription of target genes crucial for proper synapse formation and cognitive development. They focus on the effects of GA on histone acetyltransferase activity of cAMP-responsive element-binding protein and the histone-3 acetylation status in the promoters of the target genes brain-derived neurotrophic factor and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (c-Fos) known to regulate the development of neuronal morphology and function. METHODS Seven-day-old rat pups were exposed to a sedative dose of midazolam followed by combined nitrous oxide and isoflurane anesthesia for 6 h. Hippocampal neurons and organotypic hippocampal slices were cultured in vitro and exposed to GA for 24 h. RESULTS GA caused epigenetic modulations manifested as histone-3 hypoacetylation (decrease of 25 to 30%, n = 7 to 9) and fragmentation of cAMP-responsive element-binding protein (two-fold increase, n = 6) with 25% decrease in its histone acetyltransferase activity, which resulted in down-regulated transcription of brain-derived neurotrophic factor (0.2- to 0.4-fold, n = 7 to 8) and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (about 0.2-fold, n = 10 to 12). Reversal of histone hypoacetylation with sodium butyrate blocked GA-induced morphological and functional impairments of neuronal development and synaptic communication. CONCLUSION Long-term impairments of neuronal development and synaptic communication could be caused by GA-induced epigenetic phenomena.
Collapse
|
14
|
Hemstedt TJ, Lattal KM, Wood MA. Reconsolidation and extinction: Using epigenetic signatures to challenge conventional wisdom. Neurobiol Learn Mem 2017; 142:55-65. [PMID: 28119018 DOI: 10.1016/j.nlm.2017.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms have the potential to give rise to lasting changes in cell function that ultimately can affect behavior persistently. This concept is especially interesting with respect to fear reconsolidation and fear memory extinction. These two behavioral approaches are used in the laboratory to investigate how fear memory can be attenuated, which becomes important when searching for therapeutic intervention to treat anxiety disorders and post-traumatic stress disorder. Here we review the role of several key epigenetic mechanisms in reconsolidation and extinction of learned fear and their potential to persistently alter behavioral responses to conditioned cues. We also briefly discuss how epigenetic mechanisms may establish persistent behaviors that challenge our definitions of extinction and reconsolidation.
Collapse
Affiliation(s)
- Thekla J Hemstedt
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
| |
Collapse
|
15
|
Montagud-Romero S, Montesinos J, Pascual M, Aguilar MA, Roger-Sanchez C, Guerri C, Miñarro J, Rodríguez-Arias M. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:39-48. [PMID: 27180319 DOI: 10.1016/j.pnpbp.2016.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022]
Abstract
Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M A Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Roger-Sanchez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
16
|
MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy. Transl Psychiatry 2016; 6:e773. [PMID: 27045843 PMCID: PMC4872399 DOI: 10.1038/tp.2016.41] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/01/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022] Open
Abstract
Epigenetic signatures such as methylation of the monoamine oxidase A (MAOA) gene have been found to be altered in panic disorder (PD). Hypothesizing temporal plasticity of epigenetic processes as a mechanism of successful fear extinction, the present psychotherapy-epigenetic study for we believe the first time investigated MAOA methylation changes during the course of exposure-based cognitive behavioral therapy (CBT) in PD. MAOA methylation was compared between N=28 female Caucasian PD patients (discovery sample) and N=28 age- and sex-matched healthy controls via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. MAOA methylation was furthermore analyzed at baseline (T0) and after a 6-week CBT (T1) in the discovery sample parallelized by a waiting time in healthy controls, as well as in an independent sample of female PD patients (N=20). Patients exhibited lower MAOA methylation than healthy controls (P<0.001), and baseline PD severity correlated negatively with MAOA methylation (P=0.01). In the discovery sample, MAOA methylation increased up to the level of healthy controls along with CBT response (number of panic attacks; T0-T1: +3.37±2.17%), while non-responders further decreased in methylation (-2.00±1.28%; P=0.001). In the replication sample, increases in MAOA methylation correlated with agoraphobic symptom reduction after CBT (P=0.02-0.03). The present results support previous evidence for MAOA hypomethylation as a PD risk marker and suggest reversibility of MAOA hypomethylation as a potential epigenetic correlate of response to CBT. The emerging notion of epigenetic signatures as a mechanism of action of psychotherapeutic interventions may promote epigenetic patterns as biomarkers of lasting extinction effects.
Collapse
|
17
|
Pizzimenti CL, Lattal KM. Epigenetics and memory: causes, consequences and treatments for post-traumatic stress disorder and addiction. GENES BRAIN AND BEHAVIOR 2015; 14:73-84. [PMID: 25560936 DOI: 10.1111/gbb.12187] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/24/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
Abstract
Understanding the interaction between fear and reward at the circuit and molecular levels has implications for basic scientific approaches to memory and for understanding the etiology of psychiatric disorders. Both stress and exposure to drugs of abuse induce epigenetic changes that result in persistent behavioral changes, some of which may contribute to the formation of a drug addiction or a stress-related psychiatric disorder. Converging evidence suggests that similar behavioral, neurobiological and molecular mechanisms control the extinction of learned fear and drug-seeking responses. This may, in part, account for the fact that individuals with post-traumatic stress disorder have a significantly elevated risk of developing a substance use disorder and have high rates of relapse to drugs of abuse, even after long periods of abstinence. At the behavioral level, a major challenge in treatments is that extinguished behavior is often not persistent, returning with changes in context, the passage of time or exposure to mild stressors. A common goal of treatments is therefore to weaken the ability of stressors to induce relapse. With the discovery of epigenetic mechanisms that create persistent molecular signals, recent work on extinction has focused on how modulating these epigenetic targets can create lasting extinction of fear or drug-seeking behavior. Here, we review recent evidence pointing to common behavioral, systems and epigenetic mechanisms in the regulation of fear and drug seeking. We suggest that targeting these mechanisms in combination with behavioral therapy may promote treatment and weaken stress-induced relapse.
Collapse
Affiliation(s)
- C L Pizzimenti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
18
|
Zhao Y, Liu P, Chu Z, Liu F, Han W, Xun X, Dang YH. Electrolytic lesions of the bilateral ventrolateral orbital cortex inhibit methamphetamine-associated contextual memory formation in rats. Brain Res 2015; 1624:214-221. [DOI: 10.1016/j.brainres.2015.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/19/2015] [Accepted: 07/25/2015] [Indexed: 12/29/2022]
|
19
|
Hitchcock LN, Lattal KM. Histone-mediated epigenetics in addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 128:51-87. [PMID: 25410541 DOI: 10.1016/b978-0-12-800977-2.00003-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many of the brain regions, neurotransmitter systems, and behavioral changes that occur after occasional drug use in healthy subjects and after chronic drug abuse in addicted patients are well characterized. An emerging literature suggests that epigenetic processes, those processes that regulate the accessibility of DNA to regulatory proteins within the nucleus, are keys to how addiction develops and how it may be treated. Investigations of the regulation of chromatin, the organizational system of DNA, by histone modification are leading to a new understanding of the cellular and behavioral alterations that occur after drug use. We will describe how, when, and where histone tails are modified and how some of the most recognized histone regulation patterns are involved in the cycle of addiction, including initial and chronic drug intake, withdrawal, abstinence, and relapse. Finally, we consider how an approach that targets histone modifications may promote successful treatment.
Collapse
Affiliation(s)
- Leah N Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem Soc Trans 2015; 42:569-81. [PMID: 24646280 PMCID: PMC3961057 DOI: 10.1042/bst20130233] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy.
Collapse
|
21
|
Modulation of the extinction of fear learning. Brain Res Bull 2014; 105:61-9. [DOI: 10.1016/j.brainresbull.2014.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/19/2022]
|
22
|
Inhibition of histone deacetylase in the basolateral amygdala facilitates morphine context-associated memory formation in rats. J Mol Neurosci 2014; 55:269-278. [PMID: 24829091 DOI: 10.1007/s12031-014-0317-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 04/28/2014] [Indexed: 12/20/2022]
Abstract
Histone acetylation/deacetylation is a crucial mechanism in memory formation and drug addiction. There is evidence suggesting that histone H3 acetylation may contribute to the long-term neural and behavioral responses to addictive drugs. In addition, the basolateral amygdala (BLA) is critically involved in the formation of cue-associated memories. However, the behavioral effect of histone deacetylase (HDAC) inhibition in the BLA and the underlying molecular alterations at different phases of morphine-induced conditioned place preference (CPP) has not been investigated. In this study, we measured the expression, extinction, and reinstatement of morphine-induced place preference in rats pretreated with trichostatin A (TSA), an HDAC inhibitor. Intra-BLA pretreatment with TSA significantly enhanced morphine-induced CPP acquisition and expression, facilitated extinction, and reduced reinstatement of morphine-induced CPP. These behavioral changes were associated with a general increase in histone H3 lysine14 (H3K14) acetylation in the BLA together with upregulation of the brain-derived neurophic factor (BDNF) and ΔFosB and CREB activation. Collectively, our findings imply that HDAC inhibition in the BLA promotes some aspects of the memory that develops during conditioning and extinction training. Furthermore, histone H3 acetylation may play a role in learning and memory for morphine addiction in the BLA.
Collapse
|
23
|
Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc Natl Acad Sci U S A 2014; 111:7120-5. [PMID: 24757058 DOI: 10.1073/pnas.1318906111] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
5-hydroxymethylcytosine (5-hmC) is a novel DNA modification that is highly enriched in the adult brain and dynamically regulated by neural activity. 5-hmC accumulates across the lifespan; however, the functional relevance of this change in 5-hmC and whether it is necessary for behavioral adaptation have not been fully elucidated. Moreover, although the ten-eleven translocation (Tet) family of enzymes is known to be essential for converting methylated DNA to 5-hmC, the role of individual Tet proteins in the adult cortex remains unclear. Using 5-hmC capture together with high-throughput DNA sequencing on individual mice, we show that fear extinction, an important form of reversal learning, leads to a dramatic genome-wide redistribution of 5-hmC within the infralimbic prefrontal cortex. Moreover, extinction learning-induced Tet3-mediated accumulation of 5-hmC is associated with the establishment of epigenetic states that promote gene expression and rapid behavioral adaptation.
Collapse
|
24
|
The histone deacetylase inhibitor sodium butyrate modulates acquisition and extinction of cocaine-induced conditioned place preference. Pharmacol Biochem Behav 2013; 106:109-16. [PMID: 23454534 DOI: 10.1016/j.pbb.2013.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 01/08/2023]
Abstract
Despite decades of research on treatments for cocaine dependence, relapse rates following many behavioral and drug-based therapies remain high. This may be in part because cocaine-associated cues and contexts can invoke powerful drug cravings years after quitting. Recent studies suggest that drugs that promote cognitive function can enhance the formation of memories involving cocaine and other substances. One target of these drugs is facilitating histone acetylation to promote learning by increasing gene transcription that supports memory formation. Here, we investigate the effects of the histone deacetylase (HDAC) inhibitor sodium butyrate (NaBut) on cocaine-induced conditioned place preference (CPP) in C57BL/6 mice. After establishing a graded dose-response curve (2, 5, & 20 mg/kg) for cocaine-induced CPP, we examined the effects of different doses of NaBut (0, 0.3, 0.6, & 1.2 g/kg) on conditioning, extinction, and post-extinction reconditioning of CPP. A high dose of NaBut (1.2 g/kg) enhanced initial acquisition of cocaine CPP, but there were no effects of NaBut on reconditioning of extinguished CPP. Effects of NaBut on extinction were more complex, with a low-dose (0.3 g/kg) facilitating extinction and a high dose (1.2 g/kg) weakening extinction evident by preference at a retention test. These findings suggest that HDAC inhibition may have dose dependent effects on different components of cocaine CPP, with implications for (1) involvement of histone acetylation in context-drug learning, (2) interpretation of acute and chronic drug effects, and (3) the targeting of different types of learning in therapeutic application of HDAC inhibitors.
Collapse
|
25
|
Lattal KM, Wood MA. Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat Neurosci 2013; 16:124-9. [PMID: 23354385 PMCID: PMC3740093 DOI: 10.1038/nn.3302] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022]
Abstract
Targeting epigenetic mechanisms during initial learning or memory retrieval can lead to persistent memory. Retrieval induces plasticity that may result in reconsolidation of the original memory, in which critical molecular events are needed to stabilize the memory, or extinction, in which new learning during the retrieval trial creates an additional memory that reflects the changed environmental contingencies. A canonical feature of extinction is that the original response is temporarily suppressed, but returns under various conditions. These characteristics have defined whether a given manipulation alters extinction (when persistence does not occur) or reconsolidation (when persistence does occur). A problem arises with these behavioral definitions when considering the potential for persistent memory of extinction. Recent studies have found that epigenetic modulation of memory processes leads to surprisingly robust and persistent extinction. We discuss evidence from behavioral epigenetic approaches that forces a re-evaluation of widely used behavioral definitions of extinction and reconsolidation.
Collapse
|
26
|
Yamamoto S, Morinobu S, Fujita Y, Yamawaki S. Histone acetylation in the hippocampus and fear extinction. Biol Psychiatry 2012; 72:2-3. [PMID: 22682393 DOI: 10.1016/j.biopsych.2012.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Shigeto Yamamoto
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | |
Collapse
|
27
|
Stafford JM, Raybuck JD, Ryabinin AE, Lattal KM. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol Psychiatry 2012; 72:25-33. [PMID: 22290116 PMCID: PMC3352991 DOI: 10.1016/j.biopsych.2011.12.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND A key finding from recent studies of epigenetic mechanisms of memory is that increasing histone acetylation after a learning experience enhances memory consolidation. This has been demonstrated in several preparations, but little is known about whether excitatory and inhibitory memories are equally sensitive to drugs that promote histone acetylation and how transcriptional changes in the hippocampal-medial prefrontal cortex network contribute to these drug effects. METHODS We compare the long-term behavioral consequences of systemic, intrahippocampal and intra-medial prefrontal cortex administration of the histone deacetylase inhibitor sodium butyrate (NaB) after contextual fear conditioning and extinction 1 and/or 14 days later in male c57BL/6J mice (n = 302). Levels of histone acetylation and expression of the product of the immediate-early gene c-Fos were assessed by immunohistochemistry following infusion of NaB into the hippocampus (n = 26). RESULTS Across a variety of conditions, the effects of NaB on extinction were larger and more persistent compared to the effects on initial memory formation. NaB administered following weak extinction induced behavioral extinction, infralimbic histone acetylation and c-Fos expression consistent with strong extinction. No similar effect was seen in the prelimbic cortex. The involvement of the infralimbic cortex was confirmed as infusions of NaB into the infralimbic, but not prelimbic cortex, induced extinction enhancements. CONCLUSIONS These studies show that the memory modulating ability of drugs that enhance acetylation is sensitive to a variety of behavioral and molecular conditions. We further identify transcriptional changes in the hippocampal-infralimbic circuit associated with extinction enhancements induced by the histone deacetylase inhibitor NaB.
Collapse
|
28
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
29
|
Na ES, Nelson ED, Adachi M, Autry AE, Mahgoub MA, Kavalali ET, Monteggia LM. A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci 2012; 32:3109-17. [PMID: 22378884 PMCID: PMC3835557 DOI: 10.1523/jneurosci.6000-11.2012] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/30/2011] [Accepted: 01/06/2012] [Indexed: 01/01/2023] Open
Abstract
Rett syndrome and MECP2 duplication syndrome are neurodevelopmental disorders that arise from loss-of-function and gain-of-function alterations in methyl-CpG binding protein 2 (MeCP2) expression, respectively. Although there have been studies examining MeCP2 loss of function in animal models, there is limited information on MeCP2 overexpression in animal models. Here, we characterize a mouse line with MeCP2 overexpression restricted to neurons (Tau-Mecp2). This MeCP2 overexpression line shows motor coordination deficits, heightened anxiety, and impairments in learning and memory that are accompanied by deficits in long-term potentiation and short-term synaptic plasticity. Whole-cell voltage-clamp recordings of cultured hippocampal neurons from Tau-Mecp2 mice reveal augmented frequency of miniature EPSCs with no change in miniature IPSCs, indicating that overexpression of MeCP2 selectively impacts excitatory synapse function. Moreover, we show that alterations in transcriptional repression mechanisms underlie the synaptic phenotypes in hippocampal neurons from the Tau-Mecp2 mice. These results demonstrate that the Tau-Mecp2 mouse line recapitulates many key phenotypes of MECP2 duplication syndrome and support the use of these mice to further study this devastating disorder.
Collapse
Affiliation(s)
| | | | | | | | | | - Ege T. Kavalali
- Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | | |
Collapse
|
30
|
Pascual M, Do Couto BR, Alfonso-Loeches S, Aguilar MA, Rodriguez-Arias M, Guerri C. Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology 2012; 62:2309-19. [PMID: 22349397 DOI: 10.1016/j.neuropharm.2012.01.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/04/2012] [Accepted: 01/15/2012] [Indexed: 01/08/2023]
Abstract
Alcohol drinking during adolescence can induce long-lasting effects on the motivation to consume alcohol. Abnormal plasticity in reward-related processes might contribute to the vulnerability of adolescents to drug addiction. We have shown that binge-like ethanol treatment in adolescent rats induces alterations in the dopaminergic system and causes histone modifications in brain reward regions. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced alterations in gene expression and behavior, we addressed the hypothesis that ethanol is capable of inducing transcriptional changes by histone modifications in specific gene promoters in adolescent brain reward regions, and whether these events are associated with acquisition of place conditioning. After treating juvenile and adult rats with intermittent ethanol administration, we found that ethanol treatment upregulates histone acetyl transferase (HAT) activity in adolescent prefrontal cortex and increases histone (H3 or H4) acetylation and H3(K4) dimethylation in the promoter region of cFos, Cdk5 and FosB. Inhibition of histone deacetylase by sodium butyrate before ethanol injection enhances both up-regulation of HAT activity and histone acetylation of cFos, Cdk5 and FosB. Furthermore, co-administration of sodium butyrate with ethanol prolongs the extinction of conditioned place aversion and increased the reinstatement effects of ethanol in ethanol-treated adolescents, but not in ethanol-treated adult rats. These results indicate that ethanol exposure during adolescence induces chromatin remodeling, changes histone acetylation and methylation, and modify the effects of ethanol on place conditioning. They also suggest that epigenetic mechanisms might open up avenues to new treatments for binge drinking-induced drug addiction during adolescence.
Collapse
Affiliation(s)
- María Pascual
- Department of Cell Pathology, Príncipe Felipe Research Center, Avda. Autopista del Saler, 16, 46012 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Font L, Cunningham CL. Post-retrieval propranolol treatment does not modulate reconsolidation or extinction of ethanol-induced conditioned place preference. Pharmacol Biochem Behav 2012; 101:222-30. [PMID: 22285323 DOI: 10.1016/j.pbb.2012.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/05/2012] [Accepted: 01/14/2012] [Indexed: 01/23/2023]
Abstract
The reconsolidation hypothesis posits that established emotional memories, when reactivated, become labile and susceptible to disruption. Post-retrieval injection of propranolol (PRO), a nonspecific β-adrenergic receptor antagonist, impairs subsequent retention performance of a cocaine- and a morphine-induced conditioned place preference (CPP), implicating the noradrenergic system in the reconsolidation processes of drug-seeking behavior. An important question is whether post-retrieval PRO disrupts memory for the drug-cue associations, or instead interferes with extinction. In the present study, we evaluated the role of the β-adrenergic system on the reconsolidation and extinction of ethanol-induced CPP. Male DBA/2J mice were trained using a weak or a strong conditioning procedure, achieved by varying the ethanol conditioning dose (1 or 2 g/kg) and the number of ethanol trials (2 or 4). After acquisition of ethanol CPP, animals were given a single post-retrieval injection of PRO (0, 10 or 30 mg/kg) and tested for memory reconsolidation 24 h later. Also, after the first reconsolidation test, mice received 18 additional 15-min choice extinction tests in which PRO was injected immediately after every test. Contrary to the prediction of the reconsolidation hypothesis, a single PRO injection after the retrieval test did not modify subsequent memory retention. In addition, repeated post-retrieval administration of PRO did not interfere with extinction of CPP in mice. Overall, our data suggest that the β-adrenergic receptor does not modulate the associative processes underlying ethanol CPP.
Collapse
Affiliation(s)
- Laura Font
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|