1
|
Rapaport H, Sowman PF. Examining predictive coding accounts of typical and autistic neurocognitive development. Neurosci Biobehav Rev 2024; 167:105905. [PMID: 39326770 DOI: 10.1016/j.neubiorev.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Predictive coding has emerged as a prominent theoretical framework for understanding perception and its neural underpinnings. There has been a recent surge of interest in the predictive coding framework across the mind sciences. However, comparatively little of the research in this field has investigated the neural underpinnings of predictive coding in young neurotypical and autistic children. This paper provides an overview of predictive coding accounts of typical and autistic neurocognitive development and includes a review of the current electrophysiological evidence supporting these accounts. Based on the current evidence, it is clear that more research in pediatrics is needed to evaluate predictive coding accounts of neurocognitive development fully. If supported, these accounts could have wide-ranging practical implications for pedagogy, parenting, artificial intelligence, and clinical approaches to helping autistic children manage the barrage of everyday sensory information.
Collapse
Affiliation(s)
- Hannah Rapaport
- School of Psychological Sciences, Macquarie University, Sydney, Australia; MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom.
| | - Paul F Sowman
- School of Psychological Sciences, Macquarie University, Sydney, Australia; School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
2
|
Deng J, Zhang Y, Lu L, Ou Y, Lai X, Chen S, Ye Y. Duration mismatch negativity under varying deviant conditions in individuals with high schizotypal traits. Front Psychiatry 2024; 15:1428814. [PMID: 39165502 PMCID: PMC11333253 DOI: 10.3389/fpsyt.2024.1428814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Although impaired auditory mismatch negativity (MMN) has consistently been found in individuals with schizophrenia, there are few and inconsistent reports on nonclinical individuals with schizotypy. To date, no studies have thoroughly assessed MMN with different degrees of deviant oddballs in nonclinical schizotypal samples. The aim of this study was to examine the extent of duration MMN (dMMN) amplitudes under two deviant duration conditions (large and small) in nonclinical participants with high schizotypal traits. Methods An extreme-group design was utilized, in which 63 participants from the schizotypy and control groups were selected from a pool of 1519 young adults using the Schizotypal Personality Questionnaire (SPQ). MMN was measured using passive duration oddball paradigms. Basic demographic information and musical backgrounds were assessed and matched, while depression and anxiety were evaluated and controlled for. The repeated measures analysis of covariance was utilized to evaluate differences in dMMN between groups. The Bonferroni correction was applied for multiple comparisons. Partial correlation and multiple linear regression analyses were conducted to investigate the association between dMMN amplitudes and SPQ scores. Results The amplitudes of dMMN at Cz were significantly increased under the large deviance condition in nonclinical schizotypal individuals (F = 4.36, p = .04). Large-deviance dMMN amplitudes at Fz were positively correlated with mild cognitive-perceptual symptoms in the control group (rp = .42, p = .03). However, as schizophrenia-like symptoms worsened and approached the clinical threshold for schizophrenia, small-deviance dMMN amplitudes at Cz showed negative associations with the cognitive-perceptual factor in the schizotypy group (rp = -.40, p = .04). Conclusion These results suggest the importance of considering the degree of deviation in duration when implementing the auditory oddball paradigm among nonclinical participants with schizotypal traits. In addition, our findings reveal a potential non-linear relationship between bottom-up auditory processing and the positive dimension of the schizophrenia spectrum.
Collapse
Affiliation(s)
- Jue Deng
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yuanjun Zhang
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Liqin Lu
- Department of Forensic Science, Fujian Police College, Fuzhou, China
| | - Yuanhua Ou
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
| | - Xianghui Lai
- Department of Basic Courses, Fujian Police College, Fuzhou, China
| | - Siwei Chen
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yiduo Ye
- School of Psychology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
3
|
Schneider P, Engelmann D, Groß C, Bernhofs V, Hofmann E, Christiner M, Benner J, Bücher S, Ludwig A, Serrallach BL, Zeidler BM, Turker S, Parncutt R, Seither-Preisler A. Neuroanatomical Disposition, Natural Development, and Training-Induced Plasticity of the Human Auditory System from Childhood to Adulthood: A 12-Year Study in Musicians and Nonmusicians. J Neurosci 2023; 43:6430-6446. [PMID: 37604688 PMCID: PMC10500984 DOI: 10.1523/jneurosci.0274-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023] Open
Abstract
Auditory perception is fundamental to human development and communication. However, no long-term studies have been performed on the plasticity of the auditory system as a function of musical training from childhood to adulthood. The long-term interplay between developmental and training-induced neuroplasticity of auditory processing is still unknown. We present results from AMseL (Audio and Neuroplasticity of Musical Learning), the first longitudinal study on the development of the human auditory system from primary school age until late adolescence. This 12-year project combined neurologic and behavioral methods including structural magnetic resonance imaging (MRI), magnetoencephalography (MEG), and auditory tests. A cohort of 112 typically developing participants (51 male, 61 female), classified as "musicians" (n = 66) and "nonmusicians" (n = 46), was tested at five measurement timepoints. We found substantial, stable differences in the morphology of auditory cortex (AC) between musicians and nonmusicians even at the earliest ages, suggesting that musical aptitude is manifested in macroscopic neuroanatomical characteristics. Maturational plasticity led to a continuous increase in white matter myelination and systematic changes of the auditory evoked P1-N1-P2 complex (decreasing latencies, synchronization effects between hemispheres, and amplitude changes) regardless of musical expertise. Musicians showed substantial training-related changes at the neurofunctional level, in particular more synchronized P1 responses and bilaterally larger P2 amplitudes. Musical training had a positive influence on elementary auditory perception (frequency, tone duration, onset ramp) and pattern recognition (rhythm, subjective pitch). The observed interplay between "nature" (stable biological dispositions and natural maturation) and "nurture" (learning-induced plasticity) is integrated into a novel neurodevelopmental model of the human auditory system.Significance Statement We present results from AMseL (Audio and Neuroplasticity of Musical Learning), a 12-year longitudinal study on the development of the human auditory system from childhood to adulthood that combined structural magnetic resonance imaging (MRI), magnetoencephalography (MEG), and auditory discrimination and pattern recognition tests. A total of 66 musicians and 46 nonmusicians were tested at five timepoints. Substantial, stable differences in the morphology of auditory cortex (AC) were found between the two groups even at the earliest ages, suggesting that musical aptitude is manifested in macroscopic neuroanatomical characteristics. We also observed neuroplastic and perceptual changes with age and musical practice. This interplay between "nature" (stable biological dispositions and natural maturation) and "nurture" (learning-induced plasticity) is integrated into a novel neurodevelopmental model of the human auditory system.
Collapse
Affiliation(s)
- Peter Schneider
- Centre for Systematic Musicology, University of Graz, Graz A-8010, Austria
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg D-69120, Germany
- Division of Neuroradiology, University of Heidelberg Medical School, Heidelberg D-69120, Germany
- Latvian Academy of Music, Riga LV-1050, Latvia
| | - Dorte Engelmann
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg D-69120, Germany
- Division of Neuroradiology, University of Heidelberg Medical School, Heidelberg D-69120, Germany
| | - Christine Groß
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg D-69120, Germany
- Latvian Academy of Music, Riga LV-1050, Latvia
| | | | - Elke Hofmann
- School of Life Sciences, Muttenz, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Switzerland CH-4132
| | - Markus Christiner
- Centre for Systematic Musicology, University of Graz, Graz A-8010, Austria
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg D-69120, Germany
- Latvian Academy of Music, Riga LV-1050, Latvia
| | - Jan Benner
- Division of Neuroradiology, University of Heidelberg Medical School, Heidelberg D-69120, Germany
| | - Steffen Bücher
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg D-69120, Germany
| | - Alexander Ludwig
- Division of Neuroradiology, University of Heidelberg Medical School, Heidelberg D-69120, Germany
| | - Bettina L Serrallach
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg D-69120, Germany
- Division of Neuroradiology, University of Heidelberg Medical School, Heidelberg D-69120, Germany
| | - Bettina M Zeidler
- Centre for Systematic Musicology, University of Graz, Graz A-8010, Austria
- Division of Neuroradiology, University of Heidelberg Medical School, Heidelberg D-69120, Germany
| | - Sabrina Turker
- Lise Meitner Research Group 'Cognition and Plasticity,' Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig D-04103, Germany
| | - Richard Parncutt
- Centre for Systematic Musicology, University of Graz, Graz A-8010, Austria
| | - Annemarie Seither-Preisler
- Centre for Systematic Musicology, University of Graz, Graz A-8010, Austria
- BioTechMed, Graz A-8010, Austria
| |
Collapse
|
4
|
Tervaniemi M. The neuroscience of music – towards ecological validity. Trends Neurosci 2023; 46:355-364. [PMID: 37012175 DOI: 10.1016/j.tins.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Studies in the neuroscience of music gained momentum in the 1990s as an integrated part of the well-controlled experimental research tradition. However, during the past two decades, these studies have moved toward more naturalistic, ecologically valid paradigms. Here, I introduce this move in three frameworks: (i) sound stimulation and empirical paradigms, (ii) study participants, and (iii) methods and contexts of data acquisition. I wish to provide a narrative historical overview of the development of the field and, in parallel, to stimulate innovative thinking to further advance the ecological validity of the studies without overlooking experimental rigor.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Centre of Excellence in Music, Mind, Body, and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland; Cognitive Brain Research Unit, Department of Psychology and Locopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Bonetti L, Carlomagno F, Kliuchko M, Gold B, Palva S, Haumann N, Tervaniemi M, Huotilainen M, Vuust P, Brattico E. Whole-brain computation of cognitive versus acoustic errors in music: A mismatch negativity study. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Tervaniemi M. Mismatch negativity-stimulation paradigms in past and in future. Front Neurosci 2022; 16:1025763. [PMID: 36466164 PMCID: PMC9713013 DOI: 10.3389/fnins.2022.1025763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 09/30/2023] Open
Abstract
Mismatch negativity (MMN) studies were initiated as part of a well-controlled experimental research tradition with the aim to identify some key principles of auditory processing and memory. During the past two decades, empirical paradigms have moved toward more ecologically valid ones while retaining rigid experimental control. In this paper, I will introduce this development of MMN stimulation paradigms starting from the paradigms used in basic science and then moving to paradigms that have been particularly relevant for studies on music learning and musical expertise. Via these historical and thematic perspectives, I wish to stimulate paradigm development further to meet the demands of naturalistic ecologically valid studies also when using MMN in the context of event-related potential technique that necessarily requires averaging across several stimulus presentations.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Center of Excellence in Music, Mind, Body, and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Hansen NC, Højlund A, Møller C, Pearce M, Vuust P. Musicians show more integrated neural processing of contextually relevant acoustic features. Front Neurosci 2022; 16:907540. [PMID: 36312026 PMCID: PMC9612920 DOI: 10.3389/fnins.2022.907540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Little is known about expertise-related plasticity of neural mechanisms for auditory feature integration. Here, we contrast two diverging hypotheses that musical expertise is associated with more independent or more integrated predictive processing of acoustic features relevant to melody perception. Mismatch negativity (MMNm) was recorded with magnetoencephalography (MEG) from 25 musicians and 25 non-musicians, exposed to interleaved blocks of a complex, melody-like multi-feature paradigm and a simple, oddball control paradigm. In addition to single deviants differing in frequency (F), intensity (I), or perceived location (L), double and triple deviants were included reflecting all possible feature combinations (FI, IL, LF, FIL). Following previous work, early neural processing overlap was approximated in terms of MMNm additivity by comparing empirical MMNms obtained with double and triple deviants to modeled MMNms corresponding to summed constituent single-deviant MMNms. Significantly greater subadditivity was found in musicians compared to non-musicians, specifically for frequency-related deviants in complex, melody-like stimuli. Despite using identical sounds, expertise effects were absent from the simple oddball paradigm. This novel finding supports the integrated processing hypothesis whereby musicians recruit overlapping neural resources facilitating more integrative representations of contextually relevant stimuli such as frequency (perceived as pitch) during melody perception. More generally, these specialized refinements in predictive processing may enable experts to optimally capitalize upon complex, domain-relevant, acoustic cues.
Collapse
Affiliation(s)
- Niels Chr. Hansen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Dramaturgy and Musicology, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- *Correspondence: Niels Chr. Hansen,
| | - Andreas Højlund
- Department of Linguistics, Cognitive Science, and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Cecilie Møller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Marcus Pearce
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- School of Electronic Engineering and Computer Science, Cognitive Science Research Group and Centre for Digital Music, Queen Mary University of London, London, United Kingdom
| | - Peter Vuust
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
8
|
Hervé E, Mento G, Desnous B, François C. Challenges and new perspectives of developmental cognitive EEG studies. Neuroimage 2022; 260:119508. [PMID: 35882267 DOI: 10.1016/j.neuroimage.2022.119508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022] Open
Abstract
Despite shared procedures with adults, electroencephalography (EEG) in early development presents many specificities that need to be considered for good quality data collection. In this paper, we provide an overview of the most representative early cognitive developmental EEG studies focusing on the specificities of this neuroimaging technique in young participants, such as attrition and artifacts. We also summarize the most representative results in developmental EEG research obtained in the time and time-frequency domains and use more advanced signal processing methods. Finally, we briefly introduce three recent standardized pipelines that will help promote replicability and comparability across experiments and ages. While this paper does not claim to be exhaustive, it aims to give a sufficiently large overview of the challenges and solutions available to conduct robust cognitive developmental EEG studies.
Collapse
Affiliation(s)
- Estelle Hervé
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Padova 35131, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova 35131, Italy
| | - Béatrice Desnous
- APHM, Reference Center for Rare Epilepsies, Timone Children Hospital, Aix-Marseille University, Marseille 13005, France; Inserm, INS, Aix-Marseille University, Marseille 13005, France
| | - Clément François
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France.
| |
Collapse
|
9
|
Pentikäinen E, Kimppa L, Makkonen T, Putkonen M, Pitkäniemi A, Salakka I, Paavilainen P, Tervaniemi M, Särkämö T. Benefits of choir singing on complex auditory encoding in the aging brain: An ERP study. Ann N Y Acad Sci 2022; 1514:82-92. [PMID: 35596717 DOI: 10.1111/nyas.14789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aging is accompanied by difficulties in auditory information processing, especially in more complex sound environments. Choir singing requires efficient processing of multiple sound features and could, therefore, mitigate the detrimental effects of aging on complex auditory encoding. We recorded auditory event-related potentials during passive listening of sounds in healthy older adult (≥ 60 years) choir singers and nonsinger controls. We conducted a complex oddball condition involving encoding of abstract regularities in combinations of pitch and location features, as well as in two simple oddball conditions, in which only either the pitch or spatial location of the sounds was varied. We analyzed change-related mismatch negativity (MMN) and obligatory P1 and N1 responses in each condition. In the complex condition, the choir singers showed a larger MMN than the controls, which also correlated with better performance in a verbal fluency test. In the simple pitch and location conditions, the choir singers had smaller N1 responses compared to the control subjects, whereas the MMN responses did not differ between groups. These results suggest that regular choir singing is associated both with more enhanced encoding of complex auditory regularities and more effective adaptation to simple sound features.
Collapse
Affiliation(s)
- Emmi Pentikäinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lilli Kimppa
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tommi Makkonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Putkonen
- Department of Psychology and Speech-Language Pathology, Faculty of Social Sciences, University of Turku, Turku, Finland
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilja Salakka
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri Paavilainen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Education, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Partanen E, Kivimäki R, Huotilainen M, Ylinen S, Tervaniemi M. Musical perceptual skills, but not neural auditory processing, are associated with better reading ability in childhood. Neuropsychologia 2022; 169:108189. [DOI: 10.1016/j.neuropsychologia.2022.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
11
|
Gande N. Neural Phenomenon in Musicality: The Interpretation of Dual-Processing Modes in Melodic Perception. Front Hum Neurosci 2022; 16:823325. [PMID: 35496061 PMCID: PMC9051476 DOI: 10.3389/fnhum.2022.823325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The confluence of creativity in music performance finds itself in performance practices and cultural motifs, the communication of the human body along with the instrument it interacts with, and individual performers' perceptual, motor, and cognitive abilities that contribute to varied musical interpretations of the same piece or melodic line. The musical and artistic execution of a player, as well as the product of this phenomena can become determinant causes in a creative mental state. With advances in neurocognitive measures, the state of one's artistic intuition and execution has been a growing interest in understanding the creative thought process of human behavior, particularly in improvising artists. This article discusses the implementation on the concurrence of spontaneous (Type-1) and controlled (Type-2) processing modes that may be apparent in the perception of non-improvising artists on how melodic lines are perceived in music performance. Elucidating the cortical-subcortical activity in the dual-process model may extend to non-improvising musicians explored in the paradigm of neural correlates. These interactions may open new possibilities for expanding the repertoire of executive functions, creativity, and the coordinated activity of cortical-subcortical regions that regulate the free flow of artistic ideas and expressive spontaneity in future neuromusical research.
Collapse
Affiliation(s)
- Nathazsha Gande
- Department of A-Levels, HELP University, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Paquet A, Simard F, Cadoret G. Electrophysiological Evidence of Enhanced Auditory Retrieval in Musically Trained Children. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Musical practice enhances auditory processing in children as related to pitch perception or tonal discrimination. The purpose of this study was to examine whether these benefits also occur in auditory working memory by influencing its neural substrates. Two groups of children aged between 7 and 11 years old were compared using an auditory retrieval task with three conditions: frequency retrieval, duration retrieval, and control. Musician children had weekly private violin or cello lessons for at least 14 months, whereas non-musician children had no musical training. Results showed that musicians’ scores on the Gordon’s Primary Measure of Music Audiation test were significantly higher than non-musicians’ scores in the rhythm and tone conditions. On memory tasks, musicians outperformed non-musicians in frequency retrieval but not in duration retrieval. Differences in retrieval performance were associated with a larger P200-like waveform over frontal sites in musicians and a larger N400-like waveform over centro-parietal sites in non-musicians. A source current density analysis revealed differences in frontal activities between musicians and non-musicians, suggesting that musical training influenced the neural mechanisms supporting auditory retrieval in children. These results are in agreement with previous studies that showed a better auditory memory in musicians. Furthermore, they suggest that in children, the effect of musical training can be strong enough to positively influence higher-order auditory memory processes such as active retrieval, as well as their neural correlates.
Collapse
Affiliation(s)
- Anik Paquet
- Faculty of Sciences, University of Quebec in Montreal, QC, Canada
| | - France Simard
- Faculty of Arts, University of Quebec in Montreal, QC, Canada
| | | |
Collapse
|
13
|
Cui AX, Troje NF, Cuddy LL. Electrophysiological and behavioral indicators of musical knowledge about unfamiliar music. Sci Rep 2022; 12:441. [PMID: 35013467 PMCID: PMC8748445 DOI: 10.1038/s41598-021-04211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Most listeners possess sophisticated knowledge about the music around them without being aware of it or its intricacies. Previous research shows that we develop such knowledge through exposure. This knowledge can then be assessed using behavioral and neurophysiological measures. It remains unknown however, which neurophysiological measures accompany the development of musical long-term knowledge. In this series of experiments, we first identified a potential ERP marker of musical long-term knowledge by comparing EEG activity following musically unexpected and expected tones within the context of known music (n = 30). We then validated the marker by showing that it does not differentiate between such tones within the context of unknown music (n = 34). In a third experiment, we exposed participants to unknown music (n = 40) and compared EEG data before and after exposure to explore effects of time. Although listeners’ behavior indicated musical long-term knowledge, we did not find any effects of time on the ERP marker. Instead, the relationship between behavioral and EEG data suggests musical long-term knowledge may have formed before we could confirm its presence through behavioral measures. Listeners are thus not only knowledgeable about music but seem to also be incredibly fast music learners.
Collapse
Affiliation(s)
- Anja-Xiaoxing Cui
- Queen's University, Kingston, Canada. .,University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
14
|
Mencke I, Quiroga-Martinez DR, Omigie D, Michalareas G, Schwarzacher F, Haumann NT, Vuust P, Brattico E. Prediction under uncertainty: Dissociating sensory from cognitive expectations in highly uncertain musical contexts. Brain Res 2021; 1773:147664. [PMID: 34560052 DOI: 10.1016/j.brainres.2021.147664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Predictive models in the brain rely on the continuous extraction of regularities from the environment. These models are thought to be updated by novel information, as reflected in prediction error responses such as the mismatch negativity (MMN). However, although in real life individuals often face situations in which uncertainty prevails, it remains unclear whether and how predictive models emerge in high-uncertainty contexts. Recent research suggests that uncertainty affects the magnitude of MMN responses in the context of music listening. However, musical predictions are typically studied with MMN stimulation paradigms based on Western tonal music, which are characterized by relatively high predictability. Hence, we developed an MMN paradigm to investigate how the high uncertainty of atonal music modulates predictive processes as indexed by the MMN and behavior. Using MEG in a group of 20 subjects without musical training, we demonstrate that the magnetic MMN in response to pitch, intensity, timbre, and location deviants is evoked in both tonal and atonal melodies, with no significant differences between conditions. In contrast, in a separate behavioral experiment involving 39 non-musicians, participants detected pitch deviants more accurately and rated confidence higher in the tonal than in the atonal musical context. These results indicate that contextual tonal uncertainty modulates processing stages in which conscious awareness is involved, although deviants robustly elicit low-level pre-attentive responses such as the MMN. The achievement of robust MMN responses, despite high tonal uncertainty, is relevant for future studies comparing groups of listeners' MMN responses to increasingly ecological music stimuli.
Collapse
Affiliation(s)
- Iris Mencke
- Department of Music, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt/Main, Germany; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | - David Ricardo Quiroga-Martinez
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Diana Omigie
- Department of Psychology, University of London, Goldsmiths, SE14 6NW London, United Kingdom
| | - Georgios Michalareas
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt/Main, Germany
| | - Franz Schwarzacher
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Niels Trusbak Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark; Department of Education, Psychology and Communication, University of Bari Aldo Moro, Piazza Umberto I, 70121 Bari, Italy
| |
Collapse
|
15
|
Tervaniemi M, Putkinen V, Nie P, Wang C, Du B, Lu J, Li S, Cowley BU, Tammi T, Tao S. Improved Auditory Function Caused by Music Versus Foreign Language Training at School Age: Is There a Difference? Cereb Cortex 2021; 32:63-75. [PMID: 34265850 PMCID: PMC8634570 DOI: 10.1093/cercor/bhab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
In adults, music and speech share many neurocognitive functions, but how do they interact in a developing brain? We compared the effects of music and foreign language training on auditory neurocognition in Chinese children aged 8–11 years. We delivered group-based training programs in music and foreign language using a randomized controlled trial. A passive control group was also included. Before and after these year-long extracurricular programs, auditory event-related potentials were recorded (n = 123 and 85 before and after the program, respectively). Through these recordings, we probed early auditory predictive brain processes. To our surprise, the language program facilitated the children’s early auditory predictive brain processes significantly more than did the music program. This facilitation was most evident in pitch encoding when the experimental paradigm was musically relevant. When these processes were probed by a paradigm more focused on basic sound features, we found early predictive pitch encoding to be facilitated by music training. Thus, a foreign language program is able to foster auditory and music neurocognition, at least in tonal language speakers, in a manner comparable to that by a music program. Our results support the tight coupling of musical and linguistic brain functions also in the developing brain.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland.,Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
| | - Vesa Putkinen
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Peixin Nie
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland.,Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Cuicui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bin Du
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shuting Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Benjamin Ultan Cowley
- Faculty of Educational Sciences, University of Helsinki, Finland.,Cognitive Science, Department of Digital Humanities, Faculty of Arts, University of Helsinki, Finland
| | - Tuisku Tammi
- Cognitive Science, Department of Digital Humanities, Faculty of Arts, University of Helsinki, Finland
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Pesnot Lerousseau J, Schön D. Musical Expertise Is Associated with Improved Neural Statistical Learning in the Auditory Domain. Cereb Cortex 2021; 31:4877-4890. [PMID: 34013316 DOI: 10.1093/cercor/bhab128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
It is poorly known whether musical training is associated with improvements in general cognitive abilities, such as statistical learning (SL). In standard SL paradigms, musicians have shown better performances than nonmusicians. However, this advantage could be due to differences in auditory discrimination, in memory or truly in the ability to learn sequence statistics. Unfortunately, these different hypotheses make similar predictions in terms of expected results. To dissociate them, we developed a Bayesian model and recorded electroencephalography (EEG). Our results confirm that musicians perform approximately 15% better than nonmusicians at predicting items in auditory sequences that embed either low or high-order statistics. These higher performances are explained in the model by parameters governing the learning of high-order statistics and the selection stage noise. EEG recordings reveal a neural underpinning of the musician's advantage: the P300 amplitude correlates with the surprise elicited by each item, and so, more strongly for musicians. Finally, early EEG components correlate with the surprise elicited by low-order statistics, as opposed to late EEG components that correlate with the surprise elicited by high-order statistics and this effect is stronger for musicians. Overall, our results demonstrate that musical expertise is associated with improved neural SL in the auditory domain. SIGNIFICANCE STATEMENT It is poorly known whether musical training leads to improvements in general cognitive skills. One fundamental cognitive ability, SL, is thought to be enhanced in musicians, but previous studies have reported mixed results. This is because such musician's advantage can embrace very different explanations, such as improvement in auditory discrimination or in memory. To solve this problem, we developed a Bayesian model and recorded EEG to dissociate these explanations. Our results reveal that musical expertise is truly associated with an improved ability to learn sequence statistics, especially high-order statistics. This advantage is reflected in the electroencephalographic recordings, where the P300 amplitude is more sensitive to surprising items in musicians than in nonmusicians.
Collapse
Affiliation(s)
| | - Daniele Schön
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
17
|
Putkinen V, Saarikivi K, Chan TMV, Tervaniemi M. Faster maturation of selective attention in musically trained children and adolescents: Converging behavioral and event-related potential evidence. Eur J Neurosci 2021; 54:4246-4257. [PMID: 33932235 DOI: 10.1111/ejn.15262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022]
Abstract
Previous work suggests that musical training in childhood is associated with enhanced executive functions. However, it is unknown whether this advantage extends to selective attention-another central aspect of executive control. We recorded a well-established event-related potential (ERP) marker of distraction, the P3a, during an audio-visual task to investigate the maturation of selective attention in musically trained children and adolescents aged 10-17 years and a control group of untrained peers. The task required categorization of visual stimuli, while a sequence of standard sounds and distracting novel sounds were presented in the background. The music group outperformed the control group in the categorization task and the younger children in the music group showed a smaller P3a to the distracting novel sounds than their peers in the control group. Also, a negative response elicited by the novel sounds in the N1/MMN time range (~150-200 ms) was smaller in the music group. These results indicate that the music group was less easily distracted by the task-irrelevant sound stimulation and gated the neural processing of the novel sounds more efficiently than the control group. Furthermore, we replicated our previous finding that, relative to the control group, the musically trained children and adolescents performed faster in standardized tests for inhibition and set shifting. These results provide novel converging behavioral and electrophysiological evidence from a cross-modal paradigm for accelerated maturation of selective attention in musically trained children and adolescents and corroborate the association between musical training and enhanced inhibition and set shifting.
Collapse
Affiliation(s)
- Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Saarikivi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | | | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Marques PM, Mattiazzi ÂL, Ferreira L, Oppitz SJ, Biaggio EPV. The Effect of Learning English on P300 in Children. Int Arch Otorhinolaryngol 2021; 25:e284-e288. [PMID: 33968234 PMCID: PMC8096498 DOI: 10.1055/s-0040-1710304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/07/2020] [Indexed: 10/31/2022] Open
Abstract
Introduction Learning a second language is an essential task in today's world, and is experienced by many children. The cognitive auditory-evoked potential (P300) is related to cognitive activity, attention and concentration, enabling the investigation of the effect of a second language on the central auditory pathway. Objective To analyze the effects of learning English on P300 latency and amplitude in children and to correlate them with age, time of exposure to English, and time in class. Method An observational, descriptive, cross-sectional and quantitative study, in which 33 children, aged between 5 and 9 years and 11 months, of both genders participated, 14 of them in the process of learning English (study group) and 19 without this experience (control group). All subjects had their P300 evaluated using the Intelligent Hearing Systems (IHS, Miami, FL, US) Smart EP equipment. A total of 300 binaural stimuli were used in 75 dBnHL, as well as 240 frequent and 60 rare stimuli, using the pairs /ba/ and /di/ respectively. Results There was a statistically significant difference regarding P300 latency between the groups, and children exposed to English classes had lower latency in this component. No statistical difference was found between P300 amplitudes. No correlation was observed regarding age, time of exposure to English, time in class, and electrophysiological responses. Conclusion The Children exposed to English classes had the most stimulating auditory pathway, because their P300 had lower latency, being a resource for the speech therapy clinic.
Collapse
Affiliation(s)
| | - Ângela Leusin Mattiazzi
- Post-graduate Program in Human Communication Disorders, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Laís Ferreira
- Post-graduate Program in Human Communication Disorders, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Sheila Jacques Oppitz
- Post-graduate Program in Human Communication Disorders, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Eliara Pinto Vieira Biaggio
- Post-graduate Program in Human Communication Disorders, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
19
|
Vaquero L, Ramos-Escobar N, Cucurell D, François C, Putkinen V, Segura E, Huotilainen M, Penhune V, Rodríguez-Fornells A. Arcuate fasciculus architecture is associated with individual differences in pre-attentive detection of unpredicted music changes. Neuroimage 2021; 229:117759. [PMID: 33454403 DOI: 10.1016/j.neuroimage.2021.117759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The mismatch negativity (MMN) is an event related brain potential (ERP) elicited by unpredicted sounds presented in a sequence of repeated auditory stimuli. The neural sources of the MMN have been previously attributed to a fronto-temporo-parietal network which crucially overlaps with the so-called auditory dorsal stream, involving inferior and middle frontal, inferior parietal, and superior and middle temporal regions. These cortical areas are structurally connected by the arcuate fasciculus (AF), a three-branch pathway supporting the feedback-feedforward loop involved in auditory-motor integration, auditory working memory, storage of acoustic templates, as well as comparison and update of those templates. Here, we characterized the individual differences in the white-matter macrostructural properties of the AF and explored their link to the electrophysiological marker of passive change detection gathered in a melodic multifeature MMN-EEG paradigm in 26 healthy young adults without musical training. Our results show that left fronto-temporal white-matter connectivity plays an important role in the pre-attentive detection of rhythm modulations within a melody. Previous studies have shown that this AF segment is also critical for language processing and learning. This strong coupling between structure and function in auditory change detection might be related to life-time linguistic (and possibly musical) exposure and experiences, as well as to timing processing specialization of the left auditory cortex. To the best of our knowledge, this is the first time in which the relationship between neurophysiological (EEG) and brain white-matter connectivity indexes using DTI-tractography are studied together. Thus, the present results, although still exploratory, add to the existing evidence on the importance of studying the constraints imposed on cognitive functions by the underlying structural connectivity.
Collapse
Affiliation(s)
- Lucía Vaquero
- Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid and Polytechnic University of Madrid, Campus Científico y Tecnológico de la UPM, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Neus Ramos-Escobar
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Cucurell
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Clément François
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
| | - Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Emma Segura
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Minna Huotilainen
- Cicero Learning and Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| | - Virginia Penhune
- Penhune Laboratory for Motor Learning and Neural Plasticity, Concordia University, Montreal, QC, Canada; International Laboratory for Brain, Music and Sound Research (BRAMS). Montreal, QC, Canada; Center for Research on Brain, Language and Music (CRBLM), McGill University. Montreal, QC, Canada
| | - Antoni Rodríguez-Fornells
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Institució Catalana de recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
20
|
Gorin A, Krugliakova E, Nikulin V, Kuznetsova A, Moiseeva V, Klucharev V, Shestakova A. Cortical plasticity elicited by acoustically cued monetary losses: an ERP study. Sci Rep 2020; 10:21161. [PMID: 33273646 PMCID: PMC7713235 DOI: 10.1038/s41598-020-78211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/22/2020] [Indexed: 11/12/2022] Open
Abstract
Both human and animal studies have demonstrated remarkable findings of experience-induced plasticity in the cortex. Here, we investigated whether the widely used monetary incentive delay (MID) task changes the neural processing of incentive cues that code expected monetary outcomes. We used a novel auditory version of the MID task, where participants responded to acoustic cues that coded expected monetary losses. To investigate task-induced brain plasticity, we presented incentive cues as deviants during passive oddball tasks before and after two sessions of the MID task. During the oddball task, we recorded the mismatch-related negativity (MMN) as an index of cortical plasticity. We found that two sessions of the MID task evoked a significant enhancement of MMN for incentive cues that predicted large monetary losses, specifically when monetary cue discrimination was essential for maximising monetary outcomes. The task-induced plasticity correlated with the learning-related neural activity recorded during the MID task. Thus, our results confirm that the processing of (loss)incentive auditory cues is dynamically modulated by previously learned monetary outcomes.
Collapse
Affiliation(s)
- Aleksei Gorin
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 20, Myasnitskaya St., Moscow, 101000, Russia.
| | - Elena Krugliakova
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 20, Myasnitskaya St., Moscow, 101000, Russia
| | - Vadim Nikulin
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 20, Myasnitskaya St., Moscow, 101000, Russia
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Aleksandra Kuznetsova
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 20, Myasnitskaya St., Moscow, 101000, Russia
| | - Victoria Moiseeva
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 20, Myasnitskaya St., Moscow, 101000, Russia
| | - Vasily Klucharev
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 20, Myasnitskaya St., Moscow, 101000, Russia
| | - Anna Shestakova
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 20, Myasnitskaya St., Moscow, 101000, Russia
| |
Collapse
|
21
|
Hartkopf J, Moser J, Schleger F, Preissl H, Keune J. Changes in event-related brain responses and habituation during child development - A systematic literature review. Clin Neurophysiol 2019; 130:2238-2254. [PMID: 31711004 DOI: 10.1016/j.clinph.2019.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/07/2019] [Accepted: 08/24/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This systematic review highlights the influence of developmental changes of the central nervous system on habituation assessment during child development. Therefore, studies on age dependant changes in event-related brain responses as well as studies on behavioural and neurophysiological habituation during child development are compiled and discussed. METHODS Two PubMed searches with terms "(development evoked brain response (fetus OR neonate OR children) (electroencephalography OR magnetoencephalography))" and with terms "(psychology habituation (fetal OR neonate OR children) (human brain))" were performed to identify studies on developmental changes in event-related brain responses as well as habituation studies during child development. RESULTS Both search results showed a wide diversity of subjects' ages, stimulation protocols and examined behaviour or components of event-related brain responses as well as a demand for more longitudinal study designs. CONCLUSIONS A conclusive statement about clear developmental trends in event-related brain responses or in neurophysiological habituation studies is difficult to draw. Future studies should implement longitudinal designs, combination of behavioural and neurophysiological habituation measurement and more complex habituation paradigms to assess several habituation criteria. SIGNIFICANCE This review emphasizes that event-related brain responses underlie certain changes during child development which should be more considered in the context of neurophysiological habituation studies.
Collapse
Affiliation(s)
- Julia Hartkopf
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Julia Moser
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Franziska Schleger
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Jana Keune
- fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany; Department of Neurology, Klinikum Bayreuth GmbH, Hohe Warte 8, 95445 Bayreuth, Germany.
| |
Collapse
|
22
|
DU YIHANG, FANG WEINING, QIU HANZHAO. DEVELOPMENT AND VALIDATION OF A METHOD TO ENHANCE AUDITORY ATTENTION DURING CONTINUOUS SPEECH-SHAPED NOISE ENVIRONMENT. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Auditory training (AT) may strengthen auditory skills that help human not only in on-task auditory perception performance but in continuous speech-shaped noise (SSN) environment. AT based on musical material has provided some evidence for an “auditory advantage” in understanding speech-in-noise (SIN), but with a long period training and complex procedure. Experimental research is essential to develop a simplified method named auditory target tracking training (ATT) which refined from musical material is necessary to determine the benefits of training. We developed two kinds of refined AT method: basic auditory target tracking (BAT) training and enhanced auditory target tracking (EAT) training to adult participants ([Formula: see text]) separately for 20 units, assessing performance to perceive speech in noise environment after training. The EAT group presented better speech perception performance than the other groups and no significant differences between BAT group and control group. The training effect of EAT is the most significant when uni-gender SSN and [Formula: see text] dB. Outcomes suggest that efficacy of trained EAT can improve speech perception performance and selective attention during SSN environment. These findings provide an important link between musical-based training and auditory selective attention in real-world, and extended to special vocational training.
Collapse
Affiliation(s)
- YIHANG DU
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - WEINING FANG
- State Key Lab of Rail Traffic Control & Safety, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - HANZHAO QIU
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
23
|
Torppa R, Huotilainen M. Why and how music can be used to rehabilitate and develop speech and language skills in hearing-impaired children. Hear Res 2019; 380:108-122. [DOI: 10.1016/j.heares.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
24
|
Putkinen V, Huotilainen M, Tervaniemi M. Neural Encoding of Pitch Direction Is Enhanced in Musically Trained Children and Is Related to Reading Skills. Front Psychol 2019; 10:1475. [PMID: 31396118 PMCID: PMC6667629 DOI: 10.3389/fpsyg.2019.01475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Musical training in childhood has been linked to enhanced sound encoding at different stages of the auditory processing. In the current study, we used auditory event-related potentials to investigate cortical sound processing in 9- to 15-year-old children (N = 88) with and without musical training. Specifically, we recorded the mismatch negativity (MMN) and P3a responses in an oddball paradigm consisting of standard tone pairs with ascending pitch and deviant tone pairs with descending pitch. A subsample of the children (N = 44) also completed a standardized test of reading ability. The musically trained children showed a larger P3a response to the deviant sound pairs. Furthermore, the amplitude of the P3a correlated with a pseudo-word reading test score. These results corroborate previous findings on enhanced sound encoding in musically trained children and are in line with studies suggesting that neural discrimination of spectrotemporal sound patterns is predictive of reading ability.
Collapse
Affiliation(s)
- Vesa Putkinen
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TURKU PET Centre, University of Turku, Turku, Finland
| | - Minna Huotilainen
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study. Sci Rep 2019; 9:11310. [PMID: 31383938 PMCID: PMC6683192 DOI: 10.1038/s41598-019-47467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
The influence of musical experience on brain development has been mostly studied in school-aged children with formal musical training while little is known about the possible effects of less formal musical activities typical for preschool-aged children (e.g., before the age of seven). In the current study, we investigated whether the amount of musical group activities is reflected in the maturation of neural sound discrimination from toddler to preschool-age. Specifically, we recorded event-related potentials longitudinally (84 recordings from 33 children) in a mismatch negativity (MMN) paradigm to different musically relevant sound changes at ages 2–3, 4–5 and 6–7 years from children who attended a musical playschool throughout the follow-up period and children with shorter attendance to the same playschool. In the first group, we found a gradual positive to negative shift in the polarities of the mismatch responses while the latter group showed little evidence of age-related changes in neural sound discrimination. The current study indicates that the maturation of sound encoding indexed by the MMN may be more protracted than once thought and provides first longitudinal evidence that even quite informal musical group activities facilitate the development of neural sound discrimination during early childhood.
Collapse
|
26
|
Engel AC, Bueno CD, Sleifer P. Treinamento musical e habilidades do processamento auditivo em crianças: revisão sistemática. AUDIOLOGY: COMMUNICATION RESEARCH 2019. [DOI: 10.1590/2317-6431-2018-2116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO Objetivo Verificar a contribuição do treinamento musical nas habilidades do processamento auditivo em crianças. Estratégia de pesquisa Realizou-se uma busca no mês de agosto de 2018, usando os descritores Music, Child, Childhood, Children, Evoked Potentials, Auditory, Auditory Perception, Auditory Processing, utilizando o operador AND. Critérios de seleção Como questão norteadora, adotou-se a seguinte pergunta: “o que existe na literatura científica sobre a contribuição do treinamento musical nas habilidades de processamento auditivo em crianças?” Após, foram selecionados somente ensaios clínicos controlados na população infantil, estudos publicados em inglês, português e espanhol. Resultados A estratégia de busca resultou na seleção de dez artigos. Os estudos evidenciaram diversas habilidades testadas e diferentes formas de avaliação. Conclusão Com base nos achados, pode-se concluir que o treinamento musical melhora e aprimora as habilidades de processamento auditivo, de forma que quanto maior o tempo de treinamento, mais essas habilidades são reforçadas. Dessa forma, o treinamento musical mostra-se um método eficaz e com potencialidade para ser utilizado em crianças, tanto no período de desenvolvimento da comunicação oral e escrita, para auxiliar a aquisição das habilidades auditivas, como após a aquisição afim de aprimorá-las.
Collapse
|
27
|
Greber M, Rogenmoser L, Elmer S, Jäncke L. Electrophysiological Correlates of Absolute Pitch in a Passive Auditory Oddball Paradigm: a Direct Replication Attempt. eNeuro 2018; 5:ENEURO.0333-18.2018. [PMID: 30637328 PMCID: PMC6327942 DOI: 10.1523/eneuro.0333-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/02/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022] Open
Abstract
Humans with absolute pitch (AP) are able to effortlessly name the pitch class of a sound without an external reference. The association of labels with pitches cannot be entirely suppressed even if it interferes with task demands. This suggests a high level of automaticity of pitch labeling in AP. The automatic nature of AP was further investigated in a study by Rogenmoser et al. (2015). Using a passive auditory oddball paradigm in combination with electroencephalography, they observed electrophysiological differences between musicians with and without AP in response to piano tones. Specifically, the AP musicians showed a smaller P3a, an event-related potential (ERP) component presumably reflecting early attentional processes. In contrast, they did not find group differences in the mismatch negativity (MMN), an ERP component associated with auditory memory processes. They concluded that early cognitive processes are facilitated in AP during passive listening and are more important for AP than the preceding sensory processes. In our direct replication study on a larger sample of musicians with (n = 54, 27 females, 27 males) and without (n = 50, 24 females, 26 males) AP, we successfully replicated the non-significant effects of AP on the MMN. However, we could not replicate the significant effects for the P3a. Additional Bayes factor analyses revealed moderate to strong evidence (Bayes factor > 3) for the null hypothesis for both MMN and P3a. Therefore, the results of this replication study do not support the postulated importance of cognitive facilitation in AP during passive tone listening.
Collapse
Affiliation(s)
- Marielle Greber
- Division Neuropsychology, Department of Psychology, University of Zurich, CH-8050 Zurich, Switzerland
| | - Lars Rogenmoser
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Stefan Elmer
- Division Neuropsychology, Department of Psychology, University of Zurich, CH-8050 Zurich, Switzerland
| | - Lutz Jäncke
- Division Neuropsychology, Department of Psychology, University of Zurich, CH-8050 Zurich, Switzerland
- University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, CH-8050 Zurich, Switzerland
- Department of Special Education, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Huotilainen M, Tervaniemi M. Planning music-based amelioration and training in infancy and childhood based on neural evidence. Ann N Y Acad Sci 2018; 1423:146-154. [PMID: 29727038 DOI: 10.1111/nyas.13655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
Abstract
Music-based amelioration and training of the developing auditory system has a long tradition, and recent neuroscientific evidence supports using music in this manner. Here, we present the available evidence showing that various music-related activities result in positive changes in brain structure and function, becoming helpful for auditory cognitive processes in everyday life situations for individuals with typical neural development and especially for individuals with hearing, learning, attention, or other deficits that may compromise auditory processing. We also compare different types of music-based training and show how their effects have been investigated with neural methods. Finally, we take a critical position on the multitude of error sources found in amelioration and training studies and on publication bias in the field. We discuss some future improvements of these issues in the field of music-based training and their potential results at the neural and behavioral levels in infants and children for the advancement of the field and for a more complete understanding of the possibilities and significance of the training.
Collapse
Affiliation(s)
- Minna Huotilainen
- Cognitive Brain Research Unit and CICERO Learning Network, University of Helsinki, Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit and CICERO Learning Network, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Li Q, Wang X, Wang S, Xie Y, Li X, Xie Y, Li S. Musical training induces functional and structural auditory-motor network plasticity in young adults. Hum Brain Mapp 2018; 39:2098-2110. [PMID: 29400420 PMCID: PMC6866316 DOI: 10.1002/hbm.23989] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/31/2023] Open
Abstract
Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long-term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting-state functional connectivity (rs-FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory-motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory-motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance-related regions, which provides insights into the mechanism of brain plasticity in young adults.
Collapse
Affiliation(s)
- Qiongling Li
- School of Biological Science & Medical EngineeringBeihang UniversityBeijing100083China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing102402China
| | - Xuetong Wang
- School of Biological Science & Medical EngineeringBeihang UniversityBeijing100083China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing102402China
| | - Shaoyi Wang
- School of Biological Science & Medical EngineeringBeihang UniversityBeijing100083China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing102402China
| | - Yongqi Xie
- School of Biological Science & Medical EngineeringBeihang UniversityBeijing100083China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing102402China
| | - Xinwei Li
- School of Biological Science & Medical EngineeringBeihang UniversityBeijing100083China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing102402China
| | - Yachao Xie
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing100875China
| | - Shuyu Li
- School of Biological Science & Medical EngineeringBeihang UniversityBeijing100083China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing102402China
| |
Collapse
|
30
|
Wagner L, Rahne T, Plontke SK, Heidekrüger N. Mismatch negativity reflects asymmetric pre-attentive harmonic interval discrimination. PLoS One 2018; 13:e0196176. [PMID: 29694384 PMCID: PMC5919050 DOI: 10.1371/journal.pone.0196176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/06/2018] [Indexed: 11/19/2022] Open
Abstract
Objective Western music is based on intervals; thus, interval discrimination is important for distinguishing the character of melodies or tracking melodies in polyphonic music. In this study the encoding of intervals in simultaneously presented sound is studied. Study design In an electrophysiological experiment in 15 normal-hearing non-musicians, major thirds or fifths were presented in a controlled oddball paradigm. Harmonic intervals were created by simultaneously presented sinusoidals with randomized root frequency. Mismatch negativity (MMN) responses were measured with an EEG recording. The discrimination index was calculated in a psychoacoustic experiment. Results A clear MMN response was found for the major third but not for the fifth. The neural generators were located within the auditory cortices. Psychoacoustically, no evidence was found that the subjects were able to detect the deviants. Conclusions We conclude that pre-attentive discrimination of harmonic interval size is, in principle, possible in listeners without musical training although simultaneous presentation makes it harder to distinguish compared to non-overlapping intervals. Furthermore we see a difference in the response to infrequent dissonant stimuli in consonant standard stimuli compared to the opposite, rare consonant stimuli in dissonant standard stimuli.
Collapse
Affiliation(s)
- Luise Wagner
- University Hospital Halle (Saale), Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Torsten Rahne
- University Hospital Halle (Saale), Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan K. Plontke
- University Hospital Halle (Saale), Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nico Heidekrüger
- University Hospital Halle (Saale), Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
31
|
Haumann NT, Vuust P, Bertelsen F, Garza-Villarreal EA. Influence of Musical Enculturation on Brain Responses to Metric Deviants. Front Neurosci 2018; 12:218. [PMID: 29720932 PMCID: PMC5915898 DOI: 10.3389/fnins.2018.00218] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN) brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm) to attenuated beats in a “Western group” of listeners (n = 12) mainly exposed to Western music and a “Bicultural group” of listeners (n = 13) exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the “Western group” the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the “Bicultural group.” In support of this finding, there was also a trend of the “Western group” to rate omitted beats as more surprising on odd than even metric positions, whereas the “Bicultural group” seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET). Furthermore, source localization analyses suggest that auditory, inferior temporal, sensory-motor, superior frontal, and parahippocampal regions might be involved in eliciting the MMNm to the metric deviants. These findings suggest that effects of music enculturation can be measured on MMNm responses to attenuated tones on specific metric positions.
Collapse
Affiliation(s)
- Niels T Haumann
- Department of Aesthetics and Communication (Musicology), Faculty of Arts, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Center for Music in the Brain, Royal Academy of Music, Aarhus University, Aarhus, Denmark
| | - Peter Vuust
- Department of Clinical Medicine, Center for Music in the Brain, Royal Academy of Music, Aarhus University, Aarhus, Denmark
| | - Freja Bertelsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Eduardo A Garza-Villarreal
- Department of Clinical Medicine, Center for Music in the Brain, Royal Academy of Music, Aarhus University, Aarhus, Denmark.,Clinical Research Division, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico.,Department of Neurology, Faculty of Medicine and University Hospital, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
32
|
Putkinen V, Saarikivi K. Neural correlates of enhanced executive functions: is less more? Ann N Y Acad Sci 2018; 1423:117-125. [PMID: 29635748 DOI: 10.1111/nyas.13645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 12/29/2022]
Abstract
Musical training has been associated with superior performance in various executive function tasks. To date, only a few neuroimaging studies have investigated the neural substrates of the supposed "musician advantage" in executive functions, precluding definite conclusions about its neural basis. Here, we provide a selective review of neuroimaging studies on plasticity and typical maturation of executive functions, with the aim of investigating how proficient performance in executive function tasks is reflected in brain activity. Specifically, we examine the evidence for the hypothesis that enhanced or mature executive functions are manifested as efficient use of neural systems supporting those functions. We also present preliminary results from a functional magnetic resonance imaging study suggesting-in line with this hypothesis-that musically trained adolescents recruit frontoparietal regions less strongly during executive functions tasks than untrained peers.
Collapse
Affiliation(s)
- Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Saarikivi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Palomar-García MÁ, Zatorre RJ, Ventura-Campos N, Bueichekú E, Ávila C. Modulation of Functional Connectivity in Auditory-Motor Networks in Musicians Compared with Nonmusicians. Cereb Cortex 2018; 27:2768-2778. [PMID: 27166170 DOI: 10.1093/cercor/bhw120] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Correlation of spontaneous fluctuations at rest between anatomically distinct brain areas are proposed to reflect the profile of individual a priori cognitive biases, coded as synaptic efficacies in cortical networks. Here, we investigate functional connectivity at rest (rs-FC) in musicians and nonmusicians to test for differences in auditory, motor, and audiomotor connectivity. As expected, musicians had stronger rs-FC between the right auditory cortex (AC) and the right ventral premotor cortex than nonmusicians, and this stronger rs-FC was greater in musicians with more years of practice. We also found reduced rs-FC between the motor areas that control both hands in musicians compared with nonmusicians, which was more evident in the musicians whose instrument required bimanual coordination and as a function of hours of practice. Finally, we replicated previous morphometric data to show an increased volume in the right AC in musicians, which was greater in those with earlier musical training, and that this anatomic feature was in turn related to greater rs-FC between auditory and motor systems. These results show that functional coupling within the motor system and between motor and auditory areas is modulated as a function of musical training, suggesting a link between anatomic and functional brain features.
Collapse
Affiliation(s)
- María-Ángeles Palomar-García
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, 12071 Castellón, Spain
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Québec H2A 3B4, Canada.,International Laboratory for Brain, Music and Sound Research (BRAMS), Québec H3C 3J7, Canada
| | - Noelia Ventura-Campos
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, 12071 Castellón, Spain
| | - Elisenda Bueichekú
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, 12071 Castellón, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
34
|
Phoneme processing skills are reflected in children's MMN responses. Neuropsychologia 2017; 101:76-84. [PMID: 28506807 DOI: 10.1016/j.neuropsychologia.2017.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/13/2017] [Accepted: 05/04/2017] [Indexed: 11/22/2022]
Abstract
Phonological awareness (PA), the core contributor in phoneme processing abilities, has a link to later reading skills in children. However, the associations between PA and neural auditory discrimination are not clear. We used event-related potential (ERP) methodology and neuropsychological testing to monitor the neurocognitive basis of phonological awareness in typically developing children. We measured 5-6-year-old children's (N=70) phoneme processing, word completion and perceptual reasoning skills and compared their test results to their brain responses to phonemic changes, separately for each test. We found that children performing better in Phoneme processing test showed larger mismatch negativity (MMN) responses than children scoring lower in the same test. In contrast, no correspondence between test scores and brain responses was found for Auditory closure. Thus, the results suggest that automatic auditory change detection is linked to phoneme awareness in preschool children.
Collapse
|
35
|
Sanju HK, Kumar P. Pre-attentive auditory discrimination skill in Indian classical vocal musicians and non-musicians. J Otol 2016; 11:102-110. [PMID: 29937818 PMCID: PMC6002603 DOI: 10.1016/j.joto.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Objective To test for pre-attentive auditory discrimination skills in Indian classical vocal musicians and non-musicians. Design Mismatch negativity (MMN) was recorded to test for pre-attentive auditory discrimination skills with a pair of stimuli of /1000 Hz/ and /1100 Hz/, with /1000 Hz/ as the frequent stimulus and /1100 Hz/ as the infrequent stimulus. Onset, offset and peak latencies were the considered latency parameters, whereas peak amplitude and area under the curve were considered for amplitude analysis. Study sample Exactly 50 participants, out of which the experimental group had 25 adult Indian classical vocal musicians and 25 age-matched non-musicians served as the control group, were included in the study. Experimental group participants had a minimum professional music experience in Indian classic vocal music of 10 years. However, control group participants did not have any formal training in music. Results Descriptive statistics showed better waveform morphology in the experimental group as compared to the control. MANOVA showed significantly better onset latency, peak amplitude and area under the curve in the experimental group but no significant difference in the offset and peak latencies between the two groups. Conclusion The present study probably points towards the enhancement of pre-attentive auditory discrimination skills in Indian classical vocal musicians compared to non-musicians. It indicates that Indian classical musical training enhances pre-attentive auditory discrimination skills in musicians, leading to higher peak amplitude and a greater area under the curve compared to non-musicians.
Collapse
Affiliation(s)
| | - Prawin Kumar
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, Karnataka, India
| |
Collapse
|
36
|
Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2016; 2016:7489108. [PMID: 27524998 PMCID: PMC4972935 DOI: 10.1155/2016/7489108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 12/05/2022]
Abstract
We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG) and electroencephalography (EEG) recordings of the auditory evoked Mismatch Negativity (MMN) responses in healthy adult subjects. We compared the Signal Space Separation (SSS) and temporal SSS (tSSS) methods for reducing noise from external and nearby sources. Our results showed that tSSS reduces the interference level more reliably than plain SSS, particularly for MEG gradiometers, also for healthy subjects not wearing strongly interfering magnetic material. Therefore, tSSS is recommended over SSS. Furthermore, we found that better artifact correction is achieved by applying Independent Component Analysis (ICA) in comparison to Signal Space Projection (SSP). Although SSP reduces the baseline noise level more than ICA, SSP also significantly reduces the signal—slightly more than it reduces the artifacts interfering with the signal. However, ICA also adds noise, or correction errors, to the waveform when the signal-to-noise ratio (SNR) in the original data is relatively low—in particular to EEG and to MEG magnetometer data. In conclusion, ICA is recommended over SSP, but one should be careful when applying ICA to reduce artifacts on neurophysiological data with relatively low SNR.
Collapse
|
37
|
Sanju HK, Kumar P. Enhanced auditory evoked potentials in musicians: A review of recent findings. J Otol 2016; 11:63-72. [PMID: 29937812 PMCID: PMC6002589 DOI: 10.1016/j.joto.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
Auditory evoked potentials serve as an objective mode for assessment to check the functioning of the auditory system and neuroplasticity. Literature has reported enhanced electrophysiological responses in musicians, which shows neuroplasticity in musicians. Various databases including PubMed, Google, Google Scholar and Medline were searched for references related to auditory evoked potentials in musicians from 1994 till date. Different auditory evoked potentials in musicians have been summarized in the present article. The findings of various studies may support as evidences for music-induced neuroplasticity which can be used for the treatment of various clinical disorders. The search results showed enhanced auditory evoked potentials in musicians compared to non-musicians from brainstem to cortical levels. Also, the present review showed enhanced attentive and pre-attentive skills in musicians compared to non-musicians.
Collapse
Affiliation(s)
| | - Prawin Kumar
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, Karnataka, India
| |
Collapse
|
38
|
Habibi A, Cahn BR, Damasio A, Damasio H. Neural correlates of accelerated auditory processing in children engaged in music training. Dev Cogn Neurosci 2016; 21:1-14. [PMID: 27490304 PMCID: PMC6987702 DOI: 10.1016/j.dcn.2016.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022] Open
Abstract
Several studies comparing adult musicians and non-musicians have shown that music training is associated with brain differences. It is unknown, however, whether these differences result from lengthy musical training, from pre-existing biological traits, or from social factors favoring musicality. As part of an ongoing 5-year longitudinal study, we investigated the effects of a music training program on the auditory development of children, over the course of two years, beginning at age 6–7. The training was group-based and inspired by El-Sistema. We compared the children in the music group with two comparison groups of children of the same socio-economic background, one involved in sports training, another not involved in any systematic training. Prior to participating, children who began training in music did not differ from those in the comparison groups in any of the assessed measures. After two years, we now observe that children in the music group, but not in the two comparison groups, show an enhanced ability to detect changes in tonal environment and an accelerated maturity of auditory processing as measured by cortical auditory evoked potentials to musical notes. Our results suggest that music training may result in stimulus specific brain changes in school aged children.
Collapse
Affiliation(s)
- Assal Habibi
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States.
| | - B Rael Cahn
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States; Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Antonio Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Hanna Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
39
|
Mu Z, Chang Y, Xu J, Pang X, Zhang H, Liu X, Zheng Y, Liu X, Liu X, Wan Y. Pre-attentive dysfunction of musical processing in major depressive disorder: A mismatch negativity study. J Affect Disord 2016; 194:50-6. [PMID: 26802507 DOI: 10.1016/j.jad.2016.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Deficits of pre-attentive information processing have been frequently found in patients with major depressive disorder, nevertheless the results are quite inconsistent due to clinical heterogeneity and methodological difference. Cognitive processing of music is a useful tool for investigating human cognition and its underlying brain mechanisms. Although general auditory processing and perception of musical sound are hampered in patients with MDD, whether the deficits in musical processing begin from pre-attentive stage is not well investigated yet. The present study aimed to investigate the MMN of musical sound in patients with MDD. METHOD MMN responses to different musical features were compared in 20 patients with MDD and 20 age-matched healthy controls. The multi-feature paradigm was used to examine automatic change detection of six different musical sound features (pitch, timbre, location, intensity, slide, rhythm) in a complex musical context. Severity of depression and co-morbid anxiety were evaluated using the Hamilton Rating Scale of Depression (HRSD-17) and the Hamilton Anxiety Rating Scale (HAMA). RESULTS MMNs were obtained with all deviants. The timbre-MMN was significantly larger in MDD patients than in healthy controls, while the other deviants (pitch, location, intensity, slide and rhythm) elicited similar MMN across groups. For MDD patients, the amplitudes and latencies of MMNs did not correlate with severity of depression or co-morbid anxiety. LIMITATIONS The sample size in this study is relatively small. CONCLUSION Patients with MDD do not perform at the same level as controls in automatic change detection of timbre. This dysfunction is considered to be a trait-dependent feature of MDD.
Collapse
Affiliation(s)
- Zhen Mu
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, China; Department of Psychology, College of Humanities and Social Sciences, Dalian Medical University, China
| | - Yi Chang
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, China.
| | - Jing Xu
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, China.
| | - Xiaomei Pang
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, China
| | - Huimin Zhang
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, China
| | - Xiaowei Liu
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, China
| | - Ya Zheng
- Department of Psychology, College of Humanities and Social Sciences, Dalian Medical University, China
| | - Xuemei Liu
- Department of Psychology, College of Humanities and Social Sciences, Dalian Medical University, China
| | - Xiaojing Liu
- Department of Psychology, College of Humanities and Social Sciences, Dalian Medical University, China
| | - Yuan Wan
- Department of Psychology, College of Humanities and Social Sciences, Dalian Medical University, China
| |
Collapse
|
40
|
Saarikivi K, Putkinen V, Tervaniemi M, Huotilainen M. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination. Eur J Neurosci 2016; 44:1815-25. [PMID: 26797826 DOI: 10.1111/ejn.13176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/31/2022]
Abstract
Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination.
Collapse
Affiliation(s)
- Katri Saarikivi
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland
| | - Vesa Putkinen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland.,Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland.,CICERO Learning, University of Helsinki, Helsinki, Finland
| | - Minna Huotilainen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland
| |
Collapse
|
41
|
Tervaniemi M, Janhunen L, Kruck S, Putkinen V, Huotilainen M. Auditory Profiles of Classical, Jazz, and Rock Musicians: Genre-Specific Sensitivity to Musical Sound Features. Front Psychol 2016; 6:1900. [PMID: 26779055 PMCID: PMC4703758 DOI: 10.3389/fpsyg.2015.01900] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/24/2015] [Indexed: 11/13/2022] Open
Abstract
When compared with individuals without explicit training in music, adult musicians have facilitated neural functions in several modalities. They also display structural changes in various brain areas, these changes corresponding to the intensity and duration of their musical training. Previous studies have focused on investigating musicians with training in Western classical music. However, musicians involved in different musical genres may display highly differentiated auditory profiles according to the demands set by their genre, i.e., varying importance of different musical sound features. This hypothesis was tested in a novel melody paradigm including deviants in tuning, timbre, rhythm, melody transpositions, and melody contour. Using this paradigm while the participants were watching a silent video and instructed to ignore the sounds, we compared classical, jazz, and rock musicians' and non-musicians' accuracy of neural encoding of the melody. In all groups of participants, all deviants elicited an MMN response, which is a cortical index of deviance discrimination. The strength of the MMN and the subsequent attentional P3a responses reflected the importance of various sound features in each music genre: these automatic brain responses were selectively enhanced to deviants in tuning (classical musicians), timing (classical and jazz musicians), transposition (jazz musicians), and melody contour (jazz and rock musicians). Taken together, these results indicate that musicians with different training history have highly specialized cortical reactivity to sounds which violate the neural template for melody content.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; CICERO Learning, University of HelsinkiHelsinki, Finland
| | - Lauri Janhunen
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Stefanie Kruck
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Vesa Putkinen
- Department of Music, University of Jyväskylä Jyväskylä, Finland
| | - Minna Huotilainen
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; CICERO Learning, University of HelsinkiHelsinki, Finland; Finnish Institute of Occupational HealthHelsinki, Finland
| |
Collapse
|
42
|
Pantev C, Paraskevopoulos E, Kuchenbuch A, Lu Y, Herholz SC. Musical expertise is related to neuroplastic changes of multisensory nature within the auditory cortex. Eur J Neurosci 2015; 41:709-17. [PMID: 25728187 DOI: 10.1111/ejn.12788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023]
Abstract
Recent neuroscientific evidence indicates that multisensory integration does not only occur in higher level association areas of the cortex as the hierarchical models of sensory perception assumed, but also in regions traditionally thought of as unisensory, such as the auditory cortex. Nevertheless, it is not known whether expertise-induced neuroplasticity can alter the multisensory processing that occurs in these low-level regions. The present study used magnetoencephalography to investigate whether musical training may induce neuroplastic changes of multisensory processing within the human auditory cortex. Magnetoencephalography data of four different experiments were used to demonstrate the effect of long-term and short-term musical training on the integration of auditory, somatosensory and visual stimuli in the auditory cortex. The cross-sectional design of three of the experiments allowed us to infer that long-term musical training is related to a significantly different way of processing multisensory information within the auditory cortex, whereas the short-term training design of the fourth experiment allowed us to causally infer that multisensory music reading training affects the multimodal processing within the auditory cortex.
Collapse
Affiliation(s)
- Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis; University of Münster; Malmedyweg 15 D-48149 Münster Germany
| | - Evangelos Paraskevopoulos
- Institute for Biomagnetism and Biosignalanalysis; University of Münster; Malmedyweg 15 D-48149 Münster Germany
- Faculty of Health Sciences; School of Medicine; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Anja Kuchenbuch
- Institute for Biomagnetism and Biosignalanalysis; University of Münster; Malmedyweg 15 D-48149 Münster Germany
| | - Yao Lu
- Institute for Biomagnetism and Biosignalanalysis; University of Münster; Malmedyweg 15 D-48149 Münster Germany
| | | |
Collapse
|
43
|
Poikonen H, Alluri V, Brattico E, Lartillot O, Tervaniemi M, Huotilainen M. Event-related brain responses while listening to entire pieces of music. Neuroscience 2015; 312:58-73. [PMID: 26550950 DOI: 10.1016/j.neuroscience.2015.10.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
Abstract
Brain responses to discrete short sounds have been studied intensively using the event-related potential (ERP) method, in which the electroencephalogram (EEG) signal is divided into epochs time-locked to stimuli of interest. Here we introduce and apply a novel technique which enables one to isolate ERPs in human elicited by continuous music. The ERPs were recorded during listening to a Tango Nuevo piece, a deep techno track and an acoustic lullaby. Acoustic features related to timbre, harmony, and dynamics of the audio signal were computationally extracted from the musical pieces. Negative deflation occurring around 100 milliseconds after the stimulus onset (N100) and positive deflation occurring around 200 milliseconds after the stimulus onset (P200) ERP responses to peak changes in the acoustic features were distinguishable and were often largest for Tango Nuevo. In addition to large changes in these musical features, long phases of low values that precede a rapid increase - and that we will call Preceding Low-Feature Phases - followed by a rapid increase enhanced the amplitudes of N100 and P200 responses. These ERP responses resembled those to simpler sounds, making it possible to utilize the tradition of ERP research with naturalistic paradigms.
Collapse
Affiliation(s)
- H Poikonen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland.
| | - V Alluri
- Department of Music, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland.
| | - E Brattico
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland; Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, Nørrebrograde 44, DK-8000 Aarhus C, Denmark.
| | - O Lartillot
- Department of Architecture, Design and Media Technology, University of Aalborg, Rendsburggade 14, DK-9000 Aalborg, Denmark.
| | - M Tervaniemi
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland; Cicero Learning, P.O. Box 9 (Siltavuorenpenger 5 A), FI-00014 University of Helsinki, Finland.
| | - M Huotilainen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland; Cicero Learning, P.O. Box 9 (Siltavuorenpenger 5 A), FI-00014 University of Helsinki, Finland; Finnish Institute of Occupational Health, Haartmaninkatu 1 A, 00250 Helsinki, Finland.
| |
Collapse
|
44
|
Putkinen V, Tervaniemi M, Saarikivi K, Huotilainen M. Promises of formal and informal musical activities in advancing neurocognitive development throughout childhood. Ann N Y Acad Sci 2015; 1337:153-62. [PMID: 25773630 DOI: 10.1111/nyas.12656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult musicians show superior neural sound discrimination when compared to nonmusicians. However, it is unclear whether these group differences reflect the effects of experience or preexisting neural enhancement in individuals who seek out musical training. Tracking how brain function matures over time in musically trained and nontrained children can shed light on this issue. Here, we review our recent longitudinal event-related potential (ERP) studies that examine how formal musical training and less formal musical activities influence the maturation of brain responses related to sound discrimination and auditory attention. These studies found that musically trained school-aged children and preschool-aged children attending a musical playschool show more rapid maturation of neural sound discrimination than their control peers. Importantly, we found no evidence for pretraining group differences. In a related cross-sectional study, we found ERP and behavioral evidence for improved executive functions and control over auditory novelty processing in musically trained school-aged children and adolescents. Taken together, these studies provide evidence for the causal role of formal musical training and less formal musical activities in shaping the development of important neural auditory skills and suggest transfer effects with domain-general implications.
Collapse
Affiliation(s)
- Vesa Putkinen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland; Finnish Centre of Interdisciplinary Music Research, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | |
Collapse
|
45
|
Strait DL, Slater J, O'Connell S, Kraus N. Music training relates to the development of neural mechanisms of selective auditory attention. Dev Cogn Neurosci 2015; 12:94-104. [PMID: 25660985 PMCID: PMC6989776 DOI: 10.1016/j.dcn.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/26/2022] Open
Abstract
Does music training shape the development of neural mechanisms of auditory attention? We compared cortical responses to attended speech in child and adult musicians and nonmusicians. Musician children and adults had less prefrontal auditory response variability during attention.
Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not.
Collapse
Affiliation(s)
- Dana L Strait
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA; Institute for Neuroscience, Northwestern University, Chicago, IL, USA
| | - Jessica Slater
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA; Department of Communication Sciences, Northwestern University, Evanston, IL, USA
| | - Samantha O'Connell
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA; Institute for Neuroscience, Northwestern University, Chicago, IL, USA; Department of Communication Sciences, Northwestern University, Evanston, IL, USA; Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA; Department of Otolaryngology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
46
|
|
47
|
Moreno S, Lee Y, Janus M, Bialystok E. Short-term second language and music training induces lasting functional brain changes in early childhood. Child Dev 2014; 86:394-406. [PMID: 25346534 DOI: 10.1111/cdev.12297] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immediate and lasting effects of music or second-language training were examined in early childhood using event-related potentials. Event-related potentials were recorded for French vowels and musical notes in a passive oddball paradigm in thirty-six 4- to 6-year-old children who received either French or music training. Following training, both groups showed enhanced late discriminative negativity (LDN) in their trained condition (music group-musical notes; French group-French vowels) and reduced LDN in the untrained condition. These changes reflect improved processing of relevant (trained) sounds, and an increased capacity to suppress irrelevant (untrained) sounds. After 1 year, training-induced brain changes persisted and new hemispheric changes appeared. Such results provide evidence for the lasting benefit of early intervention in young children.
Collapse
|
48
|
Tervaniemi M, Huotilainen M, Brattico E. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Front Hum Neurosci 2014; 8:496. [PMID: 25071524 PMCID: PMC4084670 DOI: 10.3389/fnhum.2014.00496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/18/2014] [Indexed: 12/02/2022] Open
Abstract
Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Minna Huotilainen
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland ; Finnish Institute of Occupational Health Helsinki, Finland
| | - Elvira Brattico
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland ; Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science Espoo, Finland
| |
Collapse
|