1
|
Benhamou E, Zhao S, Sivasathiaseelan H, Johnson JCS, Requena-Komuro MC, Bond RL, van Leeuwen JEP, Russell LL, Greaves CV, Nelson A, Nicholas JM, Hardy CJD, Rohrer JD, Warren JD. Decoding expectation and surprise in dementia: the paradigm of music. Brain Commun 2021; 3:fcab173. [PMID: 34423301 PMCID: PMC8376684 DOI: 10.1093/braincomms/fcab173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Making predictions about the world and responding appropriately to unexpected events are essential functions of the healthy brain. In neurodegenerative disorders, such as frontotemporal dementia and Alzheimer's disease, impaired processing of 'surprise' may underpin a diverse array of symptoms, particularly abnormalities of social and emotional behaviour, but is challenging to characterize. Here, we addressed this issue using a novel paradigm: music. We studied 62 patients (24 female; aged 53-88) representing major syndromes of frontotemporal dementia (behavioural variant, semantic variant primary progressive aphasia, non-fluent-agrammatic variant primary progressive aphasia) and typical amnestic Alzheimer's disease, in relation to 33 healthy controls (18 female; aged 54-78). Participants heard famous melodies containing no deviants or one of three types of deviant note-acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). Using a regression model that took elementary perceptual, executive and musical competence into account, we assessed accuracy detecting melodic deviants and simultaneously recorded pupillary responses and related these to deviant surprise value (information-content) and carrier melody predictability (entropy), calculated using an unsupervised machine learning model of music. Neuroanatomical associations of deviant detection accuracy and coupling of detection to deviant surprise value were assessed using voxel-based morphometry of patients' brain MRI. Whereas Alzheimer's disease was associated with normal deviant detection accuracy, behavioural and semantic variant frontotemporal dementia syndromes were associated with strikingly similar profiles of impaired syntactic and semantic deviant detection accuracy and impaired behavioural and autonomic sensitivity to deviant information-content (all P < 0.05). On the other hand, non-fluent-agrammatic primary progressive aphasia was associated with generalized impairment of deviant discriminability (P < 0.05) due to excessive false-alarms, despite retained behavioural and autonomic sensitivity to deviant information-content and melody predictability. Across the patient cohort, grey matter correlates of acoustic deviant detection accuracy were identified in precuneus, mid and mesial temporal regions; correlates of syntactic deviant detection accuracy and information-content processing, in inferior frontal and anterior temporal cortices, putamen and nucleus accumbens; and a common correlate of musical salience coding in supplementary motor area (all P < 0.05, corrected for multiple comparisons in pre-specified regions of interest). Our findings suggest that major dementias have distinct profiles of sensory 'surprise' processing, as instantiated in music. Music may be a useful and informative paradigm for probing the predictive decoding of complex sensory environments in neurodegenerative proteinopathies, with implications for understanding and measuring the core pathophysiology of these diseases.
Collapse
Affiliation(s)
- Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jeremy C S Johnson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Maï-Carmen Requena-Komuro
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Annabel Nelson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
2
|
Burrows EL, May C, Hill T, Churliov L, Johnson KA, Hannan AJ. Mice with an autism-associated R451C mutation in neuroligin-3 show a cautious but accurate response style in touchscreen attention tasks. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12757. [PMID: 34085373 PMCID: PMC9744539 DOI: 10.1111/gbb.12757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
One of the earliest identifiable features of autism spectrum disorder (ASD) is altered attention. Mice expressing the ASD-associated R451C mutation in synaptic adhesion protein neuroligin-3 (NL3) exhibit impaired reciprocal social interactions and repetitive and restrictive behaviours. The role of this mutation in attentional abnormalities has not been established. We assessed attention in male NL3R451C mice using two well-established tasks in touchscreen chambers. In the 5-choice serial reaction task, rodents were trained to attend to light stimuli that appear in any one of five locations. While no differences between NL3R451C and WT mice were seen in accuracy or omissions, slower response times and quicker reward collection latencies were seen across all training and probe trials. In the rodent continuous-performance test, animals were required to discriminate, and identify a visual target pattern over multiple distractor stimuli. NL3R451C mice displayed enhanced ability to attend to stimuli when task-load was low during training and baseline but lost this advantage when difficulty was increased by altering task parameters in probe trials. NL3R451C mice made less responses to the distractor stimuli, exhibiting lower false alarm rates during all training stages and in probe trials. Slower response times and quicker reward latencies were consistently seen in NL3R451C mice in the rCPT. Slower response times are a major cognitive phenotype reported in ASD patients and are indicative of slower processing speed. Enhanced attention has been shown in a subset of ASD patients and we have demonstrated this phenotype also exists in the NL3R451C mouse model.
Collapse
Affiliation(s)
- Emma L. Burrows
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia
| | - Carlos May
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia
| | - Thomas Hill
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia
| | - Leonid Churliov
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Katherine A. Johnson
- School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkvilleVictoriaAustralia,Department of Anatomy and NeuroscienceUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Wong A, Dogra VR, Reichelt AC. High-sucrose diets in male rats disrupt aspects of decision making tasks, motivation and spatial memory, but not impulsivity measured by operant delay-discounting. Behav Brain Res 2017; 327:144-154. [DOI: 10.1016/j.bbr.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
|
4
|
Quinolinic acid injection in mouse medial prefrontal cortex affects reversal learning abilities, cortical connectivity and hippocampal synaptic plasticity. Sci Rep 2016; 6:36489. [PMID: 27819338 PMCID: PMC5098239 DOI: 10.1038/srep36489] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Intracerebral injection of the excitotoxic, endogenous tryptophan metabolite, quinolinic acid (QA), constitutes a chemical model of neurodegenerative brain disease. Complementary techniques were combined to examine the consequences of QA injection into medial prefrontal cortex (mPFC) of C57BL6 mice. In accordance with the NMDAR-mediated synapto- and neurotoxic action of QA, we found an initial increase in excitability and an augmentation of hippocampal long-term potentiation, converting within two weeks into a reduction and impairment, respectively, of these processes. QA-induced mPFC excitotoxicity impaired behavioral flexibility in a reversal variant of the hidden-platform Morris water maze (MWM), whereas regular, extended MWM training was unaffected. QA-induced mPFC damage specifically affected the spatial-cognitive strategies that mice use to locate the platform during reversal learning. These behavioral and cognitive defects coincided with changes in cortical functional connectivity (FC) and hippocampal neuroplasticity. FC between various cortical regions was assessed by resting-state fMRI (rsfMRI) methodology, and mice that had received QA injection into mPFC showed increased FC between various cortical regions. mPFC and hippocampus (HC) are anatomically as well as functionally linked as part of a cortical network that controls higher-order cognitive functions. Together, these observations demonstrate the central functional importance of rodent mPFC as well as the validity of QA-induced mPFC damage as a preclinical rodent model of the early stages of neurodegeneration.
Collapse
|
5
|
Reichelt AC. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits. Front Behav Neurosci 2016; 10:189. [PMID: 27790098 PMCID: PMC5061823 DOI: 10.3389/fnbeh.2016.00189] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex (PFC), a critical region for behavioral control and self-regulation, is enduring, not reaching functional maturity until the early 20 s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviors such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of “junk foods”. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioral control compared to the mature adult brain, appears to be a risk for aberrant eating behaviors that may underpin the development of obesity. This review explores the neurodevelopmental changes in the PFC and mesocortical dopamine signaling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet-induced cognitive deficits.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
6
|
Vernay A, Sellal F, René F. Evaluating Behavior in Mouse Models of the Behavioral Variant of Frontotemporal Dementia: Which Test for Which Symptom? NEURODEGENER DIS 2015; 16:127-39. [PMID: 26517704 DOI: 10.1159/000439253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
The behavioral variant of frontotemporal dementia (bvFTD) is a neurodegenerative disease affecting people in their early sixties, characterized by dramatic changes in individual and social behavior. Despite the heterogeneity in the presentation of the clinical symptoms of bvFTD, some characteristic changes can be highlighted. Social disinhibition, changes in food preferences as well as loss of empathy and apathy are commonly described. This is accompanied by a characteristic and dramatic atrophy of the prefrontal cortex with the accumulation of protein aggregates in the neurons in this area. Several causative mutations in different genes have been discovered, allowing the development of transgenic animal models, especially mouse models. In mice, attention has been focused on the histopathological aspects of the pathology, but now studies are taking interest in assessing the behavioral phenotype of FTD models. Finding the right test corresponding to human symptoms is quite challenging, especially since the frontal cortex is much less developed in mice than in humans. Although challenging, the ability to detect relevant prefrontal cortex impairments in mice is crucial for therapeutic approaches. In this review, we aim to present the approaches that have been used to model the behavioral symptoms of FTD and to explore other relevant approaches to assess behavior involving the prefrontal cortex, as well as the deficits associated with FTD.
Collapse
Affiliation(s)
- Aurélia Vernay
- INSERM, U1118, Laboratoire des Mx00E9;canismes Centraux et Px00E9;riphx00E9;riques de la Neurodx00E9;gx00E9;nx00E9;rescence, Strasbourg, France
| | | | | |
Collapse
|
7
|
Reichelt AC, Killcross S, Hambly LD, Morris MJ, Westbrook RF. Impact of adolescent sucrose access on cognitive control, recognition memory, and parvalbumin immunoreactivity. ACTA ACUST UNITED AC 2015; 22:215-24. [PMID: 25776039 PMCID: PMC4371171 DOI: 10.1101/lm.038000.114] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study we sought to determine the effect of daily sucrose consumption in young rats on their subsequent performance in tasks that involve the prefrontal cortex and hippocampus. High levels of sugar consumption have been associated with the development of obesity, however less is known about how sugar consumption influences behavioral control and high-order cognitive processes. Of particular concern is the fact that sugar intake is greatest in adolescence, an important neurodevelopmental period. We provided sucrose to rats when they were progressing through puberty and adolescence. Cognitive performance was assessed in adulthood on a task related to executive function, a rodent analog of the Stroop task. We found that sucrose-exposed rats failed to show context-appropriate responding during incongruent stimulus compounds presented at test, indicative of impairments in prefrontal cortex function. Sucrose exposed rats also showed deficits in an on object-in-place recognition memory task, indicating that both prefrontal and hippocampal function was impaired. Analysis of brains showed a reduction in expression of parvalbumin-immunoreactive GABAergic interneurons in the hippocampus and prefrontal cortex, indicating that sucrose consumption during adolescence induced long-term pathology, potentially underpinning the cognitive deficits observed. These results suggest that consumption of high levels of sugar-sweetened beverages by adolescents may also impair neurocognitive functions affecting decision-making and memory, potentially rendering them at risk for developing mental health disorders.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of New South Wales Australia, Kensington, Sydney, New South Wales 2052, Australia
| | - Simon Killcross
- School of Psychology, University of New South Wales Australia, Kensington, Sydney, New South Wales 2052, Australia
| | - Luke D Hambly
- School of Psychology, University of New South Wales Australia, Kensington, Sydney, New South Wales 2052, Australia
| | - Margaret J Morris
- School of Medical Science, University of New South Wales Australia, Kensington, Sydney, New South Wales 2052, Australia
| | - R Fred Westbrook
- School of Psychology, University of New South Wales Australia, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Reichelt AC, Morris MJ, Westbrook RF. Cafeteria diet impairs expression of sensory-specific satiety and stimulus-outcome learning. Front Psychol 2014; 5:852. [PMID: 25221530 PMCID: PMC4146395 DOI: 10.3389/fpsyg.2014.00852] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/17/2014] [Indexed: 11/13/2022] Open
Abstract
A range of animal and human data demonstrates that excessive consumption of palatable food leads to neuroadaptive responses in brain circuits underlying reward. Unrestrained consumption of palatable food has been shown to increase the reinforcing value of food and weaken inhibitory control; however, whether it impacts upon the sensory representations of palatable solutions has not been formally tested. These experiments sought to determine whether exposure to a cafeteria diet consisting of palatable high fat foods impacts upon the ability of rats to learn about food-associated cues and the sensory properties of ingested foods. We found that rats fed a cafeteria diet for 2 weeks were impaired in the control of Pavlovian responding in accordance to the incentive value of palatable outcomes associated with auditory cues following devaluation by sensory-specific satiety. Sensory-specific satiety is one mechanism by which a diet containing different foods increases ingestion relative to one lacking variety. Hence, choosing to consume greater quantities of a range of foods may contribute to the current prevalence of obesity. We observed that rats fed a cafeteria diet for 2 weeks showed impaired sensory-specific satiety following consumption of a high calorie solution. The deficit in expression of sensory-specific satiety was also present 1 week following the withdrawal of cafeteria foods. Thus, exposure to obesogenic diets may impact upon neurocircuitry involved in motivated control of behavior.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Medical Sciences, The University of New South Wales Sydney, NSW, Australia ; School of Psychology, The University of New South Wales Sydney, NSW, Australia
| | - Margaret J Morris
- School of Medical Sciences, The University of New South Wales Sydney, NSW, Australia
| | - R F Westbrook
- School of Psychology, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
9
|
Reichelt AC, Good MA, Killcross S. Attenuation of acute d-amphetamine-induced disruption of conflict resolution by clozapine, but not α-flupenthixol in rats. J Psychopharmacol 2013; 27:1023-31. [PMID: 24043725 DOI: 10.1177/0269881113503503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous research demonstrates that disruption of forebrain dopamine systems impairs the use of high-order information to guide goal-directed performance, and that this deficit may be related to impaired use of task-setting cues in patients with schizophrenia. Such deficits can be interrogated through conflict resolution, which has been demonstrated to be sensitive to prefrontal integrity in rodents. We sought to examine the effects of acute systemic d-amphetamine administration on the contextual control of response conflict in rats, and whether deficits were reversed through pre-treatment with clozapine or the D₁/D₂ antagonist α-flupenthixol. Acute d-amphetamine (1.5 mg/kg) disrupted the utilisation of contextual cues; therefore rats were impaired during presentation of stimulus compounds that require conflict resolution. Evidence suggested that this effect was attenuated through pre-treatment with the atypical antipsychotic clozapine (5.0 mg/kg), but not the typical antipsychotic α-flupenthixol (0.25 mg/kg), at doses previously shown to attenuate d-amphetamine-induced cognitive deficits. These studies therefore demonstrate a potentially viable model of disrupted executive function such as that seen in schizophrenia.
Collapse
Affiliation(s)
- Amy C Reichelt
- 1School of Psychology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
10
|
Abstract
One of the major challenges facing the long term survival of neurons is their requirement to maintain efficient axonal transport over long distances. In humans as large, long-lived vertebrates, the machinery maintaining neuronal transport must remain efficient despite the slow accumulation of cell damage during aging. Mutations in genes encoding proteins which function in the transport system feature prominently in neurologic disorders. Genes known to cause such disorders and showing traditional Mendelian inheritance have been more readily identified. It has been more difficult, however, to isolate factors underlying the complex genetics contributing to the more common idiopathic forms of neurodegenerative disease. At the heart of neuronal transport is the rail network or scaffolding provided by neuron specific microtubules (MTs). The importance of MT dynamics and stability is underscored by the critical role tau protein plays in MT-associated stabilization versus the dysfunction seen in Alzheimer's disease, frontotemporal dementia and other tauopathies. Another example of the requirement for tight regulation of MT dynamics is the need to maintain balanced levels of post-translational modification of key MT building-blocks such as α-tubulin. Tubulins require extensive polyglutamylation at their carboxyl-terminus as part of a novel post-translational modification mechanism to signal MT growth versus destabilization. Dramatically, knock-out of a gene encoding a deglutamylation family member causes an extremely rapid cell death of Purkinje cells in the ataxic mouse model, pcd. This review will examine a range of neurodegenerative conditions where current molecular understanding points to defects in the stability of MTs and axonal transport to emphasize the central role of MTs in neuron survival.
Collapse
Affiliation(s)
- Fiona J Baird
- School of Pharmacy and Molecular Sciences, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia ; Centre of Biodiscovery and Molecular Therapeutics, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia
| | - Craig L Bennett
- School of Pharmacy and Molecular Sciences, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia ; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|