1
|
Gao JX, Yan G, Li XX, Xie JF, Spruyt K, Shao YF, Hou YP. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sci 2023; 13:1350. [PMID: 37759951 PMCID: PMC10526299 DOI: 10.3390/brainsci13091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid eye movement (REM) sleep is the main sleep correlate of dreaming. Ponto-geniculo-occipital (PGO) waves are a signature of REM sleep. They represent the physiological mechanism of REM sleep that specifically limits the processing of external information. PGO waves look just like a message sent from the pons to the lateral geniculate nucleus of the visual thalamus, the occipital cortex, and other areas of the brain. The dedicated visual pathway of PGO waves can be interpreted by the brain as visual information, leading to the visual hallucinosis of dreams. PGO waves are considered to be both a reflection of REM sleep brain activity and causal to dreams due to their stimulation of the cortex. In this review, we summarize the role of PGO waves in potential neural circuits of two major theories, i.e., (1) dreams are generated by the activation of neural activity in the brainstem; (2) PGO waves signaling to the cortex. In addition, the potential physiological functions during REM sleep dreams, such as memory consolidation, unlearning, and brain development and plasticity and mood regulation, are discussed. It is hoped that our review will support and encourage research into the phenomenon of human PGO waves and their possible functions in dreaming.
Collapse
Affiliation(s)
- Jin-Xian Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Guizhong Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Xin-Xuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Jun-Fan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France;
| | - Yu-Feng Shao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Yi-Ping Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
2
|
Deantoni M, Reyt M, Berthomier C, Muto V, Hammad G, De Haan S, Dourte M, Taillard J, Lambot E, Cajochen C, Reichert CF, Maire M, Baillet M, Schmidt C. Association between circadian sleep regulation and cortical gyrification in young and older adults. Sleep 2023; 46:zsad094. [PMID: 37010079 DOI: 10.1093/sleep/zsad094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Indexed: 04/04/2023] Open
Abstract
The circadian system orchestrates sleep timing and structure and is altered with increasing age. Sleep propensity, and particularly REM sleep is under strong circadian control and has been suggested to play an important role in brain plasticity. In this exploratory study, we assessed whether surface-based brain morphometry indices are associated with circadian sleep regulation and whether this link changes with age. Twenty-nine healthy older (55-82 years; 16 men) and 28 young participants (20-32 years; 13 men) underwent both structural magnetic resonance imaging and a 40-h multiple nap protocol to extract sleep parameters over day and night time. Cortical thickness and gyrification indices were estimated from T1-weighted images acquired during a classical waking day. We observed that REM sleep was significantly modulated over the 24-h cycle in both age groups, with older adults exhibiting an overall reduction in REM sleep modulation compared to young individuals. Interestingly, when taking into account the observed overall age-related reduction in REM sleep throughout the circadian cycle, higher day-night differences in REM sleep were associated with increased cortical gyrification in the right inferior frontal and paracentral regions in older adults. Our results suggest that a more distinctive allocation of REM sleep over the 24-h cycle is associated with regional cortical gyrification in aging, and thereby point towards a protective role of circadian REM sleep regulation for age-related changes in brain organization.
Collapse
Affiliation(s)
- Michele Deantoni
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Mathilde Reyt
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | | | - Vincenzo Muto
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Gregory Hammad
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Stella De Haan
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Marine Dourte
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit, Center for Research in Cognition and Neurosciences, Neurosciences Institute, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Eric Lambot
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Micheline Maire
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Marion Baillet
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Christina Schmidt
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Cho J, Pavlides C. Hippocampal cellular functional organization for fear memory: Effects of sleep. Hippocampus 2022; 32:839-856. [PMID: 36314648 DOI: 10.1002/hipo.23477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022]
Abstract
Memory is vital to our daily existence. Although a large number of studies have suggested that the hippocampus is dedicated to long-term memory, understanding how memory is anatomically encoded within the hippocampal neuronal network is still lacking. Previously our laboratory showed that hippocampal pyramidal cells are organized in cell clusters to encode both spatial and episodic memory. Based on these findings, we hypothesized that "cluster-type" is a functional organization principal in the hippocampus to encode all types of memory. Here, we tested whether contextual fear, another hippocampus-dependent memory, is also organized in cell clusters. We further investigated the possibility that post-learning sleep may affect functional organization. Cluster formation was examined by assessing the topographic localization of active cells using immediate early gene (IEG, Zif268) imaging methods. The first experiment provides evidence of a cluster-type organization in the hippocampus for fear memory by showing a spatial distribution of adjacent Zif268 positive cells. Exposure to the context itself, without electric shocks, induced a similar cellular formation; however, the degree of clustering was significantly lower. The second experiment provides evidence that sleep plays a role in the refinement and long-term stability of the clusters. The present results confirm the existence of a cluster-type topographic functional neuronal organization in the hippocampus for memory, and further suggest that post-learning sleep enhances the cluster-type organization.
Collapse
Affiliation(s)
- Jiyeon Cho
- Faculty of Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
4
|
Keloglan SM, Sahin L, Cevik OS. Chronic caffeine consumption improves the acute REM sleep deprivation-induced spatial memory impairment while altering NMDA receptor subunit expression in male rats. Int J Dev Neurosci 2022; 82:596-605. [PMID: 35830151 DOI: 10.1002/jdn.10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022] Open
Abstract
Caffeine is a psychostimulant substance that is mostly used to prevent fatigue, increase alertness, and ameliorate sleep loss situations. In this study, we aimed to investigate the effect of chronic caffeine consumption on learning and memory functions and related genes in REM (rapid-eye-movement) sleep-deprived rats. During the neonatal period [postnatal day (PND) 28] Wistar albino male rats (n=32) were randomly assigned into four groups: control (C), caffeine application (Cf), acute REM sleep-deprivation (RD), and caffeine application+acute RD (Cf+RD). The 48 hours of RD was executed when caffeine administration was completed. The learning and memory performance was evaluated by the Morris Water Maze Test (MWMT). Following this, the rats were decapitated to isolate hippocampus tissues. In MWMT, time spent in the targeted quadrant decreased significantly in the RD group compared to the C and Cf+RD group. NR2A expression level increased in the RD group compared to C, Cf, and Cf+RD groups (p<0.05). NR2B expression level increased in RD and Cf +RD groups compared to C and Cf groups (p<0.05). BDNF and c-Fos expression levels did not differ significantly between the groups. RD impaired hippocampal spatial memory performance in the MWMT test. Our results indicated that chronic caffeine consumption has a therapeutic effect on spatial memory deterioration impairment caused by RD. Furthermore, it seems that the effect of caffeine RD on the hippocampus may be mediated by NR2A.
Collapse
Affiliation(s)
| | - Leyla Sahin
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| | - Ozge Selin Cevik
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Ghosh M, Yang FC, Rice SP, Hetrick V, Gonzalez AL, Siu D, Brennan EKW, John TT, Ahrens AM, Ahmed OJ. Running speed and REM sleep control two distinct modes of rapid interhemispheric communication. Cell Rep 2022; 40:111028. [PMID: 35793619 PMCID: PMC9291430 DOI: 10.1016/j.celrep.2022.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Rhythmic gamma-band communication within and across cortical hemispheres is critical for optimal perception, navigation, and memory. Here, using multisite recordings in both rats and mice, we show that even faster ~140 Hz rhythms are robustly anti-phase across cortical hemispheres, visually resembling splines, the interlocking teeth on mechanical gears. Splines are strongest in superficial granular retrosplenial cortex, a region important for spatial navigation and memory. Spline-frequency interhemispheric communication becomes more coherent and more precisely anti-phase at faster running speeds. Anti-phase splines also demarcate high-activity frames during REM sleep. While splines and associated neuronal spiking are anti-phase across retrosplenial hemispheres during navigation and REM sleep, gamma-rhythmic interhemispheric communication is precisely in-phase. Gamma and splines occur at distinct points of a theta cycle and thus highlight the ability of interhemispheric cortical communication to rapidly switch between in-phase (gamma) and anti-phase (spline) modes within individual theta cycles during both navigation and REM sleep. Gamma-rhythmic communication within and across cortical hemispheres is critical for optimal perception, navigation, and memory. Here, Ghosh et al. identify even faster ~140 Hz rhythms, named splines, that reflect anti-phase neuronal synchrony across hemispheres. The balance of anti-phase spline and in-phase gamma communication is dynamically controlled by behavior and sleep.
Collapse
Affiliation(s)
- Megha Ghosh
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang-Chi Yang
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharena P Rice
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vaughn Hetrick
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alcides Lorenzo Gonzalez
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danny Siu
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ellen K W Brennan
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tibin T John
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison M Ahrens
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sci 2022; 12:brainsci12060687. [PMID: 35741573 PMCID: PMC9221432 DOI: 10.3390/brainsci12060687] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.
Collapse
|
7
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
8
|
LaGoy AD, Kaskie R, Connaboy C, Germain A, Ferrarelli F. Overnight Sleep Parameter Increases in Frontoparietal Areas Predict Working Memory Improvements in Healthy Participants But Not in Individuals With Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1110-1117. [PMID: 33757792 DOI: 10.1016/j.bpsc.2020.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Preliminary evidence indicates that non-rapid eye movement (NREM) sleep is implicated in enhancing working memory (WM) performance across days in healthy individuals. While REM sleep has been implicated in other forms of memory, its role in WM remains unclear. Further, the relationship between sleep changes and WM improvement is largely unknown in posttraumatic stress disorder (PTSD). Examining the relationship between changes in sleep and WM improvement in healthy participants and participants with PTSD may inform cognitive enhancement strategies and intervention targets. METHODS Repeated assessments of WM and overnight measurement of NREM and REM sleep parameters were performed in 79 participants (participants with PTSD: n = 33) during a 48-hour laboratory stay. Relationships between sleep parameter changes, WM performance changes, and clinical characteristics were analyzed in PTSD and healthy groups. RESULTS A between-night enhancement in both NREM and REM sleep parameters in frontoparietal areas predicted across-day better WM performance in healthy participants, particularly in those with improved performance. In contrast, in participants with PTSD, an enhancement of these sleep parameters predicted a worse WM performance and was also associated with more PTSD-related sleep disturbances. CONCLUSIONS This study shows that higher sleep activity in frontoparietal areas leads to enhanced WM performance in healthy individuals, whereas in individuals with PTSD, it likely reflects the presence of sleep disturbances that interfere with WM improvement. Interventions focused on addressing sleep disturbances could therefore ameliorate cognitive impairments in individuals with PTSD.
Collapse
Affiliation(s)
- Alice D LaGoy
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rachel Kaskie
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Christopher Connaboy
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Pandey A, Oliver R, Kar SK. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020; 2:442-465. [PMID: 33114225 PMCID: PMC7711450 DOI: 10.3390/clockssleep2040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is essential for the survival of most living beings. Numerous researchers have identified a series of genes that are thought to regulate "sleep-state" or the "deprived state". As sleep has a significant effect on physiology, we believe that lack of total sleep, or particularly rapid eye movement (REM) sleep, for a prolonged period would have a profound impact on various body tissues. Therefore, using the microarray method, we sought to determine which genes and processes are affected in the brain and liver of rats following nine days of REM sleep deprivation. Our findings showed that REM sleep deprivation affected a total of 652 genes in the brain and 426 genes in the liver. Only 23 genes were affected commonly, 10 oppositely, and 13 similarly across brain and liver tissue. Our results suggest that nine-day REM sleep deprivation differentially affects genes and processes in the brain and liver of rats.
Collapse
Affiliation(s)
- Atul Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Ryan Oliver
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Santosh K Kar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Bio Incubator, Campus-11, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
10
|
Ognjanovski N, Broussard C, Zochowski M, Aton SJ. Hippocampal Network Oscillations Rescue Memory Consolidation Deficits Caused by Sleep Loss. Cereb Cortex 2019; 28:3711-3723. [PMID: 30060138 PMCID: PMC6132282 DOI: 10.1093/cercor/bhy174] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/24/2022] Open
Abstract
Oscillations in the hippocampal network during sleep are proposed to play a role in memory storage by patterning neuronal ensemble activity. Here we show that following single-trial fear learning, sleep deprivation (which impairs memory consolidation) disrupts coherent firing rhythms in hippocampal area CA1. State-targeted optogenetic inhibition of CA1 parvalbumin-expressing (PV+) interneurons during postlearning NREM sleep, but not REM sleep or wake, disrupts contextual fear memory (CFM) consolidation in a manner similar to sleep deprivation. NREM-targeted inhibition disrupts CA1 network oscillations which predict successful memory storage. Rhythmic optogenetic activation of PV+ interneurons following learning generates CA1 oscillations with coherent principal neuron firing. This patterning of CA1 activity rescues CFM consolidation in sleep-deprived mice. Critically, behavioral and optogenetic manipulations that disrupt CFM also disrupt learning-induced stabilization of CA1 ensembles’ communication patterns in the hours following learning. Conversely, manipulations that promote CFM also promote long-term stability of CA1 communication patterns. We conclude that sleep promotes memory consolidation by generating coherent rhythms of CA1 network activity, which provide consistent communication patterns within neuronal ensembles. Most importantly, we show that this rhythmic patterning of activity is sufficient to promote long-term memory storage in the absence of sleep.
Collapse
Affiliation(s)
- Nicolette Ognjanovski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Broussard
- Information Technology Advocacy and Research Support, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Michal Zochowski
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.,Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Spindola LM, Santoro ML, Pan PM, Ota VK, Xavier G, Carvalho CM, Talarico F, Sleiman P, March M, Pellegrino R, Brietzke E, Grassi-Oliveira R, Mari JJ, Gadelha A, Miguel EC, Rohde LA, Bressan RA, Mazzotti DR, Sato JR, Salum GA, Hakonarson H, Belangero SI. Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths. Clin Epigenetics 2019; 11:146. [PMID: 31639064 PMCID: PMC6805541 DOI: 10.1186/s13148-019-0740-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life. In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with psychopathology measurements over time. Methods We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA methylation using an independent population of 140 youths and the effect of puberty using data from the literature. Results We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs) associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points. Conclusions We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic modulations might be involved in the regulation of an individual’s development of psychopathology.
Collapse
Affiliation(s)
- Leticia M Spindola
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Marcos L Santoro
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Pedro M Pan
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Vanessa K Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Gabriela Xavier
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Carolina M Carvalho
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Fernanda Talarico
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Michael March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | | | - Rodrigo Grassi-Oliveira
- Brain Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jair J Mari
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Ary Gadelha
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Luis A Rohde
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rodrigo A Bressan
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Diego R Mazzotti
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, USA
| | - João R Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Giovanni A Salum
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Sintia I Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil. .,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil. .,Department of Psychiatry, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
12
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
13
|
Genomic imprinting and the control of sleep in mammals. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
15
|
Rennó-Costa C, da Silva ACC, Blanco W, Ribeiro S. Computational models of memory consolidation and long-term synaptic plasticity during sleep. Neurobiol Learn Mem 2018; 160:32-47. [PMID: 30321652 DOI: 10.1016/j.nlm.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
The brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings - and therefore the theories - are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidation.
Collapse
Affiliation(s)
- César Rennó-Costa
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Cláudia Costa da Silva
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil; Federal University of Paraiba, João Pessoa, Brazil
| | - Wilfredo Blanco
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil; State University of Rio Grande do Norte, Natal, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
16
|
Rosier M, Le Barillier L, Meunier D, El Yacoubi M, Malleret G, Salin PA. Post-learning paradoxical sleep deprivation impairs reorganization of limbic and cortical networks associated with consolidation of remote contextual fear memory in mice. Sleep 2018; 41:5115189. [DOI: 10.1093/sleep/zsy188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marius Rosier
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - Léa Le Barillier
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - David Meunier
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
- Dycog, Lyon Neuroscience Research Center, CH Le Vinatier, Bron, France
- IMPACT, Lyon Neuroscience Research Center, Bron Cedex, France
- NEUROPAIN, Lyon Neuroscience Research Center, Hôpital Neurologique, Bron Cedex, France
- CMO, Lyon Neuroscience Research Center, Lyon Cedex, France
| | - Malika El Yacoubi
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - Gaël Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - Paul-Antoine Salin
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| |
Collapse
|
17
|
Almeida-Filho DG, Queiroz CM, Ribeiro S. Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation. Cell Mol Life Sci 2018; 75:3715-3740. [PMID: 30054638 PMCID: PMC11105475 DOI: 10.1007/s00018-018-2886-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023]
Abstract
Once viewed as a passive physiological state, sleep is a heterogeneous and complex sequence of brain states with essential effects on synaptic plasticity and neuronal functioning. Rapid-eye-movement (REM) sleep has been shown to promote calcium-dependent plasticity in principal neurons of the cerebral cortex, both during memory consolidation in adults and during post-natal development. This article reviews the plasticity mechanisms triggered by REM sleep, with a focus on the emerging role of kinases and immediate-early genes for the progressive corticalization of hippocampus-dependent memories. The body of evidence suggests that memory corticalization triggered by REM sleep is a systemic phenomenon with cellular and molecular causes.
Collapse
Affiliation(s)
- Daniel G Almeida-Filho
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil.
| |
Collapse
|
18
|
Durán E, Oyanedel CN, Niethard N, Inostroza M, Born J. Sleep stage dynamics in neocortex and hippocampus. Sleep 2018; 41:4980412. [DOI: 10.1093/sleep/zsy060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ernesto Durán
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural and Behavioural Science, International Max Planck Research School, Tübingen, Germany
- Laboratorio de Circuitos Neuronales, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural and Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Delorme JE, Kodoth V, Aton SJ. Sleep loss disrupts Arc expression in dentate gyrus neurons. Neurobiol Learn Mem 2018; 160:73-82. [PMID: 29635031 DOI: 10.1016/j.nlm.2018.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/24/2023]
Abstract
Sleep loss affects many aspects of cognition, and memory consolidation processes occurring in the hippocampus seem particularly vulnerable to sleep loss. The immediate-early gene Arc plays an essential role in both synaptic plasticity and memory formation, and its expression is altered by sleep. Here, using a variety of techniques, we have characterized the effects of brief (3-h) periods of sleep vs. sleep deprivation (SD) on the expression of Arc mRNA and Arc protein in the mouse hippocampus and cortex. By comparing the relative abundance of mature Arc mRNA with unspliced pre-mRNA, we see evidence that during SD, increases in Arc across the cortex, but not hippocampus, reflect de novo transcription. Arc increases in the hippocampus during SD are not accompanied by changes in pre-mRNA levels, suggesting that increases in mRNA stability, not transcription, drives this change. Using in situ hybridization (together with behavioral observation to quantify sleep amounts), we find that in the dorsal hippocampus, SD minimally affects Arc mRNA expression, and decreases the number of dentate gyrus (DG) granule cells expressing Arc. This is in contrast to neighboring cortical areas, which show large increases in neuronal Arc expression after SD. Using immunohistochemistry, we find that Arc protein expression is also differentially affected in the cortex and DG with SD - while larger numbers of cortical neurons are Arc+, fewer DG granule cells are Arc+, relative to the same regions in sleeping mice. These data suggest that with regard to expression of plasticity-regulating genes, sleep (and SD) can have differential effects in hippocampal and cortical areas. This may provide a clue regarding the susceptibility of performance on hippocampus-dependent tasks to deficits following even brief periods of sleep loss.
Collapse
Affiliation(s)
- James E Delorme
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Varna Kodoth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
20
|
Payne JD, Kensinger EA. Stress, sleep, and the selective consolidation of emotional memories. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Abstract
Scientific investigation into the possible role of sleep in memory consolidation began with the early studies of Jenkins and Dallenbach (1924). Despite nearly a century of investigation with a waxing and waning of interest, the role of sleep in memory processing remains controversial and elusive. This review provides the historical background for current views and considers the relative contribution of two sleep states, rapid eye movement sleep and slow-wave sleep, to offline memory processing. The sequential hypothesis, until now largely ignored, is discussed, and recent literature supporting this view is reviewed.
Collapse
|
22
|
Cecchini M, Iannoni ME, Aceto P, Baroni E, Di Vito C, Lai C. Active sleep is associated with the face preference in the newborns who familiarized with a responsive face. Infant Behav Dev 2017; 49:37-45. [PMID: 28688961 DOI: 10.1016/j.infbeh.2017.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 05/08/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Aim of this study was to investigate the preferential looking behaviour, subsequent to a familiarization task (8-min) with a previously responsive or motionless face, before and after a sleep cycle. Moreover, the role of the active sleep in memory consolidation of the responsive or motionless faces was explored. Hypotheses were that the newborns undergoing a motionless familiarization will exhibit a novelty effect (preference for the novel face) whereas the newborns undergoing a responsive familiarization will show a familiarity effect (preference for the known face) before and after the sleep cycle; moreover, the amount of active sleep will be associated with the looking time at the known face after a sleep cycle. Forty-five healthy full-term newborns were randomly assigned to two groups (group 1: motionless-familiarization and group 2: responsive-familiarization); in both groups newborns were video-recorded during four post-familiarization face-preference tasks, two of them performed before and two after a sleep cycle. During the pre-sleep-trials, there was not a significant preference for one face in both groups. During the post-sleep trials, the newborns showed a clear preference for the novel face. This effect was more evident in group 1. Only in group 2 there was a significant positive correlation between the active sleep duration and the looking duration at the known-face during the post-sleep trials (r=0.41; p=0.040). Multiple regression confirmed that only in the group 2 the total duration of the active sleep was associated with the looking duration at the known-face during the post-sleep trials (Adjusted R2=0.13; β=0.41; t=2.2; p=0.040). Findings showed that in newborns the face representation can be recalled after a sleep cycle. Moreover, the amount of the active sleep predicted the post-sleep looking toward the known-face only in the newborns who interactively familiarized with the face.
Collapse
Affiliation(s)
- Marco Cecchini
- Department of Dynamic and Clinical Psychology, Sapienza University, Rome, Italy
| | - Maria Elena Iannoni
- Department of Dynamic and Clinical Psychology, Sapienza University, Rome, Italy
| | - Paola Aceto
- Department of Anesthesiology and Intensive Care, UCSC, Rome, Italy
| | - Eleonora Baroni
- Department of Dynamic and Clinical Psychology, Sapienza University, Rome, Italy
| | - Cinzia Di Vito
- Department of Dynamic and Clinical Psychology, Sapienza University, Rome, Italy
| | - Carlo Lai
- Department of Dynamic and Clinical Psychology, Sapienza University, Rome, Italy.
| |
Collapse
|
23
|
Duss SB, Seiler A, Schmidt MH, Pace M, Adamantidis A, Müri RM, Bassetti CL. The role of sleep in recovery following ischemic stroke: A review of human and animal data. Neurobiol Sleep Circadian Rhythms 2017; 2:94-105. [PMID: 31236498 PMCID: PMC6575180 DOI: 10.1016/j.nbscr.2016.11.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/02/2023] Open
Abstract
Despite advancements in understanding the pathophysiology of stroke and the state of the art in acute management of afflicted patients as well as in subsequent neurorehabilitation training, stroke remains the most common neurological cause of long-term disability in adulthood. To enhance stroke patients' independence and well-being it is necessary, therefore, to consider and develop new therapeutic strategies and approaches. We postulate that sleep might play a pivotal role in neurorehabilitation following stroke. Over the last two decades compelling evidence for a major function of sleep in neuroplasticity and neural network reorganization underlying learning and memory has evolved. Training and learning of new motor skills and knowledge can modulate the characteristics of subsequent sleep, which additionally can improve memory performance. While healthy sleep appears to support neuroplasticity resulting in improved learning and memory, disturbed sleep following stroke in animals and humans can impair stroke outcome. In addition, sleep disorders such as sleep disordered breathing, insomnia, and restless legs syndrome are frequent in stroke patients and associated with worse recovery outcomes. Studies investigating the evolution of post-stroke sleep changes suggest that these changes might also reflect neural network reorganization underlying functional recovery. Experimental and clinical studies provide evidence that pharmacological sleep promotion in rodents and treatment of sleep disorders in humans improves functional outcome following stroke. Taken together, there is accumulating evidence that sleep represents a "plasticity state" in the process of recovery following ischemic stroke. However, to test the key role of sleep and sleep disorders for stroke recovery and to better understand the underlying molecular mechanisms, experimental research and large-scale prospective studies in humans are necessary. The effects of hospital conditions, such as adjusting light conditions according to the patients' sleep-wake rhythms, or sleep promoting drugs and non-invasive brain stimulation to promote neuronal plasticity and recovery following stroke requires further investigation.
Collapse
Affiliation(s)
- Simone B. Duss
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Andrea Seiler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Markus H. Schmidt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - René M. Müri
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio L. Bassetti
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
24
|
Hopkins J. Free Energy and Virtual Reality in Neuroscience and Psychoanalysis: A Complexity Theory of Dreaming and Mental Disorder. Front Psychol 2016; 7:922. [PMID: 27471478 PMCID: PMC4946392 DOI: 10.3389/fpsyg.2016.00922] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
The main concepts of the free energy (FE) neuroscience developed by Karl Friston and colleagues parallel those of Freud's Project for a Scientific Psychology. In Hobson et al. (2014) these include an innate virtual reality generator that produces the fictive prior beliefs that Freud described as the primary process. This enables Friston's account to encompass a unified treatment-a complexity theory-of the role of virtual reality in both dreaming and mental disorder. In both accounts the brain operates to minimize FE aroused by sensory impingements-including interoceptive impingements that report compliance with biological imperatives-and constructs a representation/model of the causes of impingement that enables this minimization. In Friston's account (variational) FE equals complexity minus accuracy, and is minimized by increasing accuracy and decreasing complexity. Roughly the brain (or model) increases accuracy together with complexity in waking. This is mediated by consciousness-creating active inference-by which it explains sensory impingements in terms of perceptual experiences of their causes. In sleep it reduces complexity by processes that include both synaptic pruning and consciousness/virtual reality/dreaming in REM. The consciousness-creating active inference that effects complexity-reduction in REM dreaming must operate on FE-arousing data distinct from sensory impingement. The most relevant source is remembered arousals of emotion, both recent and remote, as processed in SWS and REM on "active systems" accounts of memory consolidation/reconsolidation. Freud describes these remembered arousals as condensed in the dreamwork for use in the conscious contents of dreams, and similar condensation can be seen in symptoms. Complexity partly reflects emotional conflict and trauma. This indicates that dreams and symptoms are both produced to reduce complexity in the form of potentially adverse (traumatic or conflicting) arousals of amygdala-related emotions. Mental disorder is thus caused by computational complexity together with mechanisms like synaptic pruning that have evolved for complexity-reduction; and important features of disorder can be understood in these terms. Details of the consilience among Freudian, systems consolidation, and complexity-reduction accounts appear clearly in the analysis of a single fragment of a dream, indicating also how complexity reduction proceeds by a process resembling Bayesian model selection.
Collapse
Affiliation(s)
- Jim Hopkins
- Research Department of Clinical Educational and Health Psychology, University College LondonLondon, UK
| |
Collapse
|
25
|
Hutchison IC, Rathore S. The role of REM sleep theta activity in emotional memory. Front Psychol 2015; 6:1439. [PMID: 26483709 PMCID: PMC4589642 DOI: 10.3389/fpsyg.2015.01439] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023] Open
Abstract
While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.
Collapse
Affiliation(s)
- Isabel C Hutchison
- School of Psychological Sciences, Faculty of Medical and Human Sciences, University of Manchester , Manchester, UK
| | - Shailendra Rathore
- Neuroscience, Physiology and Pharmacology, University College London , London, UK ; Centre of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London , London, UK
| |
Collapse
|
26
|
Westermann J, Lange T, Textor J, Born J. System Consolidation During Sleep – A Common Principle Underlying Psychological and Immunological Memory Formation. Trends Neurosci 2015; 38:585-597. [DOI: 10.1016/j.tins.2015.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
|
27
|
|
28
|
Blanco W, Pereira CM, Cota VR, Souza AC, Rennó-Costa C, Santos S, Dias G, Guerreiro AMG, Tort ABL, Neto AD, Ribeiro S. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle. PLoS Comput Biol 2015; 11:e1004241. [PMID: 26020963 PMCID: PMC4447375 DOI: 10.1371/journal.pcbi.1004241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/14/2015] [Indexed: 01/12/2023] Open
Abstract
Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic restructuring.
Collapse
Affiliation(s)
- Wilfredo Blanco
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Computer and Automation, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Computer Science, State University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Catia M. Pereira
- Edmond and Lily Safra International Institute of Neuroscience of Natal (ELS-IINN), Natal, Rio Grande do Norte, Brazil
| | - Vinicius R. Cota
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Laboratory of Neuroengineerging and Neuroscience, Federal University of São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Annie C. Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - César Rennó-Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sharlene Santos
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Gabriella Dias
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ana M. G. Guerreiro
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Adrião D. Neto
- Department of Computer and Automation, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|