1
|
Morella I, Brambilla R, Herault Y. Editorial: Cellular and molecular mechanisms in social and repetitive behaviours: a focus on cortico-striatal circuitry. Front Cell Neurosci 2024; 18:1470882. [PMID: 39175505 PMCID: PMC11338908 DOI: 10.3389/fncel.2024.1470882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- Ilaria Morella
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Riccardo Brambilla
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Yann Herault
- INSERM U964 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, Alsace, France
| |
Collapse
|
2
|
Pegueros-Maldonado R, Pech-Pool SM, Blancas JJ, Prado-Alcalá RA, Arámburo C, Luna M, Quirarte GL. Inhibition of corticosterone synthesis impairs cued water maze consolidation, but it does not affect the expression of BDNF, CK2 and SGK1 genes in dorsal striatum. Front Behav Neurosci 2024; 18:1341883. [PMID: 38468708 PMCID: PMC10925660 DOI: 10.3389/fnbeh.2024.1341883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Corticosterone (CORT) release during learning experiences is associated with strong memories and activity of the glucocorticoid receptor. It has been shown that lesions of the dorsal striatum (DS) of rats trained in the cued version of the Morris water maze impair memory, and that local injection of CORT improves its performance, suggesting that DS activity is involved in procedural memory which may be modulated by CORT. We trained rats in cued Morris water maze and analyzed the effect of CORT synthesis inhibition on performance, CORT levels, expression of plasticity-involved genes, such as the brain derived neurotrophic factor (BDNF), casein kinase 2 (CK2), and the serum/glucocorticoid regulated kinase 1 (SGK1), as well as the presence of phosphorylated nuclear glucocorticoid receptor in serine 232 (pGR-S232) in the DS. The inhibition of CORT synthesis by metyrapone reduced CORT levels in plasma, prevented its increment in DS and impaired the performance of cued water maze. Additionally, there was an increase of CK2 and SGK1 mRNAs expression in trained subjects, which was unrelated to CORT levels. Finally, we did not observe changes in nuclear pGR-S232 in any condition. Our findings agree with evidence demonstrating that decreasing CORT levels hinders acquisition and consolidation of the spatial version of the Morris water maze; these novel findings broaden our knowledge about the involvement of the DS in the mechanisms underlying procedural memory.
Collapse
Affiliation(s)
- Rogelio Pegueros-Maldonado
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Santiago M. Pech-Pool
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Jaisson J. Blancas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gina L. Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
3
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
4
|
Indrigo M, Morella I, Orellana D, d'Isa R, Papale A, Parra R, Gurgone A, Lecca D, Cavaccini A, Tigaret CM, Cagnotto A, Jones K, Brooks S, Ratto GM, Allen ND, Lelos MJ, Middei S, Giustetto M, Carta AR, Tonini R, Salmona M, Hall J, Thomas K, Brambilla R, Fasano S. Nuclear ERK1/2 signaling potentiation enhances neuroprotection and cognition via Importinα1/KPNA2. EMBO Mol Med 2023; 15:e15984. [PMID: 37792911 PMCID: PMC10630888 DOI: 10.15252/emmm.202215984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Abstract
Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.
Collapse
Affiliation(s)
- Marzia Indrigo
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| | - Daniel Orellana
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Alessandro Papale
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| | - Riccardo Parra
- NEST, Istituto Nanoscienze CNR, and Scuola Normale SuperiorePisaItaly
| | | | - Daniela Lecca
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Anna Cavaccini
- Neuromodulation of Cortical and Subcortical Circuits LaboratoryFondazione Istituto Italiano di TecnologiaGenovaItaly
| | - Cezar M Tigaret
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Alfredo Cagnotto
- Dipartimento di Biochimica e Farmacologia MolecolareIstituto di Ricerche Farmacologiche Mario Negri‐IRCCSMilanoItaly
| | | | - Simon Brooks
- School of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Silvia Middei
- Institute of Cell Biology and Neurobiology CNRRomaItaly
| | - Maurizio Giustetto
- Department of NeuroscienceUniversity of TorinoTorinoItaly
- National Institute of NeuroscienceTorinoItaly
| | - Anna R Carta
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits LaboratoryFondazione Istituto Italiano di TecnologiaGenovaItaly
| | - Mario Salmona
- Dipartimento di Biochimica e Farmacologia MolecolareIstituto di Ricerche Farmacologiche Mario Negri‐IRCCSMilanoItaly
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Kerrie Thomas
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”Università degli Studi di PaviaPaviaItaly
| | - Stefania Fasano
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
5
|
Lewitus VJ, Blackwell KT. Estradiol Receptors Inhibit Long-Term Potentiation in the Dorsomedial Striatum. eNeuro 2023; 10:ENEURO.0071-23.2023. [PMID: 37487741 PMCID: PMC10405883 DOI: 10.1523/eneuro.0071-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Estradiol, a female sex hormone and the predominant form of estrogen, has diverse effects throughout the brain including in learning and memory. Estradiol modulates several types of learning that depend on the dorsomedial striatum (DMS), a subregion of the basal ganglia involved in goal-directed learning, cued action-selection, and motor skills. A cellular basis of learning is synaptic plasticity, and the presence of extranuclear estradiol receptors ERα, ERβ, and G-protein-coupled estrogen receptor (GPER) throughout the DMS suggests that estradiol may influence rapid cellular actions including those involved in plasticity. To test whether estradiol affects synaptic plasticity in the DMS, corticostriatal long-term potentiation (LTP) was induced using theta-burst stimulation (TBS) in ex vivo brain slices from intact male and female C57BL/6 mice. Extracellular field recordings showed that female mice in the diestrous stage of the estrous cycle exhibited LTP similar to male mice, while female mice in estrus did not exhibit LTP. Furthermore, antagonists of ERα or GPER rescued LTP in estrous females and agonists of ERα or GPER reduced LTP in diestrous females. In males, activating ERα but not GPER reduced LTP. These results uncover an inhibitory action of estradiol receptors on cellular learning in the DMS and suggest a cellular mechanism underlying the impairment in certain types of DMS-based learning observed in the presence of high estradiol. Because of the dorsal striatum's role in substance use disorders, these findings may provide a mechanism underlying an estradiol-mediated progression from goal-directed to habitual drug use.
Collapse
Affiliation(s)
| | - Kim T Blackwell
- Interdisciplinary Neuroscience PhD Program
- Department of Bioengineering, George Mason University, Fairfax, VA 22030
| |
Collapse
|
6
|
Shan Q, Yu X, Tian Y. Adolescent social isolation shifts the balance of decision-making strategy from goal-directed action to habitual response in adulthood via suppressing the excitatory neurotransmission onto the direct pathway of the dorsomedial striatum. Cereb Cortex 2023; 33:1595-1609. [PMID: 35524719 DOI: 10.1093/cercor/bhac158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Adverse experience, such as social isolation, during adolescence is one of the major causes of neuropsychiatric disorders that extend from adolescence into adulthood, such as substance addiction, obsessive-compulsive disorder, and eating disorders leading to obesity. A common behavioral feature of these neuropsychiatric disorders is a shift in the balance of decision-making strategy from goal-directed action to habitual response. This study has verified that adolescent social isolation directly shifts the balance of decision-making strategy from goal-directed action to habitual response, and that it cannot be reversed by simple regrouping. This study has further revealed that adolescent social isolation induces a suppression in the excitatory neurotransmission onto the direct-pathway medium spiny neurons of the dorsomedial striatum (DMS), and that chemogenetically compensating this suppression effect shifts the balance of decision-making strategy from habitual response back to goal-directed action. These findings suggest that the plasticity in the DMS causes the shift in the balance of decision-making strategy, which would potentially help to develop a general therapy to treat the various neuropsychiatric disorders caused by adolescent social isolation. Such a study is especially necessary under the circumstances that social distancing and lockdown have caused during times of world-wide, society-wide pandemic.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Cell-type specific synaptic plasticity in dorsal striatum is associated with punishment-resistance compulsive-like cocaine self-administration in mice. Neuropsychopharmacology 2023; 48:448-458. [PMID: 36071131 PMCID: PMC9852591 DOI: 10.1038/s41386-022-01429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/02/2023]
Abstract
Addiction-related compulsion-like behavior can be modeled in rodents with drug self-administration (SA) despite harmful consequences. Recent studies suggest that the potentiation of glutamatergic transmission at the orbitofrontal cortex (OFC) to dorsal striatum (DS) synapses drives the transition from controlled to compulsion-like SA. However, the timing of the induction of this synaptic plasticity remains elusive. Here, mice were first allowed to intravenously self-administer cocaine. When mice had to endure a risk of electrical foot shock, only a fraction persevered in cocaine SA. In these persevering mice, we recorded high A/N ratios (AMPA-R/NMDA-R: α-amino-3hydroxy-5-methyl-4-isoxazolepropionic acid receptor/N-methyl-D-aspartate receptor) in both types of spiny projection neurons (i.e., D1 and D2 dopamine receptor-expressing SPNs). By contrast, when we prepared slices at the end of the acquisition period, in all mice, the A/N was high in D1R- but not D2R-SPNs. These results indicate that the transition to compulsion-like cocaine SA emerges during the punishment sessions, where synapses onto D2R-SPNs are strengthened. In renouncing individuals, the cocaine-evoked strengthening in D1R-SPNs is lost. Our study thus reveals the cell-type specific sequence of the induction of plasticity that eventually may cause compulsion-like SA.
Collapse
|
8
|
Morella I, Pohořalá V, Calpe-López C, Brambilla R, Spanagel R, Bernardi RE. Nicotine self-administration and ERK signaling are altered in RasGRF2 knockout mice. Front Pharmacol 2022; 13:986566. [PMID: 36120353 PMCID: PMC9479000 DOI: 10.3389/fphar.2022.986566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Ras/Raf/MEK/ERK (Ras-ERK) signaling has been demonstrated to play a role in the effects of drugs of abuse such as cocaine and alcohol, but has not been extensively examined in nicotine-related reward behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2), an upstream mediator of the Ras-ERK signaling pathway, on nicotine self-administration (SA) in RasGRF2 KO and WT mice. We first demonstrated that acute nicotine exposure (0.4 mg/kg) resulted in an increase in phosphorylated ERK1/2 (pERK1/2) in the striatum, consistent with previous reports. We also demonstrated that increases in pERK1/2 resulting from acute (0.4 mg/kg) and repeated (0.4 mg/kg, 10 daily injections) exposure to nicotine in WT mice were not present in RasGRF2 KO mice, confirming that RasGRF2 at least partly regulates the activity of the Ras-ERK signaling pathway following nicotine exposure. We then performed intravenous nicotine SA (0.03 mg/kg/infusion for 10 days) in RasGRF2 KO and WT mice. Consistent with a previous report using cocaine SA, RasGRF2 KO mice demonstrated an increase in nicotine SA relative to WT controls. These findings suggest a role for RasGRF2 in the reinforcing effects of nicotine, and implicate the Ras-ERK signaling pathway as a common mediator of the response to drugs of abuse.
Collapse
Affiliation(s)
- Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Veronika Pohořalá
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Claudia Calpe-López
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rick E. Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
9
|
Wang X, Wang Y, Chen J, Li J, Liu Y, Chen W. Aerobic exercise improves motor function and striatal MSNs-Erk/MAPK signaling in mice with 6-OHDA-induced Parkinson's disease. Exp Brain Res 2022; 240:1713-1725. [PMID: 35384454 PMCID: PMC8985567 DOI: 10.1007/s00221-022-06360-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/25/2022] [Indexed: 01/30/2023]
Abstract
In Parkinson’s disease (PD) state, with progressive loss of dopaminergic neurons in the substantia nigra, the striatal dopamine (DA) and glutamate (Glu) levels change, resulting in dysfunction of basal ganglia motor regulation. The PD patient presents motor dysfunction such as resting tremor, bradykinesia, and muscular rigidity. To investigate the mechanism of aerobic exercise to improve PD-related motor dysfunction, in the current study, 6-hydroxydopamine (6-OHDA) was used to induce the PD mice model, and the motor function of PD mice was comprehensively evaluated by open-field test, rotarod test, and gait test. The co-expression of prodynorphin (PDYN) and proenkephalin (PENK) with extracellular signal-regulated kinase (Erk1/2) and phosphorylation Erk1/2 (p-Erk1/2) were detected by double-labeling immunofluorescence. The results showed that a 4-week aerobic exercise intervention could effectively improve the motor dysfunction of PD mice. Moreover, it was found that the expressions of Erk1/2 and p-Erk1/2 in the dorsal striatum (Str) of PD mice were significantly increased, and the number of positive cells co-expressed by Erk1/2, p-Erk1/2, and PENK was significantly higher than PDYN. The above phenomenon was reversed by a 4-week aerobic exercise intervention. Therefore, this study suggests that the mechanism by which aerobic exercise improves PD-related motor dysfunction may be related to that the aerobic exercise intervention alleviates the activity of extracellular signal-regulated kinase/mitogen-activated protein kinases (Erk/MAPK) signaling pathway in striatal medium spiny neurons expressing D2-like receptors (D2-MSNs) of PD mice by regulating the striatal DA and Glu signaling.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yinhao Wang
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jian Chen
- Department of General Surgery, Bethune International Peace Hospital of The People's Liberation Army, Shijiazhuang, Hebei, China
| | - Juan Li
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yang Liu
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Wei Chen
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
Perez S, Cui Y, Vignoud G, Perrin E, Mendes A, Zheng Z, Touboul J, Venance L. Striatum expresses region-specific plasticity consistent with distinct memory abilities. Cell Rep 2022; 38:110521. [PMID: 35294877 DOI: 10.1016/j.celrep.2022.110521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
The striatum mediates two learning modalities: goal-directed behavior in dorsomedial (DMS) and habits in dorsolateral (DLS) striata. The synaptic bases of these learnings are still elusive. Indeed, while ample research has described DLS plasticity, little remains known about DMS plasticity and its involvement in procedural learning. Here, we find symmetric and asymmetric anti-Hebbian spike-timing-dependent plasticity (STDP) in DMS and DLS, respectively, with opposite plasticity dominance upon increasing corticostriatal activity. During motor-skill learning, plasticity is engaged in DMS and striatonigral DLS neurons only during early learning stages, whereas striatopallidal DLS neurons are mobilized only during late phases. With a mathematical modeling approach, we find that symmetric anti-Hebbian STDP favors memory flexibility, while asymmetric anti-Hebbian STDP favors memory maintenance, consistent with memory processes at play in procedural learning.
Collapse
Affiliation(s)
- Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Yihui Cui
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France; Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Gaëtan Vignoud
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France; MAMBA-Modelling and Analysis for Medical and Biological Applications, Inria Paris, LJLL (UMR-7598) -Laboratory Jacques-Louis Lions, Paris, France
| | - Elodie Perrin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Alexandre Mendes
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Zhiwei Zheng
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
11
|
Wang M, Liu H, Ma Z. Roles of the Cannabinoid System in the Basal Ganglia in Parkinson’s Disease. Front Cell Neurosci 2022; 16:832854. [PMID: 35264932 PMCID: PMC8900732 DOI: 10.3389/fncel.2022.832854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease usually caused by neuroinflammation, oxidative stress and other etiologies. Recent studies have found that the cannabinoid system present in the basal ganglia has a strong influence on the progression of PD. Altering the cannabinoid receptor activation status by modulating endogenous cannabinoid (eCB) levels can exert an anti-movement disorder effect. Therefore, the development of drugs that modulate the endocannabinoid system may be a novel strategy for the treatment of PD. However, eCB regulation is complex, with diverse cannabinoid receptor functions and the presence of dopaminergic, glutamatergic, and γ-aminobutyric signals interacting with cannabinoid signaling in the basal ganglia region. Therefore, the study of eCB is challenging. Here, we have described the function of the cannabinoid system in the basal ganglia and its association with PD in three parts (eCBs, cannabinoid receptors, and factors regulating the cannabinoid metabolism) and summarized the mechanisms of action related to the cannabinoid analogs currently aimed at treating PD. The shortcomings identified from previous studies and the directions that should be explored in the future will provide insights into new approaches and ideas for the future development of cannabinoid-based drugs and the treatment of PD.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zegang Ma
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
- *Correspondence: Zegang Ma,
| |
Collapse
|
12
|
LRRK2 at Striatal Synapses: Cell-Type Specificity and Mechanistic Insights. Cells 2022; 11:cells11010169. [PMID: 35011731 PMCID: PMC8750662 DOI: 10.3390/cells11010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease with a similar clinical presentation and progression to idiopathic Parkinson’s disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson’s disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson’s disease.
Collapse
|
13
|
Dutra-Tavares AC, Manhães AC, Semeão KA, Maia JG, Couto LA, Filgueiras CC, Ribeiro-Carvalho A, Abreu-Villaça Y. Does nicotine exposure during adolescence modify the course of schizophrenia-like symptoms? Behavioral analysis in a phencyclidine-induced mice model. PLoS One 2021; 16:e0257986. [PMID: 34587208 PMCID: PMC8480744 DOI: 10.1371/journal.pone.0257986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Keila A. Semeão
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Julyana G. Maia
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Luciana A. Couto
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Claudio C. Filgueiras
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
14
|
Mota É, Bompierre S, Betolngar D, Castro LRV, Vincent P. Pivotal role of phosphodiesterase 10A in the integration of dopamine signals in mice striatal D1 and D2 medium-sized spiny neurones. Br J Pharmacol 2021; 178:4873-4890. [PMID: 34399440 DOI: 10.1111/bph.15664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine in the striatum plays a crucial role in reward processes and action selection. Dopamine signals are transduced by D1 and D2 dopamine receptors which trigger mirror effects through the cAMP/PKA signalling cascade in D1 and D2 medium-sized spiny neurones (MSNs). Phosphodiesterases (PDEs), which determine the profile of cAMP signals, are highly expressed in MSNs, but their respective roles in dopamine signal integration remain poorly understood. EXPERIMENTAL APPROACH We used genetically-encoded FRET biosensors to monitor at the single cell level the functional contribution of PDE2A, PDE4 and PDE10A in the changes of the cAMP/PKA response to transient and continuous dopamine in mouse striatal brain slices. KEY RESULTS We found that PDE2A, PDE4 and PDE10A operate on the moderate to high cAMP levels elicited by D1 or A2A receptor stimulation. In contrast, only PDE10A is able to reduce cAMP down to baseline in both type of neurones, leading to the dephosphorylation of PKA substrates. CONCLUSION AND IMPLICATIONS In both MSN types, PDE10A inhibition blunts the responsiveness to dopamine, whereas PDE2A or PDE4 inhibition reinforces dopamine action.
Collapse
Affiliation(s)
- Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France.,Now at Novel Human Genetics Research Unit, GSK R&D, Stevenage, UK
| | - Ségolène Bompierre
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| | - Dahdjim Betolngar
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, UMR 8256, Paris, France
| |
Collapse
|
15
|
Zwir I, Del-Val C, Arnedo J, Pulkki-Råback L, Konte B, Yang SS, Romero-Zaliz R, Hintsanen M, Cloninger KM, Garcia D, Svrakic DM, Lester N, Rozsa S, Mesa A, Lyytikäinen LP, Giegling I, Kähönen M, Martinez M, Seppälä I, Raitoharju E, de Erausquin GA, Mamah D, Raitakari O, Rujescu D, Postolache TT, Gu CC, Sung J, Lehtimäki T, Keltikangas-Järvinen L, Cloninger CR. Three genetic-environmental networks for human personality. Mol Psychiatry 2021; 26:3858-3875. [PMID: 31748689 PMCID: PMC8550959 DOI: 10.1038/s41380-019-0579-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/26/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Phylogenetic, developmental, and brain-imaging studies suggest that human personality is the integrated expression of three major systems of learning and memory that regulate (1) associative conditioning, (2) intentionality, and (3) self-awareness. We have uncovered largely disjoint sets of genes regulating these dissociable learning processes in different clusters of people with (1) unregulated temperament profiles (i.e., associatively conditioned habits and emotional reactivity), (2) organized character profiles (i.e., intentional self-control of emotional conflicts and goals), and (3) creative character profiles (i.e., self-aware appraisal of values and theories), respectively. However, little is known about how these temperament and character components of personality are jointly organized and develop in an integrated manner. In three large independent genome-wide association studies from Finland, Germany, and Korea, we used a data-driven machine learning method to uncover joint phenotypic networks of temperament and character and also the genetic networks with which they are associated. We found three clusters of similar numbers of people with distinct combinations of temperament and character profiles. Their associated genetic and environmental networks were largely disjoint, and differentially related to distinct forms of learning and memory. Of the 972 genes that mapped to the three phenotypic networks, 72% were unique to a single network. The findings in the Finnish discovery sample were blindly and independently replicated in samples of Germans and Koreans. We conclude that temperament and character are integrated within three disjoint networks that regulate healthy longevity and dissociable systems of learning and memory by nearly disjoint sets of genetic and environmental influences.
Collapse
Grants
- Spanish Ministry of Science and Technology TIN2012-38805 and DPI2015-69585-R
- The Young Finns Study has been financially supported by the Academy of Finland: grants 286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), 41071 (Skidi), and 308676; the Social Insurance Institution of Finland; Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001); Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation for Cardiovascular Research ; Finnish Cultural Foundation; Tampere Tuberculosis Foundation; Emil Aaltonen Foundation; Yrjö Jahnsson Foundation; Signe and Ane Gyllenberg Foundation; Diabetes Research Foundation of Finnish Diabetes Association: and EU Horizon 2020 (grant 755320 for TAXINOMISIS).
- American Federation for Suicide Prevention
- Healthy Twin Family Register of Korea
- Anthropedia Foundation
- The Young Finns Study has been financially supported by the Academy of Finland: grants 286284, 322098, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), 41071 (Skidi), and 308676; the Social Insurance Institution of Finland; Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001); Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation for Cardiovascular Research ; Finnish Cultural Foundation; Tampere Tuberculosis Foundation; Emil Aaltonen Foundation; Yrjö Jahnsson Foundation; Signe and Ane Gyllenberg Foundation; Diabetes Research Foundation of Finnish Diabetes Association: and EU Horizon 2020 (grant 755320 for TAXINOMISIS); and Tampere University Hospital Supporting Foundation.
- American Society for Suicide Prevention
- American Foundation for Suicide Prevention
Collapse
Affiliation(s)
- Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science, University of Granada, Granada, Spain
| | - Coral Del-Val
- Department of Computer Science, University of Granada, Granada, Spain
| | - Javier Arnedo
- Department of Computer Science, University of Granada, Granada, Spain
| | - Laura Pulkki-Råback
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Bettina Konte
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Sarah S Yang
- Department of Epidemiology, and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| | | | - Mirka Hintsanen
- Unit of Psychology, Faculty of Education, University of Oulu, Oulu, Finland
| | | | - Danilo Garcia
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
- Blekinge Centre of Competence, Blekinge County Council, Karlskrona, Sweden
| | - Dragan M Svrakic
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Nigel Lester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sandor Rozsa
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alberto Mesa
- Department of Computer Science, University of Granada, Granada, Spain
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ina Giegling
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- University Clinic, Ludwig-Maximilian University, Munich, Germany
| | - Mika Kähönen
- Department of Clinical Physiology Tampere University Hospital, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maribel Martinez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gabriel A de Erausquin
- The Glenn Biggs Institute of Alzheimer's and Neurodegenerative Disorders, Long School of Medicine, University of Texas Heath San Antonio, San Antonio, TX, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Dan Rujescu
- Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Teodor T Postolache
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
- Rocky Mountain Mental Illness, Research, Education, and Clinical Center for Veteran Suicide Prevention, Denver, CO, USA
| | - C Charles Gu
- Division of Biostatistics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Joohon Sung
- Department of Epidemiology, and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - C Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Psychological and Brain Sciences, and School of Medicine, Department of Genetics, School of Arts and Sciences, Washington University, St. Louis, MO, USA.
| |
Collapse
|
16
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Yu X, Chen S, Shan Q. Depression in the Direct Pathway of the Dorsomedial Striatum Permits the Formation of Habitual Action. Cereb Cortex 2021; 31:3551-3564. [PMID: 33774666 DOI: 10.1093/cercor/bhab031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
In order to achieve optimal outcomes in an ever-changing environment, humans and animals generally manage their action control via either goal-directed action or habitual action. These two action strategies are thought to be encoded in distinct parallel circuits in the dorsal striatum, specifically, the posterior dorsomedial striatum (DMS) and the dorsolateral striatum (DLS), respectively. The striatum is primarily composed of two subtypes of medium spiny neurons (MSNs): the direct-pathway striatonigral and the indirect-pathway striatopallidal MSNs. MSN-subtype-specific synaptic plasticity in the DMS and the DLS has been revealed to underlie goal-directed action and habitual action, respectively. However, whether any MSN-subtype-specific synaptic plasticity in the DMS is associated with habitual action, and if so, whether the synaptic plasticity affects the formation of habitual action, are not known. This study demonstrates that postsynaptic depression in the excitatory synapses of the direct-pathway striatonigral MSNs in the DMS is formed after habit learning. Moreover, chemogenetically rescuing this depression compromises the acquisition, but not the expression, of habitual action. These findings reveal that an MSN-subtype-specific synaptic plasticity in the DMS affects habitual action and suggest that plasticity in the DMS as well as in the DLS contributes to the formation of habitual action.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
18
|
Striatal RGS7 Regulates Depression-Related Behaviors and Stress-Induced Reinstatement of Cocaine Conditioned Place Preference. eNeuro 2021; 8:ENEURO.0365-20.2020. [PMID: 33402347 PMCID: PMC7986533 DOI: 10.1523/eneuro.0365-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The striatum plays a key role in both reward-related and affective behaviors and disruptions to this circuit contributes to depression and drug addiction. However, our understanding of the molecular factors that facilitate and modify these processes are incomplete. Striatal function is modulated by G-protein-coupled receptors (GPCRs) that process vast neuromodulatory inputs. GPCR signaling is negatively regulated by regulator of G-protein signaling (Rgs) proteins. In this study, we examine the role of striatal Rgs proteins in depressive-like and reward-related behaviors in male mice. Using a genetic mouse model with specific elimination of Rgs7 in striatal neurons we found that these mice exhibit an anxiolytic-like and antidepressant-like phenotype. In contrast, knock-out of Rgs9, an abundant Rgs protein in the same neuronal population did not affect the behavioral outcome in the depressive-like tests. Mice lacking striatal Rgs7 did not show significant differences in cocaine-induced psychomotor activation, sensitization or conditional place preference (CPP). Interestingly, loss of Rgs7 in the striatum made mice resilient to stress-induced but not drug-induced reinstatement of cocaine CPP. Analysis of striatal proteome revealed that loss of Rgs7 selectively affected expression of several networks, most prominently including proteins involved in translation and vesicular exocytosis. Together, these findings begin to demonstrate the specific contribution of Rgs7 acting in the striatum toward depression as it relates to stress-induced reinstatement of drug use.
Collapse
|
19
|
Betolngar DB, Mota É, Fabritius A, Nielsen J, Hougaard C, Christoffersen CT, Yang J, Kehler J, Griesbeck O, Castro LRV, Vincent P. Phosphodiesterase 1 Bridges Glutamate Inputs with NO- and Dopamine-Induced Cyclic Nucleotide Signals in the Striatum. Cereb Cortex 2020; 29:5022-5036. [PMID: 30877787 DOI: 10.1093/cercor/bhz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
The calcium-regulated phosphodiesterase 1 (PDE1) family is highly expressed in the brain, but its functional role in neurones is poorly understood. Using the selective PDE1 inhibitor Lu AF64196 and biosensors for cyclic nucleotides including a novel biosensor for cGMP, we analyzed the effect of PDE1 on cAMP and cGMP in individual neurones in brain slices from male newborn mice. Release of caged NMDA triggered a transient increase of intracellular calcium, which was associated with a decrease in cAMP and cGMP in medium spiny neurones in the striatum. Lu AF64196 alone did not increase neuronal cyclic nucleotide levels, but blocked the NMDA-induced reduction in cyclic nucleotides indicating that this was mediated by calcium-activated PDE1. Similar effects were observed in the prefrontal cortex and the hippocampus. Upon corelease of dopamine and NMDA, PDE1 was shown to down-regulate the D1-receptor mediated increase in cAMP. PDE1 inhibition increased long-term potentiation in rat ventral striatum, showing that PDE1 is implicated in the regulation of synaptic plasticity. Overall, our results show that PDE1 reduces cyclic nucleotide signaling in the context of glutamate and dopamine coincidence. This effect could have a therapeutic value for treating brain disorders related to dysfunctions in dopamine neuromodulation.
Collapse
Affiliation(s)
| | - Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Arne Fabritius
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | - Jun Yang
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark
| | - Oliver Griesbeck
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
20
|
Zhang X, Xu Y, Chen B, Kang L. Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet 2020; 16:e1008771. [PMID: 32348314 PMCID: PMC7241820 DOI: 10.1371/journal.pgen.1008771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs) are specifically expressed in brain cells, implying their neural and behavioural functions. However, how lncRNAs contribute to neural regulatory networks governing the precise behaviour of animals is less explored. Here, we report the regulatory mechanism of the nuclear-enriched lncRNA PAHAL for dopamine biosynthesis and behavioural adjustment in migratory locusts (Locusta migratoria), a species with extreme behavioral plasticity. PAHAL is transcribed from the sense (coding) strand of the gene encoding phenylalanine hydroxylase (PAH), which is responsible for the synthesis of dopamine from phenylalanine. PAHAL positively regulates PAH expression resulting in dopamine production in the brain. In addition, PAHAL modulates locust behavioral aggregation in a population density-dependent manner. Mechanistically, PAHAL mediates PAH transcriptional activation by recruiting serine/arginine-rich splicing factor 2 (SRSF2), a transcription/splicing factor, to the PAH proximal promoter. The co-activation effect of PAHAL requires the interaction of the PAHAL/SRSF2 complex with the promoter-associated nascent RNA of PAH. Thus, the data support a model of feedback modulation of animal behavioural plasticity by an lncRNA. In this model, the lncRNA mediates neurotransmitter metabolism through orchestrating a local transcriptional loop. The neurotransmitter dopamine is crucial for the neuronal and behavioral response in animals. Phenylalanine hydroxylase (PAH) is involved in dopamine biosynthesis and behavioral regulation in the migratory locust. However, the molecular mechanism for the fine tuning of PAH expression in behavioral response remains ambiguous. Here we discovered a nuclear-enriched lncRNA PAHAL that is transcribed from the coding strand of the PAH gene in the locust (i.e., sense lncRNA). PAHAL positively regulated PAH expression and dopamine production in the brain. In addition, PAHAL modulated behavioral aggregation of the locust. Mechanistically, PAHAL mediated the transcriptional activation of PAH by recruiting SRSF2, a transcription/splicing factor, to the promoter-associated nascent RNA of PAH. These data support a model of feedback modulation of dopamine biosynthesis and behavioral plasticity via a sense lncRNA in the catecholamine metabolic pathway.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ya'nan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| |
Collapse
|
21
|
Loonen AJ, Wilffert B, Ivanova SA. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019; 20:1199-1223. [PMID: 31686592 DOI: 10.2217/pgs-2019-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying biomarkers which can be used as a diagnostic tool is a major objective of pharmacogenetic studies. Most mental and many neurological disorders have a compiled multifaceted nature, which may be the reason why this endeavor has hitherto not been very successful. This is also true for tardive dyskinesia (TD), an involuntary movement complication of long-term treatment with antipsychotic drugs. The observed associations of specific gene variants with the prevalence and severity of a disorder can also be applied to try to elucidate the pathogenesis of the condition. In this paper, this strategy is used by combining pharmacogenetic knowledge with theories on the possible role of a dysfunction of specific cellular elements of neostriatal parts of the (dorsal) extrapyramidal circuits: various glutamatergic terminals, medium spiny neurons, striatal interneurons and ascending monoaminergic fibers. A peculiar finding is that genetic variants which would be expected to increase the neostriatal dopamine concentration are not associated with the prevalence and severity of TD. Moreover, modifying the sensitivity to glutamatergic long-term potentiation (and excitotoxicity) shows a relationship with levodopa-induced dyskinesia, but not with TD. Contrasting this, TD is associated with genetic variants that modify vulnerability to oxidative stress. Reducing the oxidative stress burden of medium spiny neurons may also be the mechanism behind the protective influence of 5-HT2 receptor antagonists. It is probably worthwhile to discriminate between neostriatal matrix and striosomal compartments when studying the mechanism of TD and between orofacial and limb-truncal components in epidemiological studies.
Collapse
Affiliation(s)
- Anton Jm Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661AA Halsteren, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,Dept. of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 4, 634014 Tomsk, Russian Federation.,School of Non-Destructive Testing & Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.,Central Research Laboratory, Siberian State Medical University, Moscowski Trakt, 2, 634050 Tomsk, Russian Federation
| |
Collapse
|
22
|
Dobrovitsky V, West MO, Horvitz JC. The role of the nucleus accumbens in learned approach behavior diminishes with training. Eur J Neurosci 2019; 50:3403-3415. [PMID: 31340074 PMCID: PMC6848754 DOI: 10.1111/ejn.14523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 01/17/2023]
Abstract
Nucleus accumbens dopamine plays a key role in reward-directed approach. Past findings suggest that dopamine's role in the expression of learned behavior diminishes with extended training. However, little is known about the central substrates that mediate the shift to dopamine-independent reward approach. In the present study, rats approached and inserted the head into a reward compartment in response to a cue signaling food delivery. On days 4 and 5 of 28-trial-per-day sessions, D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) infused to the NAc core reduced the probability and speed of cued approach. The disruptive effect of D1 receptor blockade was specific to the nucleus accumbens core and not seen with drug infusions to nearby dopamine target regions. In rats that received drug infusions after extended training (days 10 or 11), accumbens core D1 receptor blockade produced little effect on the expression of the same behavior. These results could have been due to a continued accumbens mediation of cued approach even after the behavior had become independent of accumbens D1 receptors. However, accumbens core ionotropic glutamate receptor blockade disrupted cued approach during early but not late stages of training, similar to the effects of D1 antagonist infusions. The results suggest that with extended training, a nucleus accumbens D1-dependent behavior becomes less dependent not only on nucleus accumbens D1 transmission but also on excitatory transmission in the nucleus accumbens. These findings fill an important gap in a growing literature on reorganization of striatal function over the course of training.
Collapse
Affiliation(s)
- Veronica Dobrovitsky
- The Graduate Center, City University of New York, Program in Behavioral and Cognitive Neuroscience, NY, NY 10016; CCNY, Dept of Psychology NY, NY, 10031, USA
| | - Mark O. West
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jon C. Horvitz
- The Graduate Center, City University of New York, Program in Behavioral and Cognitive Neuroscience, NY, NY 10016; CCNY, Dept of Psychology NY, NY, 10031, USA
| |
Collapse
|
23
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
24
|
Bernardi RE, Olevska A, Morella I, Fasano S, Santos E, Brambilla R, Spanagel R. The Inhibition of RasGRF2, But Not RasGRF1, Alters Cocaine Reward in Mice. J Neurosci 2019; 39:6325-6338. [PMID: 31182637 PMCID: PMC6687905 DOI: 10.1523/jneurosci.1120-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 01/12/2023] Open
Abstract
Ras/Raf/MEK/ERK (Ras-ERK) signaling has been implicated in the effects of drugs of abuse. Inhibitors of MEK1/2, the kinases upstream of ERK1/2, have been critical in defining the role of the Ras-ERK cascade in drug-dependent alterations in behavioral plasticity, but the Ras family of small GTPases has not been extensively examined in drug-related behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 1 (RasGRF1) and 2 (RasGRF2), upstream regulators of the Ras-ERK signaling cascade, on cocaine self-administration (SA) in male mice. We first established a role for Ras-ERK signaling in cocaine SA, demonstrating that pERK1/2 is upregulated following SA in C57BL/6N mice in striatum. We then compared RasGRF1 and RasGRF2 KO mouse lines, demonstrating that cocaine SA in RasGRF2 KO mice was increased relative to WT controls, whereas RasGRF1 KO and WT mice did not differ. This effect in RasGRF2 mice is likely mediated by the Ras-ERK signaling pathway, as pERK1/2 upregulation following cocaine SA was absent in RasGRF2 KO mice. Interestingly, the lentiviral knockdown of RasGRF2 in the NAc had the opposite effect to that in RasGRF2 KO mice, reducing cocaine SA. We subsequently demonstrated that the MEK inhibitor PD325901 administered peripherally prior to cocaine SA increased cocaine intake, replicating the increase seen in RasGRF2 KO mice, whereas PD325901 administered into the NAc decreased cocaine intake, similar to the effect seen following lentiviral knockdown of RasGRF2. These data indicate a role for RasGRF2 in cocaine SA in mice that is ERK-dependent, and suggest a differential effect of global versus site-specific RasGRF2 inhibition.SIGNIFICANCE STATEMENT Exposure to drugs of abuse activates a variety of intracellular pathways, and following repeated exposure, persistent changes in these pathways contribute to drug dependence. Downstream components of the Ras-ERK signaling cascade are involved in the acute and chronic effects of drugs of abuse, but their upstream mediators have not been extensively characterized. Here we show, using a combination of molecular, pharmacological, and lentiviral techniques, that the guanine nucleotide exchange factor RasGRF2 mediates cocaine self-administration via an ERK-dependent mechanism, whereas RasGRF1 has no effect on responding for cocaine. These data indicate dissociative effects of mediators of Ras activity on cocaine reward and expand the understanding of the contribution of Ras-ERK signaling to drug-taking behavior.
Collapse
Affiliation(s)
- Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany,
| | - Anastasia Olevska
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Ilaria Morella
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Cardiff University, School of Biosciences, Division of Neuroscience, Cardiff CF24 4HQ, United Kingdom, and
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Cardiff University, School of Biosciences, Division of Neuroscience, Cardiff CF24 4HQ, United Kingdom, and
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain, 37007
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Cardiff University, School of Biosciences, Division of Neuroscience, Cardiff CF24 4HQ, United Kingdom, and
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| |
Collapse
|
25
|
Mariani LL, Longueville S, Girault JA, Hervé D, Gervasi N. Differential enhancement of ERK, PKA and Ca 2+ signaling in direct and indirect striatal neurons of Parkinsonian mice. Neurobiol Dis 2019; 130:104506. [PMID: 31220556 DOI: 10.1016/j.nbd.2019.104506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is characterized by severe locomotor deficits due to the disappearance of dopamine (DA) from the dorsal striatum. The development of PD symptoms and treatment-related complications such as dyskinesia have been proposed to result from complex alterations in intracellular signaling in both direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) following loss of DA afferents. To identify cell-specific and dynamical modifications of signaling pathways associated with PD, we used a hemiparkinsonian mouse model with 6-hydroxydopamine (6-OHDA) lesion combined with two-photon fluorescence biosensors imaging in adult corticostriatal slices. After DA lesion, extracellular signal-regulated kinase (ERK) activation was increased in response to DA D1 receptor (D1R) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation. The cAMP-dependent protein kinase (PKA) pathway contributing to ERK activation displayed supersensitive responses to D1R stimulation after 6-OHDA lesion. This cAMP/PKA supersensitivity was specific of D1R-responding SPNs and resulted from Gαolf upregulation and deficient phosphodiesterase activity. In lesioned striatum, the number of D1R-SPNs with spontaneous Ca2+ transients augmented while Ca2+ response to AMPA receptor stimulation specifically increased in iSPNs. Our work reveals distinct cell type-specific signaling alterations in the striatum after DA denervation. It suggests that over-activation of ERK pathway, observed in PD striatum, known to contribute to dyskinesia, may be linked to the combined dysregulation of DA and glutamate signaling pathways in the two populations of SPNs. These findings bring new insights into the implication of these respective neuronal populations in PD motor symptoms and the occurrence of PD treatment complications.
Collapse
Affiliation(s)
- Louise-Laure Mariani
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Sophie Longueville
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Nicolas Gervasi
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
26
|
Balbinot G, Schuch CP. Compensatory Relearning Following Stroke: Cellular and Plasticity Mechanisms in Rodents. Front Neurosci 2019; 12:1023. [PMID: 30766468 PMCID: PMC6365459 DOI: 10.3389/fnins.2018.01023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
von Monakow’s theory of diaschisis states the functional ‘standstill’ of intact brain regions that are remote from a damaged area, often implied in recovery of function. Accordingly, neural plasticity and activity patterns related to recovery are also occurring at the same regions. Recovery relies on plasticity in the periinfarct and homotopic contralesional regions and involves relearning to perform movements. Seeking evidence for a relearning mechanism following stroke, we found that rodents display many features that resemble classical learning and memory mechanisms. Compensatory relearning is likely to be accompanied by gradual shaping of these regions and pathways, with participating neurons progressively adapting cortico-striato-thalamic activity and synaptic strengths at different cortico-thalamic loops – adapting function relayed by the striatum. Motor cortex functional maps are progressively reinforced and shaped by these loops as the striatum searches for different functional actions. Several cortical and striatal cellular mechanisms that influence motor learning may also influence post-stroke compensatory relearning. Future research should focus on how different neuromodulatory systems could act before, during or after rehabilitation to improve stroke recovery.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Clarissa Pedrini Schuch
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
27
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. The role of lncRNAs in signaling pathway implicated in CC. J Cell Biochem 2018; 120:2703-2712. [PMID: 30552693 DOI: 10.1002/jcb.26835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
- Department of Laboratory Medicine The Sixth Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Min Wang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Xianping Li
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Yixin Xie
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Jingjing Tian
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Kan Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Aiguo Tang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
28
|
Perrin E, Venance L. Bridging the gap between striatal plasticity and learning. Curr Opin Neurobiol 2018; 54:104-112. [PMID: 30321866 DOI: 10.1016/j.conb.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
The striatum, the main input nucleus of the basal ganglia, controls goal-directed behavior and procedural learning. Striatal projection neurons integrate glutamatergic inputs from cortex and thalamus together with neuromodulatory systems, and are subjected to plasticity. Striatal projection neurons exhibit bidirectional plasticity (LTP and LTD) when exposed to Hebbian paradigms. Importantly, correlative and even causal links between procedural learning and striatal plasticity have recently been shown. This short review summarizes the current view on striatal plasticity (with a focus on spike-timing-dependent plasticity), recent studies aiming at bridging in vivo skill acquisition and striatal plasticity, the temporal credit-assignment problem, and the gaps that remain to be filled.
Collapse
Affiliation(s)
- Elodie Perrin
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR7241, Labex Memolife, 75005 Paris, France; Université Pierre et Marie Curie, ED 158, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR7241, Labex Memolife, 75005 Paris, France; Université Pierre et Marie Curie, ED 158, Paris, France.
| |
Collapse
|
29
|
Sociability trait and regional cerebral oxidative metabolism in rats: Predominantly nonlinear relations. Behav Brain Res 2018; 337:186-192. [DOI: 10.1016/j.bbr.2017.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
|
30
|
Yapo C, Nair AG, Hellgren Kotaleski J, Vincent P, Castro LRV. Switch-like PKA responses in the nucleus of striatal neurons. J Cell Sci 2018; 131:jcs.216556. [DOI: 10.1242/jcs.216556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Although it is known that Protein Kinase A (PKA) in the nucleus regulates gene expression, the specificities of nuclear PKA signaling remain poorly understood. Here, we combined computational modeling and live-cell imaging of PKA-dependent phosphorylation in mouse brain slices to investigate how transient dopamine signals are translated into nuclear PKA activity in cortical pyramidal neurons and striatal medium spiny neurons. We observed that the nuclear PKA signal in striatal neurons featured an ultrasensitive responsiveness, associated with fast, all or none responses, which is not consistent with the commonly accepted theory of a slow and passive diffusion of catalytic PKA in the nucleus. Our numerical model suggests that a positive feed-forward mechanism inhibiting nuclear phosphatase activity - possibly mediated by DARPP-32 - could be responsible for this non-linear pattern of nuclear PKA response, allowing for a better detection of the transient dopamine signals that are often associated with reward-mediated learning.
Collapse
Affiliation(s)
- Cédric Yapo
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, 17177, Sweden
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Liliana R. V. Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| |
Collapse
|
31
|
Yapo C, Nair AG, Clement L, Castro LR, Hellgren Kotaleski J, Vincent P. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J Physiol 2017; 595:7451-7475. [PMID: 28782235 PMCID: PMC5730852 DOI: 10.1113/jp274475] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. ABSTRACT The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D1 or D2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D2 than on D1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought.
Collapse
Affiliation(s)
- Cedric Yapo
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangalore560065KarnatakaIndia
- Manipal UniversityManipal576104KarnatakaIndia
| | - Lorna Clement
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
| | - Liliana R. Castro
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- Department of NeuroscienceKarolinska Institutet17177SolnaSweden
| | - Pierre Vincent
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| |
Collapse
|
32
|
Phamluong K, Darcq E, Wu S, Sakhai SA, Ron D. Fyn Signaling Is Compartmentalized to Dopamine D1 Receptor Expressing Neurons in the Dorsal Medial Striatum. Front Mol Neurosci 2017; 10:273. [PMID: 28912680 PMCID: PMC5583218 DOI: 10.3389/fnmol.2017.00273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/11/2017] [Indexed: 01/24/2023] Open
Abstract
The tyrosine kinase Fyn plays an important role in synaptic plasticity, learning, and memory. Here we report that Fyn is activated in response to 15 min D1 receptor (D1R) but not D2 receptor (D2R) stimulation specifically in the dorsomedial striatum (DMS) of mice but not in the other substriatal regions, the dorsolateral striatum (DLS), and the nucleus accumbens (NAc). Once activated Fyn phosphorylates its substrate GluN2B, and we show that GluN2B is phosphorylated only in the DMS but not in the other striatal regions. Striatal neurons are divided into D1R expressing medium spiny neurons (MSNs) and D2R expressing MSNs. Thus, to explore the cell-type specificity of this signaling pathway in the DMS, we developed a Cre-dependent Flip Excision (FLEX) approach to knockdown Fyn in D1R MSNs or D2R MSNs, and proved that the D1R-dependent Fyn activation is localized to DMS D1R MSNs. Importantly, we provide evidence to suggest that the differential association of Fyn and GluN2B with the scaffolding RACK1 is due to the differential localization of Fyn in lipid rafts.Our data further suggest that the differential cholesterol content in the three striatal regions may determine the region specificity of this signaling pathway. Together, our data show that the D1R-dependent Fyn/GluN2B pathway is selectively activated in D1R expressing MSNs in the DMS, and that the brain region specificity of pathway depends on the molecular and cellular compartmentalization of Fyn and GluN2B.
Collapse
Affiliation(s)
- Khanhky Phamluong
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Emmanuel Darcq
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Su Wu
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Samuel A Sakhai
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Dorit Ron
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| |
Collapse
|
33
|
ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions. J Neurosci 2017; 37:8102-8115. [PMID: 28733355 DOI: 10.1523/jneurosci.0473-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/29/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022] Open
Abstract
The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs.SIGNIFICANCE STATEMENT Alterations in ERK/MAPK activity are associated with drug abuse, as well as neuropsychiatric and movement disorders. However, genetic evidence defining the functions of ERK/MAPK signaling in striatum-related neurophysiology and behavior is lacking. We show that loss of ERK/MAPK signaling leads to pathway-specific alterations in motor function, reduced neuronal excitability, and the inability of medium spiny neurons to regulate activity-induced gene expression. Our results underscore the potential importance of the ERK/MAPK pathway in human movement disorders.
Collapse
|
34
|
Araque A, Castillo PE, Manzoni OJ, Tonini R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 2017. [PMID: 28625718 DOI: 10.1016/j.neuropharm.2017.06.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids (eCBs) are a family of lipid molecules that act as key regulators of synaptic transmission and plasticity. They are synthetized "on demand" following physiological and/or pathological stimuli. Once released from postsynaptic neurons, eCBs typically act as retrograde messengers to activate presynaptic type 1 cannabinoid receptors (CB1) and induce short- or long-term depression of neurotransmitter release. Besides this canonical mechanism of action, recent findings have revealed a number of less conventional mechanisms by which eCBs regulate neural activity and synaptic function, suggesting that eCB-mediated plasticity is mechanistically more diverse than anticipated. These mechanisms include non-retrograde signaling, signaling via astrocytes, participation in long-term potentiation, and the involvement of mitochondrial CB1. Focusing on paradigmatic brain areas, such as hippocampus, striatum, and neocortex, we review typical and novel signaling mechanisms, and discuss the functional implications in normal brain function and brain diseases. In summary, eCB signaling may lead to different forms of synaptic plasticity through activation of a plethora of mechanisms, which provide further complexity to the functional consequences of eCB signaling. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Olivier J Manzoni
- Institut National de la Santé et et de la Recherche Médicale U901 Marseille, France, Université de la Méditerranée UMR S901 Aix-Marseille Marseille, France, INMED Marseille, France.
| | - Raffaella Tonini
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
35
|
Rosas M, Porru S, Longoni R, Spina L, Peana AT, Collu M, Acquas E. Differential effects of the MEK inhibitor SL327 on the acquisition and expression of ethanol-elicited conditioned place preference and aversion in mice. J Psychopharmacol 2017; 31:105-114. [PMID: 28072036 DOI: 10.1177/0269881116675514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The involvement of mitogen-activating extracellular kinase (MEK) in place conditioning may vary depending on the motivational sign (positive or negative) and nature (pharmacological or nociceptive) of the unconditioned stimulus (US) and on the phase (acquisition or expression) of the learning process. This study investigated the role of MEK on the acquisition and expression of ethanol-elicited (given 2 g/kg) backward (preference, CPP) and forward (aversion, CPA) place conditioning. The MEK inhibitor SL327 (50 mg/kg for CPP, and 50 and 100 mg/kg for CPA) was administered to CD-1 mice 60 minutes before an ethanol dose (acquisition) or 60 minutes before the post-conditioning tests (expression). Ethanol significantly elicited CPP and CPA; SL327 (50 mg/kg) significantly blocked the acquisition of ethanol-elicited CPP, but not that of CPA. Moreover, SL327 (50 and 100 mg/kg) significantly reduced the expression of ethanol-elicited CPP, but not that of CPA. Finally, SL327 also prevented ethanol-elicited (given 2 g/kg) increases of phosphorylated extracellular signal regulated kinase (pERK)-positive neurons in the nucleus accumbens and other nuclei of the extended amygdala. Overall, these results confirmed the differential involvement of MEK in the acquisition and expression of drug-elicited place conditioning and suggested its differential involvement in distinct behavioral outcomes, depending on the motivational sign of the (same) US and on the significance of the experimental phase of the learning process.
Collapse
Affiliation(s)
- Michela Rosas
- 1 Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Porru
- 1 Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rosanna Longoni
- 1 Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Liliana Spina
- 1 Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandra T Peana
- 2 Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Maria Collu
- 3 Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,4 Centre of Excellence in the Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| | - Elio Acquas
- 1 Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,4 Centre of Excellence in the Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| |
Collapse
|
36
|
Lafragette A, Bardo MT, Lardeux V, Solinas M, Thiriet N. Reduction of Cocaine-Induced Locomotor Effects by Enriched Environment Is Associated with Cell-Specific Accumulation of ΔFosB in Striatal and Cortical Subregions. Int J Neuropsychopharmacol 2016; 20:237-246. [PMID: 27815415 PMCID: PMC5408985 DOI: 10.1093/ijnp/pyw097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/02/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Early exposure to enriched environments has been shown to decrease the locomotor effects induced by repeated injections of cocaine and modify basal and cocaine-induced total protein levels of the transcription factor ΔFosB in the whole striatum of mice. In this study, we aimed at characterizing whether the profile of ΔFosB accumulation induced by enriched environments and cocaine would be similar or different in terms of brain areas and cell type. METHODS We used mice expressing the eGFP protein in D1 receptor positive (D1R(+)) neurons to determine whether Δ FosB induced by enriched environment or cocaine injections (5×15 mg/kg) would occur in selective subpopulations of neurons in several subregions of the striatum and prefrontal cortex. RESULTS We found that: (1) exposure to enriched environment reduces cocaine-induced locomotor activation, confirming our previous findings; (2) exposure to enriched environment by itself increases the accumulation of Δ FosB mostly in D1R(-) cells in the shell part of the nucleus accumbens and dorsal striatum, whereas in the nucleus accumbens core, Δ FosB accumulates in both D1R(+) and D1R(-) neurons; (3) in standard environment mice, cocaine induces accumulation of Δ FosB selectively in D1R(+) cells in the nucleus accumbens, dorsal striatum, and infralimbic cortex; and (4) the effects of enriched environments and cocaine on accumulation of Δ FosB were reciprocally blocked by their combination. CONCLUSIONS Altogether, these results suggest that the enriched environment-induced reduction in behavioral effects of cocaine might result from 2 distinct effects on ΔFosB in striatal medium-sized spiny neurons belonging to the direct and indirect pathways.
Collapse
Affiliation(s)
- Audrey Lafragette
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Michael T. Bardo
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Virginie Lardeux
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Marcello Solinas
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Nathalie Thiriet
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| |
Collapse
|
37
|
Mizutani R, Saiga R, Ohtsuka M, Miura H, Hoshino M, Takeuchi A, Uesugi K. Three-dimensional X-ray visualization of axonal tracts in mouse brain hemisphere. Sci Rep 2016; 6:35061. [PMID: 27725699 PMCID: PMC5057144 DOI: 10.1038/srep35061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022] Open
Abstract
Neurons transmit active potentials through axons, which are essential for the brain to function. In this study, the axonal networks of the murine brain were visualized with X-ray tomographic microscopy, also known as X-ray microtomography or micro-CT. Murine brain samples were freeze-dried to reconstitute the intrinsic contrast of tissue constituents and subjected to X-ray visualization. A whole brain hemisphere visualized by absorption contrast illustrated three-dimensional structures including those of the striatum, corpus callosum, and anterior commissure. Axonal tracts observed in the striatum start from the basal surface of the cerebral cortex and end at various positions in the basal ganglia. The distribution of X-ray attenuation coefficients indicated that differences in water and phospholipid content between the myelin sheath and surrounding tissue constituents account for the observed contrast. A rod-shaped cutout of brain tissue was also analyzed with a phase retrieval method, wherein tissue microstructures could be resolved with up to 2.7 μm resolution. Structures of axonal networks of the striatum were reconstructed by tracing axonal tracts. Such an analysis should be able to delineate the functional relationships of the brain regions involved in the observed network.
Collapse
Affiliation(s)
- Ryuta Mizutani
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Rino Saiga
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masato Ohtsuka
- Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hiromi Miura
- Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
38
|
Li L, Qiao C, Chen G, Qian H, Hou Y, Li T, Liu X. Ifenprodil attenuates the acquisition and expression of methamphetamine-induced behavioral sensitization and activation of Ras-ERK1/2 cascade in the caudate putamen. Neuroscience 2016; 335:20-9. [DOI: 10.1016/j.neuroscience.2016.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
|
39
|
Papale A, Morella IM, Indrigo MT, Bernardi RE, Marrone L, Marchisella F, Brancale A, Spanagel R, Brambilla R, Fasano S. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors. eLife 2016; 5. [PMID: 27557444 PMCID: PMC4996650 DOI: 10.7554/elife.17111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI:http://dx.doi.org/10.7554/eLife.17111.001
Collapse
Affiliation(s)
- Alessandro Papale
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ilaria Maria Morella
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Rick Eugene Bernardi
- Institute of Psychopharmacology, Heidelberg University, Heidelberg, Germany.,Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.,Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Livia Marrone
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Marchisella
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rainer Spanagel
- Institute of Psychopharmacology, Heidelberg University, Heidelberg, Germany.,Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.,Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
40
|
Cdk5 Modulates Long-Term Synaptic Plasticity and Motor Learning in Dorsolateral Striatum. Sci Rep 2016; 6:29812. [PMID: 27443506 PMCID: PMC4957238 DOI: 10.1038/srep29812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
The striatum controls multiple cognitive aspects including motivation, reward perception, decision-making and motor planning. In particular, the dorsolateral striatum contributes to motor learning. Here we define an approach for investigating synaptic plasticity in mouse dorsolateral cortico-striatal circuitry and interrogate the relative contributions of neurotransmitter receptors and intracellular signaling components. Consistent with previous studies, we show that long-term potentiation (LTP) in cortico-striatal circuitry is facilitated by dopamine, and requires activation of D1-dopamine receptors, as well as NMDA receptors (NMDAR) and their calcium-dependent downstream effectors, including CaMKII. Moreover, we assessed the contribution of the protein kinase Cdk5, a key neuronal signaling molecule, in cortico-striatal LTP. Pharmacological Cdk5 inhibition, brain-wide Cdk5 conditional knockout, or viral-mediated dorsolateral striatal-specific loss of Cdk5 all impaired dopamine-facilitated LTP or D1-dopamine receptor-facilitated LTP. Selective loss of Cdk5 in dorsolateral striatum increased locomotor activity and attenuated motor learning. Taken together, we report an approach for studying synaptic plasticity in mouse dorsolateral striatum and critically implicate D1-dopamine receptor, NMDAR, Cdk5, and CaMKII in cortico-striatal plasticity. Furthermore, we associate striatal plasticity deficits with effects upon behaviors mediated by this circuitry. This approach should prove useful for the study of the molecular basis of plasticity in the dorsolateral striatum.
Collapse
|
41
|
Luo YX, Han H, Shao J, Gao Y, Yin X, Zhu WL, Han Y, Shi HS. mTOR signalling in the nucleus accumbens shell is critical for augmented effect of TFF3 on behavioural response to cocaine. Sci Rep 2016; 6:27895. [PMID: 27282818 PMCID: PMC4901260 DOI: 10.1038/srep27895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
Neuropeptides play important roles in modulating the rewarding value of abused drugs. Trefoil factor 3 (TFF3) was recently reported to modulate withdrawal syndrome of morphine, but the effects of TFF3 on the cocaine-induced behavioral changes are still elusive. In the present study, cocaine-induced hyperlocomotion and conditioned place preference (CPP) rat paradigms were provided to investigate the role of TFF3 in the reward response to cocaine. High-performance liquid chromatography (HPLC) analysis was used to analyse the dopamine concentration. The results showed that systemic TFF3 administration (0.1 mg/kg i.p.) significantly augmented cocaine- induced hyperlocomotion and CPP formation, without any effects on locomotor activity and aversive or rewarding effects per se. TFF3 significantly augmented the increment of the dopamine concentration in the NAc and the activity of the mTOR signalling pathway induced by acute cocaine exposure (10 mg/kg, i.p.) in the NAc shell, but not the core. The Intra-NAc shell infusion of rapamycin blocked TFF3-induced hyperactivity in cocaine-treatment rats. These findings indicated that TFF3 could potentiate behavioural response to cocaine, which may be associated with regulating dopamine concentration. Furthermore, the findings indicated that mTOR signalling pathway in the NAc shell is important for TFF3-induced enhancement on the cocaine-induced behavioral changes.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- Department of Pharmacology, Medical School of Hunan Normal University, Changsha 410013, China
| | - Hua Han
- Department of gynecology and obstetrics, Hebei General Hospital, Shijiazhuang 050051, China
| | - Juan Shao
- Department of Senile Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Yin
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Wei-Li Zhu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China.,National Institute on Drug Dependence, Peking University, Beijing 100191, China
| |
Collapse
|
42
|
Gangarossa G, Guzman M, Prado VF, Prado MA, Daumas S, El Mestikawy S, Valjent E. Role of the atypical vesicular glutamate transporter VGLUT3 in l-DOPA-induced dyskinesia. Neurobiol Dis 2016; 87:69-79. [DOI: 10.1016/j.nbd.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022] Open
|
43
|
Lüscher C, Pascoli V, Creed M. Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases. Curr Opin Neurobiol 2015; 35:95-100. [DOI: 10.1016/j.conb.2015.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022]
|
44
|
Trusel M, Cavaccini A, Gritti M, Greco B, Saintot PP, Nazzaro C, Cerovic M, Morella I, Brambilla R, Tonini R. Coordinated Regulation of Synaptic Plasticity at Striatopallidal and Striatonigral Neurons Orchestrates Motor Control. Cell Rep 2015; 13:1353-1365. [DOI: 10.1016/j.celrep.2015.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 07/26/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022] Open
|
45
|
Shan Q, Christie MJ, Balleine BW. Plasticity in striatopallidal projection neurons mediates the acquisition of habitual actions. Eur J Neurosci 2015; 42:2097-104. [DOI: 10.1111/ejn.12971] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Qiang Shan
- Behavioural Neuroscience Laboratory; The University of Sydney; 100 Mallet Street Camperdown NSW 2050 Australia
| | | | - Bernard W. Balleine
- Behavioural Neuroscience Laboratory; The University of Sydney; 100 Mallet Street Camperdown NSW 2050 Australia
| |
Collapse
|
46
|
Bido S, Solari N, Indrigo M, D'Antoni A, Brambilla R, Morari M, Fasano S. Differential involvement of Ras-GRF1 and Ras-GRF2 in L-DOPA-induced dyskinesia. Ann Clin Transl Neurol 2015; 2:662-78. [PMID: 26125041 PMCID: PMC4479526 DOI: 10.1002/acn3.202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022] Open
Abstract
Objective Recent findings have shown that pharmacogenetic manipulations of the Ras-ERK pathway provide a therapeutic means to tackle l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID). First, we investigated whether a prolonged l-DOPA treatment differentially affected ERK signaling in medium spiny neurons of the direct pathway (dMSNs) and in cholinergic aspiny interneurons (ChIs) and assessed the role of Ras-GRF1 in both subpopulations. Second, using viral-assisted technology, we probed Ras-GRF1 and Ras-GRF2 as potential targets in this pathway. We investigated how selective blockade of striatal Ras-GRF1 or Ras-GRF2 expression impacted on LID (induction, maintenance, and reversion) and its neurochemical correlates. Methods We used both Ras-GRF1 knockout mice and lentiviral vectors (LVs) delivering short-hairpin RNA sequences (shRNAs) to obtain striatum-specific gene knockdown of Ras-GRF1 and Ras-GRF2. The consequences of these genetic manipulations were evaluated in the 6-hydroxydopamine mouse model of Parkinson’s disease. Escalating doses of l-DOPA were administered and then behavioral analysis with immunohistochemical assays and in vivo microdialysis were performed. Results Ras-GRF1 was found essential in controlling ERK signaling in dMSNs, but its ablation did not prevent ERK activation in ChIs. Moreover, striatal injection of LV-shRNA/Ras-GRF1 attenuated dyskinesia development and ERK-dependent signaling, whereas LV-shRNA/Ras-GRF2 was without effect, ruling out the involvement of Ras-GRF2 in LID expression. Accordingly, Ras-GRF1 but not Ras-GRF2 striatal gene-knockdown reduced l-DOPA-induced GABA and glutamate release in the substantia nigra pars reticulata, a neurochemical correlate of dyskinesia. Finally, inactivation of Ras-GRF1 provided a prolonged anti-dyskinetic effect for up to 7 weeks and significantly attenuated symptoms in animals with established LID. Interpretation Our results suggest that Ras-GRF1 is a promising target for LID therapy based on Ras-ERK signaling inhibition in the striatum.
Collapse
Affiliation(s)
- Simone Bido
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara Ferrara, Italy
| | - Nicola Solari
- Division of Neuroscience, Institute of Experimental Neurology, IRCSS San Raffaele Scientific Institute Milan, Italy ; Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Marzia Indrigo
- Division of Neuroscience, Institute of Experimental Neurology, IRCSS San Raffaele Scientific Institute Milan, Italy ; Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Angela D'Antoni
- Division of Neuroscience, Institute of Experimental Neurology, IRCSS San Raffaele Scientific Institute Milan, Italy
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, IRCSS San Raffaele Scientific Institute Milan, Italy ; Division of Neuroscience, School of Biosciences, Neuroscience and Mental Health Research Institute, Cardiff University Cardiff, United Kingdom
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara Ferrara, Italy ; Neuroscience Centre and National Institute of Neuroscience Ferrara, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, IRCSS San Raffaele Scientific Institute Milan, Italy ; Division of Neuroscience, School of Biosciences, Neuroscience and Mental Health Research Institute, Cardiff University Cardiff, United Kingdom
| |
Collapse
|
47
|
Wang H, Pati S, Pozzo-Miller L, Doering LC. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front Cell Neurosci 2015; 9:55. [PMID: 25767435 PMCID: PMC4341567 DOI: 10.3389/fncel.2015.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, 1 King's College Circle Toronto, ON, Canada
| | - Sandipan Pati
- Department of Neurology, Epilepsy Division, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Laurie C Doering
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
48
|
Pascoli V, Cahill E, Bellivier F, Caboche J, Vanhoutte P. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation. Biol Psychiatry 2014; 76:917-26. [PMID: 24844603 DOI: 10.1016/j.biopsych.2014.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 01/25/2023]
Abstract
Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction.
Collapse
Affiliation(s)
- Vincent Pascoli
- Department of Basic Neurosciences, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Emma Cahill
- Institut de Biologie Paris, Seine, CNRS/UMR8246-INSERM/UMR-S1130, Université Pierre et Marie Curie
| | - Frank Bellivier
- Department of Adult Psychiatry, L׳Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Saint-Louis, Lariboisière, Fernand-Widal Sites; Unité de Formation et de Recherche de Médecine, Université Denis Diderot; Variability of the Response to Psychotropic Drugs, Institut National de la Santé et de la; Recherche Médicale, Paris; and Fondation FondaMental, Créteil, France
| | - Jocelyne Caboche
- Institut de Biologie Paris, Seine, CNRS/UMR8246-INSERM/UMR-S1130, Université Pierre et Marie Curie
| | - Peter Vanhoutte
- Institut de Biologie Paris, Seine, CNRS/UMR8246-INSERM/UMR-S1130, Université Pierre et Marie Curie.
| |
Collapse
|
49
|
Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 2014; 509:459-64. [DOI: 10.1038/nature13257] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
|
50
|
Goodman J, Packard MG. Peripheral and intra-dorsolateral striatum injections of the cannabinoid receptor agonist WIN 55,212-2 impair consolidation of stimulus-response memory. Neuroscience 2014; 274:128-37. [PMID: 24838065 DOI: 10.1016/j.neuroscience.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
Abstract
The endocannabinoid system plays a major role in modulating memory. In the present study, we examined whether cannabinoid agonists influence the consolidation of stimulus-response/habit memory, a form of memory dependent upon the dorsolateral striatum (DLS). In Experiment 1, rats were trained in a cued platform water maze task in which animals were released from different start points and in order to escape had to find a cued platform which was moved to various spatial locations across trials. Immediately following training, rats received an i.p. injection of the cannabinoid receptor agonist WIN 55,212-2 (1 or 3mg/kg) or a vehicle solution. In Experiment 2, rats were trained in a forced-response version of the water plus-maze task in which a consistent body-turn response was reinforced across trials. Immediately following training, rats received an i.p. injection of WIN 55,212-2 (3 mg/kg) or vehicle. In Experiment 3, rats were trained in the cued platform task and after training received bilateral intra-DLS WIN 55,212-2 (100 ng/.5 μL or 200 ng/.5 μL) or vehicle. In Experiments 1-3, the higher doses of WIN 55,212-2 were associated with significant memory impairments, relative to vehicle-treated controls. The results indicate that peripheral or intra-DLS administration of a cannabinoid receptor agonist impairs consolidation of DLS-dependent memory. The findings are discussed within the context of previous research encompassing cannabinoids and DLS-dependent learning and memory processes, and the possibility that cannabinoids may be used to treat some habit-like human psychopathologies (e.g. posttraumatic stress disorder) is considered.
Collapse
Affiliation(s)
- J Goodman
- Department of Psychology, Institute for Neuroscience, Texas A&M University, United States
| | - M G Packard
- Department of Psychology, Institute for Neuroscience, Texas A&M University, United States.
| |
Collapse
|