1
|
Pizzella A, Penna E, Liu Y, Abate N, Lacivita E, Leopoldo M, Perrone-Capano C, Crispino M, Baudry M, Bi X. Alterations of synaptic plasticity in Angelman syndrome model mice are rescued by 5-HT7R stimulation. Prog Neurobiol 2024; 242:102684. [PMID: 39481590 DOI: 10.1016/j.pneurobio.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by motor disfunction, seizures, intellectual disability, speech deficits, and autism-like behavior, showing high comorbidity with Autism Spectrum Disorders (ASD). It is known that stimulation of the serotonin receptor 7 (5-HT7R) can rescue some of the behavioral and neuroplasticity dysfunctions in animal models of Fragile X and Rett syndrome, two pathologies associated with ASD. In view of these observations, we hypothesised that alterations of 5-HT7R signalling might also be involved in AS. To test this hypothesis, we stimulated 5-HT7R with the selective agonist LP-211 to investigate its possible beneficial effects on synaptic dysfunctions and altered behavior in the AS mice model. In mutant mice, we observed impairment of the synaptic machinery of protein synthesis, which was reversed by 5-HT7R activation. Moreover, stimulation of 5-HT7R was able to: i) enhance dendritic spine density in hippocampal neurons, which was reduced in AS mice; ii) restore impaired long-term potentiation (LTP) in hippocampal slices of the AS mice; iii) improve cognitive performance of the mutant animals subjected to the fear conditioning paradigm. Altogether, our results, showing beneficial effects of 5-HT7R stimulation in restoring molecular and cognitive deficits associated with AS, suggest that targeting 5-HT7R could be a promising therapeutic approach for the pathology.
Collapse
Affiliation(s)
- Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Eduardo Penna
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Yan Liu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Natalia Abate
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, USA.
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| |
Collapse
|
2
|
Siwiec M, Hess G. The use of serotonin type 7 receptor antagonists as a pharmacological intervention in chronic stress. Insights from animal studies. Int J Biochem Cell Biol 2024; 175:106647. [PMID: 39182642 DOI: 10.1016/j.biocel.2024.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
This mini-review presents our current understanding of serotonin type 7 receptor research focusing on the possible network mechanisms underlying the behavioral action of receptor antagonists. The serotonin type 7 receptor is expressed widely throughout the nervous system and known to be involved in various cognitive and physiological mechanisms. It became a clinically significant target after the discovery that its selective antagonist SB 269970 can exert rapid-onset antidepressant effects either alone or in combination with lower doses of conventional antidepressant drugs. Further research has shown that administration of SB 269970 can effectively counteract negative neurobiological outcomes in various chronic stress paradigms. The authors hope they can introduce a wider scientific audience to this promising pharmacological target which, if successful, could in time lead to more discoveries and a better understanding of the underlying serotonin receptor biology as well as its clinical potential. HIGHLIGHTS.
Collapse
Affiliation(s)
- Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Krakow 31-343, Poland.
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow 30-387, Poland
| |
Collapse
|
3
|
Arshadi M, Elmaadawi AZ, Nasr S, Jayathilake K, Rassnick S, Ford L, Drevets WC, Meltzer HY. Lack of Efficacy of JNJ-18038683 on Cognitive Impairment in Patients With Stable Bipolar Disorder. J Clin Psychopharmacol 2024; 44:481-491. [PMID: 39250138 DOI: 10.1097/jcp.0000000000001889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
BACKGROUND The serotonin type 7 (5-HT7) receptor is one of 14 5-HT receptors. It has received attention for its possible role in mood disorders and cognition. The 5-HT7 receptor antagonist, JNJ-18038683, has been reported to be effective in rodent models of depression and REM sleep. Also, 5-HT7 receptor blockade has been postulated to be a key component of cognitive enhancement in a number of drugs. Bipolar disorder (BD) usually endures cognitive impairment (CI); however, no treatment for CI in BD has been approved. This study aimed to evaluate the efficacy of JNJ-18038683 to improve the CI of BD compared to a placebo. METHODS We conducted a placebo-controlled, 8-week trial of JNJ-18038683 in BD patients. Each patient's data were analyzed and reassessed blindly with a comprehensive neuropsychological battery, depression and hypomania ratings, and overall social and work function measures. RESULTS Of 60 patients, 38 (63%) were female, 43 (72%) had BD type 1, and most patients were Caucasian and married. The overall time effect for the combined group shows statistically significant improvement from baseline to week 8 for most of the neurocognitive battery measures. This indicates a significant improvement in psychopathology and cognition during the study time in both JNJ-18038683 and placebo groups, but no difference between groups. CONCLUSIONS This study showed no efficacy for the improvement of CIBD or mood symptoms with JNJ-18038683 compared to the placebo.
Collapse
Affiliation(s)
- Mahdi Arshadi
- From the Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Suhayl Nasr
- Beacon Health System, Indiana University School of Medicine, South Bend, IN
| | - Karu Jayathilake
- From the Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Lisa Ford
- Janssen Research and Development, LLC, San Diego, CA
| | | | - Herbert Y Meltzer
- From the Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
4
|
Zhang Y, Lai S, Zhang J, Wang Y, Zhao H, He J, Huang D, Chen G, Qi Z, Chen P, Yan S, Huang X, Lu X, Zhong S, Jia Y. The effectiveness of vortioxetine on neurobiochemical metabolites and cognitive of major depressive disorders patients: A 8-week follow-up study. J Affect Disord 2024; 351:799-807. [PMID: 38311073 DOI: 10.1016/j.jad.2024.01.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Vortioxetine has been shown to improve cognitive performance in people with depression. This study will look at the changes in neurobiochemical metabolites that occur when vortioxetine improves cognitive performance in MDD patients, with the goal of determining the neuroimaging mechanism through which vortioxetine improves cognitive function. METHODS 30 depressed patients and 30 demographically matched healthy controls (HC) underwent MCCB cognitive assessment and 1H-MRS. After 8 weeks of vortioxetine medication, MCCB and 1H-MRS tests were retested in the MDD group. Before and after therapy, changes in cognitive performance, NAA/Cr, and Cho/Cr were examined in the MDD group. RESULTS Compared with the HC group, the MDD group had significant reduced in verbal learning, social cognition, and total cognition (all p < 0.05). And the MDD group had lower NAA/Cr in Right thalamus and Left PFC; the Cho/Cr in Right thalamus was lower than HC; the Cho/Cr in Left ACC had significantly increase (all p < 0.05). The MDD group showed significant improvements in the areas of verbal learning, attention/alertness, and total cognitive function before and after Vortioxetine treatment (all p < 0.05). The NAA/Cr ratio of the right PFC before and after treatment (t = 2.338, p = 0.026) showed significant changes. CONCLUSIONS Vortioxetine can enhance not just the depression symptoms of MDD patients in the initial period, but also their verbal learning, social cognition, and general cognitive capacities after 8 weeks of treatment. Furthermore, vortioxetine has been shown to enhance cognitive function in MDD patients by altering NAA/Cr and Cho/Cr levels in the frontal-thalamic-ACC.
Collapse
Affiliation(s)
- Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
5
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Czarnota-Łydka K, Sudoł-Tałaj S, Kucwaj-Brysz K, Kurczab R, Satała G, de Candia M, Samarelli F, Altomare CD, Carocci A, Barbarossa A, Żesławska E, Głuch-Lutwin M, Mordyl B, Kubacka M, Wilczyńska-Zawal N, Jastrzębska-Więsek M, Partyka A, Khan N, Więcek M, Nitek W, Honkisz-Orzechowska E, Latacz G, Wesołowska A, Carrieri A, Handzlik J. Synthesis, computational and experimental pharmacological studies for (thio)ether-triazine 5-HT 6R ligands with noticeable action on AChE/BChE and chalcogen-dependent intrinsic activity in search for new class of drugs against Alzheimer's disease. Eur J Med Chem 2023; 259:115695. [PMID: 37567058 DOI: 10.1016/j.ejmech.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT6 receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT6 receptor ligands. The main aim of this research is to compare the biological activity of the newly synthesized sulfur derivatives with their oxygen analogues and their N-demethylated O- and S-metabolites obtained for the first time. Most of the new triazines displayed high affinity (Ki < 200 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R, and D2R, in the radioligand binding assays. For selected, active compounds crystallographic studies, functional bioassays, and ADME-Tox profile in vitro were performed. The exciting novelty is that the sulfur derivatives exhibit an agonistic mode of action contrary to all other compounds obtained to date in this chemical class herein and previously reported. Advanced computational studies indicated that this intriguing functional shift might be caused by presence of chalcogen bonds formed only by the sulfur atom. In addition, the N-demethylated derivatives have emerged highly potent antioxidants and, moreover, show a significant improvement in metabolic stability compared to the parent structures. The cholinesterase study present micromolar inhibitory AChE and BChE activity for both 5-HT6 agonist 19 and potent antagonist 5. Finally, the behavioral experiments of compound 19 demonstrated its antidepressant-like properties and slight ability to improve cognitive deficits, without inducing memory impairments by itself. Described pharmacological properties of both compounds (5 and 19) allow to give a design clue for the development of multitarget compounds with 5-HT6 (both agonist and antagonist)/AChE and/or BChE mechanism in the group of 1,3,5-triazine derivatives.
Collapse
Affiliation(s)
- Kinga Czarnota-Łydka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530, Krakow, Poland.
| | - Sylwia Sudoł-Tałaj
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530, Krakow, Poland.
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Rafał Kurczab
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, PL 31-343, Krakow, Poland.
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, PL 31-343, Krakow, Poland.
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Francesco Samarelli
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Alessia Carocci
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Ewa Żesławska
- Pedagogical University of Krakow, Institute of Biology and Earth Sciences, Podchorążych 2, PL 30-084, Krakow, Poland.
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Barbara Mordyl
- Department of Pharmacobiology, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Natalia Wilczyńska-Zawal
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530, Krakow, Poland; Department of Pathophysiology, Jagiellonian University, Medical College, Czysta 18, PL 30-688, Krakow, Poland.
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL 30-387, Krakow, Poland.
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Antonio Carrieri
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| |
Collapse
|
7
|
Potential Anti-Amnesic Activity of a Novel Multimodal Derivative of Salicylamide, JJGW08, in Mice. Pharmaceuticals (Basel) 2023; 16:ph16030399. [PMID: 36986498 PMCID: PMC10056859 DOI: 10.3390/ph16030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Memory impairments constitute a significant problem worldwide, and the COVID-19 pandemic dramatically increased the prevalence of cognitive deficits. Patients with cognitive deficits, specifically memory disturbances, have underlying comorbid conditions such as schizophrenia, anxiety, or depression. Moreover, the available treatment options have unsatisfactory effectiveness. Therefore, there is a need to search for novel procognitive and anti-amnesic drugs with additional pharmacological activity. One of the important therapeutic targets involved in the modulation of learning and memory processes are serotonin receptors, including 5-HT1A, 5-HT6, and 5-HT7, which also play a role in the pathophysiology of depression. Therefore, this study aimed to assess the anti-amnesic and antidepressant-like potential of JJGW08, a novel arylpiperazine alkyl derivative of salicylamide with strong antagonistic properties at 5-HT1A and D2 receptors and weak at 5-HT2A and 5-HT7 receptors in rodents. First, we investigated the compound’s affinity for 5-HT6 receptors using the radioligand assays. Next, we assessed the influence of the compound on long-term emotional and recognition memory. Further, we evaluated whether the compound could protect against MK-801-induced cognitive impairments. Finally, we determined the potential antidepressant-like activity of the tested compound. We found that JJGW08 possessed no affinity for 5-HT6 receptors. Furthermore, JJGW08 protected mice against MK-801-induced recognition and emotional memory deficits but showed no antidepressant-like effects in rodents. Therefore, our preliminary study may suggest that blocking serotonin receptors, especially 5-HT1A and 5-HT7, might be beneficial in treating cognitive impairments, but it requires further investigation.
Collapse
|
8
|
Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation. Int J Mol Sci 2023; 24:ijms24032070. [PMID: 36768393 PMCID: PMC9916679 DOI: 10.3390/ijms24032070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Although a number of mood-stabilising atypical antipsychotics and antidepressants modulate serotonin type 7 receptor (5-HT7), the detailed contributions of 5-HT7 function to clinical efficacy and pathophysiology have not been fully understood. The mood-stabilising antipsychotic agent, lurasidone, and the serotonin partial agonist reuptake inhibitor, vortioxetine, exhibit higher binding affinity to 5-HT7 than other conventional antipsychotics and antidepressants. To date, the initially expected rapid onset of antidepressant effects-in comparison with conventional antidepressants or mood-stabilising antipsychotics-due to 5-HT7 inhibition has not been observed with lurasidone and vortioxetine; however, several clinical studies suggest that 5-HT7 inhibition likely contributes to quality of life of patients with schizophrenia and mood disorders via the improvement of cognition. Furthermore, recent preclinical studies reported that 5-HT7 inhibition might mitigate antipsychotic-induced weight gain and metabolic complication by blocking other monoamine receptors. Further preclinical studies for the development of 5-HT7 modulation against neurodevelopmental disorders and neurodegenerative diseases have been ongoing. To date, various findings from various preclinical studies indicate the possibility that 5-HT7 modifications can provide two independent strategies. The first is that 5-HT7 inhibition ameliorates the dysfunction of inter-neuronal transmission in mature networks. The other is that activation of 5-HT7 can improve transmission dysfunction due to microstructure abnormality in the neurotransmission network-which could be unaffected by conventional therapeutic agents-via modulating intracellular signalling during the neurodevelopmental stage or via loss of neural networks with aging. This review attempts to describe the current and novel clinical applications of 5-HT7 modulation based on preclinical findings.
Collapse
|
9
|
Quintero-Villegas A, Valdés-Ferrer SI. Central nervous system effects of 5-HT 7 receptors: a potential target for neurodegenerative diseases. Mol Med 2022; 28:70. [PMID: 35725396 PMCID: PMC9208181 DOI: 10.1186/s10020-022-00497-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
5-HT7 receptors (5-HT7R) are the most recently identified among the family of serotonin receptors. Their role in health and disease, particularly as mediators of, and druggable targets for, neurodegenerative diseases, is incompletely understood. Unlike other serotonin receptors, for which abundant preclinical and clinical data evaluating their effect on neurodegenerative conditions exist, the available information on the role of the 5-HT7R receptor is limited. In this review, we describe the signaling pathways and cellular mechanisms implicated in the activation of the 5-HT7R; also, we analyze different mechanisms of neurodegeneration and the potential therapeutic implications of pharmacological interventions for 5-HT7R signaling.
Collapse
Affiliation(s)
- Alejandro Quintero-Villegas
- Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Iván Valdés-Ferrer
- Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico. .,Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico. .,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
10
|
Courant F, Maravat M, Chen W, Gosset D, Blot L, Hervouet-Coste N, Sarou-Kanian V, Morisset-Lopez S, Decoville M. Expression of the Human Serotonin 5-HT 7 Receptor Rescues Phenotype Profile and Restores Dysregulated Biomarkers in a Drosophila melanogaster Glioma Model. Cells 2022; 11:1281. [PMID: 35455961 PMCID: PMC9028361 DOI: 10.3390/cells11081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Significant progress has been made in recent years in identifying the molecular alterations involved in gliomas. Among them, an amplification/overexpression of the EGFR (Epidermal Growth Factor Receptor) proto-oncogene and its associated signaling pathways have been widely described. However, current treatments remain ineffective for glioblastomas, the most severe forms. Thus, the identification of other pharmacological targets could open new therapeutic avenues. We used a glioma model in Drosophila melanogaster that results from the overexpression of constitutively active forms of EGFR and PI3K specifically in glial cells. We observed hyperproliferation of glial cells that leads to an increase in brain size and lethality at the third instar larval stage. After expression of the human serotonin 5-HT7 receptor in this glioma model, we observed a decrease in larval lethality associated with the presence of surviving adults and a return to a normal morphology of brain for some Drosophila. Those phenotypic changes are accompanied by the normalization of certain metabolic biomarkers measured by High-Resolution Magic Angle Spinning NMR (HR-MAS NMR). The 5-HT7R expression in glioma also restores some epigenetic modifications and characteristic markers of the signaling pathways associated with tumor growth. This study demonstrates the role of the serotonin 5-HT7 receptor as a tumor suppressor gene which is in agreement with transcriptomic analysis obtained on human glioblastomas.
Collapse
Affiliation(s)
- Florestan Courant
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Marion Maravat
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Wanyin Chen
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - David Gosset
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Lauren Blot
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Nadège Hervouet-Coste
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Martine Decoville
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
- UFR Sciences et Techniques, Université d’Orléans, 6 Avenue du Parc Floral, F-45100 Orléans, France
| |
Collapse
|
11
|
Onyameh EK, Ofori E, Bricker BA, Gonela UM, Eyunni SVK, Kang HJ, Voshavar C, Ablordeppey SY. Design and discovery of a high affinity, selective and β-arrestin biased 5-HT 7 Receptor Agonist. Med Chem Res 2022; 31:274-283. [PMID: 35340752 PMCID: PMC8942385 DOI: 10.1007/s00044-021-02797-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Compound 1c, 5-chloro-2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)-2,3-dihydro-1H-inden-1-one was previously reported from our laboratory showing high affinity binding to the 5-HT7 receptor (Ki = 0.5 nM). However, compound 1c racemizes readily upon enantiomeric separation. To prevent racemization, we have redesigned and synthesized methyl and carboxyethyl analogs, compounds 2 and 3 respectively, whose binding affinities were similar to those of compound 1c. Compounds 2 and 3 cannot undergo racemization since tautomerism was no longer possible and thus, compound 2 was selected for enantiomeric separation and further evaluation. Upon enantiomeric separation, the levorotatory enantiomer, (-)2 or 2a demonstrated a higher affinity (Ki = 1.2 nM) than the (+)2 or 2b enantiomer (Ki = 93 nM) and a β-arrestin biased functional selectivity for the 5-HT7 receptor. Although 2a showed about 8 times less activity than 5-HT in the Gs pathway, it showed over 31 times higher activity than 5-HT in the β-arrestin pathway. This constitutes a significant β-arrestin pathway preference and shows 2a to be more potent and more efficacious than the recently published β-arrestin biased 3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepine, the N-debenzylated analog of JNJ18038683 (Compound 7).
Collapse
Affiliation(s)
- Edem K. Onyameh
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Ofori
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
- Present Address: College of Pharmacy, Chicago State University, 9501 S. King Dr., Douglas Hall, Chicago, Il 60626, USA
| | - Barbara A. Bricker
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Uma M. Gonela
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Suresh V. K. Eyunni
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Hye J. Kang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Chandrashekar Voshavar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Seth Y. Ablordeppey
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
- Corresponding Authors: Seth Y Ablordeppey,
| |
Collapse
|
12
|
Liu T, Song J, Zhou Q, Chu S, Liu Y, Zhao X, Ma Z, Xia T, Gu X. The role of 5-HT 7R in the memory impairment of mice induced by long-term isoflurane anesthesia. Neurobiol Learn Mem 2022; 188:107584. [PMID: 35032676 DOI: 10.1016/j.nlm.2022.107584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
General anesthesia is widely utilized in the clinic for surgical and diagnostic procedures. However, growing evidence suggests that anesthetic exposure may affect cognitive function negatively. Unfortunately, little is known about the underlying mechanisms and efficient prevention and therapeutic strategies for the anesthesia-induced cognitive dysfunction. 5-HT7R, a serotonin receptor family member, is functionally associated with learning and memory. It has recently become a potential therapeutic target in various neurological diseases as its ligands have a wide range of neuropharmacological effects. However, it remains unknown the role of 5-HT7R in the long-term isoflurane anesthesia-induced memory impairment and whether prior activation or blockade of 5-HT7R before anesthesia has modulating effects on this memory impairment. In this study, 5-HT7R selective agonist LP-211 and 5-HT7R selective antagonist SB-269970 were pretreated intraperitoneally to mice before anesthesia; their effects on the cognitive performance of mice were assessed using fear conditioning test and novel object recognition test. Furthermore, the transcriptional level of 5-HT7R in the hippocampus was detected using qRT-PCR, and proteomics was conducted to probe the underlying mechanisms. As a result, long-term exposure to isoflurane anesthesia caused memory impairment and an increase in hippocampal 5-HT7R mRNA expression, which could be attenuated by SB-269970 pretreatment but not LP-211pretreatment. According to the proteomics results, the antiamnestic effect of SB-269970 pretreatment was probably attributed to its action on the gene expression of Slc6a11, Itpka, Arf3, Srcin1, and Epb41l2, and synapse organization in the hippocampus. In conclusion, 5-HT7R is involved in the memory impairment induced by long-term isoflurane anesthesia, and the prior blockade of 5-HT7R with SB-269970 protects the memory impairment. This finding may help to improve the understanding of the long-term isoflurane anesthesia-induced memory impairment and to construct potential preventive and therapeutic strategies for the adverse effects after long-term isoflurane exposure.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jia Song
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Qingyun Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Shuaishuai Chu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yujia Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xin Zhao
- Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021; 9:713762. [PMID: 34616730 PMCID: PMC8488171 DOI: 10.3389/fcell.2021.713762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
The Freudian theory of conversion suggested that the major symptoms of functional neurological disorders (FNDs) are due to internal conflicts at motivation, especially at the sex drive or libido. FND patients might behave properly at rewarding situations, but they do not know how to behave at aversive situations. Sex drive is the major source of dopamine (DA) release in the limbic area; however, the neural mechanism involved in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key role in processing motivation-related information. Recently, DAergic neurons are found to be involved in reward-related prediction error, as well as the prediction of aversive information. Therefore, it is suggested that DA might change the rewarding reactions to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic areas might induce two major motivational functions: reward and aversion at internal conflicts. This article reviewed the recent advances on studies about DAergic neurons involved in aversive stimulus processing at internal conflicts and summarizes several neural pathways, including four limbic system brain regions, which are involved in the processing of aversion. Then the article discussed the vital function of these neural circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided a prospect for future research on the aversion function of limbic system DA neurons and the therapy of FNDs.
Collapse
Affiliation(s)
- Zhengming He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Dandan Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Qin
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jason H Huang
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
15
|
Effects of Subchronic Administrations of Vortioxetine, Lurasidone, and Escitalopram on Thalamocortical Glutamatergic Transmission Associated with Serotonin 5-HT7 Receptor. Int J Mol Sci 2021; 22:ijms22031351. [PMID: 33572981 PMCID: PMC7866391 DOI: 10.3390/ijms22031351] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
The functional suppression of serotonin (5-HT) type 7 receptor (5-HT7R) is forming a basis for scientific discussion in psychopharmacology due to its rapid-acting antidepressant-like action. A novel mood-stabilizing atypical antipsychotic agent, lurasidone, exhibits a unique receptor-binding profile, including a high affinity for 5-HT7R antagonism. A member of a novel class of antidepressants, vortioxetine, which is a serotonin partial agonist reuptake inhibitor (SPARI), also exhibits a higher affinity for serotonin transporter, serotonin receptors type 1A (5-HT1AR) and type 3 (5-HT3R), and 5-HT7R. However, the effects of chronic administration of lurasidone, vortioxetine, and the selective serotonin reuptake inhibitor (SSRI), escitalopram, on 5-HT7R function remained to be clarified. Thus, to explore the mechanisms underlying the clinical effects of vortioxetine, escitalopram, and lurasidone, the present study determined the effects of these agents on thalamocortical glutamatergic transmission, which contributes to emotional/mood perception, using multiprobe microdialysis and 5-HT7R expression using capillary immunoblotting. Acute local administration of a 5-HT7R agonist and antagonist into the mediodorsal thalamic nucleus (MDTN) enhanced and reduced thalamocortical glutamatergic transmission, induced by N-methyl-D-aspartate (NMDA)/glutamate receptor inhibition in the reticular thalamic nucleus (RTN). Acute local administration of a relevant therapeutic concentration of vortioxetine and lurasidone into the MDTN suppressed the thalamocortical glutamatergic transmission via 5-HT7R inhibition, whereas that of escitalopram activated 5-HT7R. Subchronic administration of effective doses of vortioxetine and lurasidone (for 7 days) reduced the thalamocortical glutamatergic transmission, but escitalopram did not affect it, whereas subchronic administration of these three agents attenuated the stimulatory effects of the 5-HT7R agonist on thalamocortical glutamatergic transmission. Subchronic administration of effective doses of vortioxetine, lurasidone, and escitalopram downregulated the 5-HT7R expression of the plasma membrane in the MDTN; the 5-HT7R downregulation induced by vortioxetine and lurasidone was observed at 3 days, but that induced by escitalopram required a longer duration of 7 days. These results indicate that chronic administration of vortioxetine, escitalopram, and lurasidone generate downregulation of 5-HT7R in the thalamus; however, the direct inhibition of 5-HT7R associated with vortioxetine and lurasidone generates more rapid downregulation than the indirect elevation of the extracellular serotonin level via serotonin transporter inhibition by escitalopram.
Collapse
|
16
|
Okubo R, Hasegawa T, Fukuyama K, Shiroyama T, Okada M. Current Limitations and Candidate Potential of 5-HT7 Receptor Antagonism in Psychiatric Pharmacotherapy. Front Psychiatry 2021; 12:623684. [PMID: 33679481 PMCID: PMC7930824 DOI: 10.3389/fpsyt.2021.623684] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Several mood-stabilizing atypical antipsychotics and antidepressants weakly block serotonin (5-HT) receptor type-7 (5-HT7R); however, the contributions of 5-HT7R antagonism to clinical efficacy and pathophysiology are yet to be clarified. A novel mood-stabilizing antipsychotic agent, lurasidone exhibits predominant binding affinity to 5-HT7R when compared with other monoamine receptors. To date, we have failed to discover the superior clinical efficacy of lurasidone on schizophrenia, mood, or anxiety disorders when compared with conventional mood-stabilizing atypical antipsychotics; however, numerous preclinical findings have indicated the possible potential of 5-HT7R antagonism against several neuropsychiatric disorders, as well as the generation of novel therapeutic options that could not be expected with conventional atypical antipsychotics. Traditional experimental techniques, electrophysiology, and microdialysis have demonstrated that the effects of 5-HT receptor type-1A (5-HT1AR) and 5-HT7R on neurotransmission are in contrast, but the effect of 5-HT1AR is more predominant than that of 5-HT7R, resulting in an insufficient understanding of the 5-HT7R function in the field of psychopharmacology. Accumulating knowledge regarding the pharmacodynamic profiles of 5-HT7R suggests that 5-HT7R is one of the key players in the establishment and remodeling of neural development and cytoarchitecture during the early developmental stage to the mature brain, and dysfunction or modulation of 5-HT7R is linked to the pathogenesis/pathophysiology of neuropsychiatric and neurodevelopmental disorders. In this review, to explore candidate novel applications for the treatment of several neuropsychiatric disorders, including mood disorders, schizophrenia, and other cognitive disturbance disorders, we discuss perspectives of psychopharmacology regarding the effects of 5-HT7R antagonism on transmission and intracellular signaling systems, based on preclinical findings.
Collapse
Affiliation(s)
- Ruri Okubo
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Toshiki Hasegawa
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kouji Fukuyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takashi Shiroyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Motohiro Okada
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
17
|
Siwiec M, Kusek M, Sowa JE, Tokarski K, Hess G. 5-HT 7 receptors increase the excitability of hippocampal CA1 pyramidal neurons by inhibiting the A-type potassium current. Neuropharmacology 2020; 177:108248. [PMID: 32736087 DOI: 10.1016/j.neuropharm.2020.108248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests a widespread role of serotonin 5-HT7 receptors (5-HT7Rs) in the physiology of cognitive and affective processing. However, we still lack insights into 5-HT7R electrophysiology. Studies analyzing the 5-HT7R-mediated changes in CA1 pyramidal neuron activity revealed that 5-HT7R activation leads to the opening of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCNs). However, our group and others have shown that CA1 pyramidal cells increase their excitability following 5-HT7R activation, an effect which cannot be explained by HCN channel opening. This suggests a different ionic mechanism might be responsible. To investigate this, we performed whole-cell patch clamp recordings of CA1 pyramidal cells in rat brain slices. It was found that acute 5-HT7R activation increased membrane excitability and decreased spiking latency. Both effects were blocked by a selective 5-HT7R antagonist. Spike latency in CA1 pyramidal cells is known to be regulated by transient outward voltage-dependent A-type potassium channels. Subsequent voltage clamp recordings revealed that acute 5-HT7R activation inhibited A-type potassium currents. Pharmacological block of Kv4.2/4.3 potassium channel subunits prevented the 5-HT7R agonist-induced changes in excitability and spiking latency, whereas blocking HCN channels had no influence on these effects. Taken together, the results reveal an ionic mechanism previously not known to be associated with 5-HT7R activation. Inhibition of A-type potassium channels can fully account for increased CA1 pyramidal cell excitability after 5-HT7R activation. These results can help explain a number of behavioral and physiological findings and will hopefully lead to a better understanding of 5-HT7 receptor signaling in health and disease.
Collapse
Affiliation(s)
- Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Magdalena Kusek
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Joanna Ewa Sowa
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| |
Collapse
|
18
|
Sudoł S, Kucwaj-Brysz K, Kurczab R, Wilczyńska N, Jastrzębska-Więsek M, Satała G, Latacz G, Głuch-Lutwin M, Mordyl B, Żesławska E, Nitek W, Partyka A, Buzun K, Doroz-Płonka A, Wesołowska A, Bielawska A, Handzlik J. Chlorine substituents and linker topology as factors of 5-HT 6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties in vivo. Eur J Med Chem 2020; 203:112529. [PMID: 32693296 DOI: 10.1016/j.ejmech.2020.112529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022]
Abstract
In the light of recent lines of evidence, 5-HT6R ligands are a promising tool for future treatment of memory impairment. Hence, this study has supplied highly potent 5-HT6R agents with procognitive effects, which represent an original chemical class of 1,3,5-triazines, different from widely studied sulfone and indole-like 5-HT6R ligands. The new compounds were rationally designed as modifications of lead, 4-(1-(2-chlorophenoxy)ethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (1), involving an introduction of: (i) two chlorines at benzene ring and (ii) varied linkers joining the triazine ring to aromatic ethers. Synthesis, in vitro and in vivo biological tests and computer-aided SAR analysis for 19 new compounds were carried out. Most of the new triazines displayed high affinity (Ki < 100 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R and D2R. The crystallography-supported docking studies, including quantum-polarized ligand docking (QPLD), indicated that chlorine atoms may be involved in different type of halogen bonding, however, the linker properties seem to predominately affect the 5-HT6R affinity. 4-[1-(2,5-Dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (9), which displayed: the highest affinity (Ki = 6 nM), very strong 5-HT6R antagonistic action (KB = 27 pM), procognitive effects in vivo in novel object recognition (NOR) test in rats, a very good permeability in PAMPA model and satisfying safety in vitro, was identified as the most potent 1,3,5-triazine agent so far, useful as a new lead for further research.
Collapse
Affiliation(s)
- Sylwia Sudoł
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland; Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Natalia Wilczyńska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Ewa Żesławska
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, PL 30-084, Kraków, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL 30-387, Kraków, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Kamila Buzun
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland; Deparmtent of Biotechnology, Medical University of Białystok, PL 15-222, Białystok, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Anna Bielawska
- Deparmtent of Biotechnology, Medical University of Białystok, PL 15-222, Białystok, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland.
| |
Collapse
|
19
|
Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. Int J Mol Sci 2020; 21:ijms21020505. [PMID: 31941109 PMCID: PMC7013427 DOI: 10.3390/ijms21020505] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Our knowledge on the plastic functions of the serotonin (5-HT) receptor subtype 7 (5-HT7R) in the brain physiology and pathology have advanced considerably in recent years. A wealth of data show that 5-HT7R is a key player in the establishment and remodeling of neuronal cytoarchitecture during development and in the mature brain, and its dysfunction is linked to neuropsychiatric and neurodevelopmental diseases. The involvement of this receptor in synaptic plasticity is further demonstrated by data showing that its activation allows the rescue of long-term potentiation (LTP) and long-term depression (LTD) deficits in various animal models of neurodevelopmental diseases. In addition, it is becoming clear that the 5-HT7R is involved in inflammatory intestinal diseases, modulates the function of immune cells, and is likely to play a role in the gut-brain axis. In this review, we will mainly focus on recent findings on this receptor’s role in the structural and synaptic plasticity of the mammalian brain, although we will also illustrate novel aspects highlighted in gastrointestinal (GI) tract and immune system.
Collapse
|
20
|
Kaur S, DasGupta G, Singh S. Altered Neurochemistry in Alzheimer’s Disease: Targeting Neurotransmitter Receptor Mechanisms and Therapeutic Strategy. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09823-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
22
|
de Assis Brasil ES, Guerino Furini CR, da Silva Rodrigues F, Nachtigall EG, Kielbovicz Behling JA, Saenger BF, Farias CP, de Carvalho Myskiw J, Izquierdo I. The blockade of the serotoninergic receptors 5-HT5A, 5-HT6 and 5-HT7 in the basolateral amygdala, but not in the hippocampus facilitate the extinction of fear memory. Behav Brain Res 2019; 372:112055. [DOI: 10.1016/j.bbr.2019.112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023]
|
23
|
Jafari-Sabet M, Nemati S, Torab M. Cross state-dependency of learning between 5-HT1A and/or 5-HT7 receptor agonists and muscimol in the mouse dorsal hippocampus. J Psychopharmacol 2019; 33:722-736. [PMID: 30789290 DOI: 10.1177/0269881119826608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dysfunction of the serotonergic and GABAergic systems in cognitive disorders has been revealed. Understanding the neurobiological mechanisms of drug-associated learning and memory formation may help treatment of cognitive disorders. AIMS The aim of the present study was to investigate: 1) 8-OH-DPAT (5-HT1A agonist), AS19 (5-HT7 agonist) and muscimol (GABA-A agonist) on memory retrieval and state of memory, 2) cross state-dependent learning between 8-OH-DPAT and/or AS19 and muscimol. METHODS The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended sites of injection. A single-trial step-down inhibitory avoidance task was used for the evaluation of memory retrieval and state of memory. RESULTS Post-training and/or pre-test 8-OH-DPAT, AS19 and muscimol induced amnesia. Pre-test microinjection of the same doses of 8-OH-DPAT, AS19 and muscimol reversed the post-training 8-OH-DPAT-, AS19- and muscimol-induced amnesia, respectively. This event has been named state-dependent learning (SDL). The amnesia induced by 8-OH-DPAT was reversed by muscimol and induced 8-OH-DPAT SDL. The amnesia induced by muscimol was reversed by 8-OH-DPAT and induced muscimol SDL. The amnesia induced by AS19 was reversed by muscimol and induced AS19 SDL. The amnesia induced by muscimol was reversed by AS19 and induced muscimol SDL. Pre-test administration of a selective GABA-A receptor antagonist, bicuculline, 5 min before muscimol, 8-OH-DPAT and AS19 dose-dependently inhibited muscimol-, 8-OH-DPAT- and AS19-induced SDL, respectively. CONCLUSIONS The results strongly revealed a cross SDL among 8-OH-DPAT and/or AS19 and muscimol in the dorsal hippocampal CA1 regions.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- 1 Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,2 Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepehr Nemati
- 2 Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Torab
- 2 Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Evaluation of 5-HT7 receptor antagonism for the treatment of anxiety, depression, and schizophrenia through the use of receptor-deficient mice. Behav Brain Res 2019; 360:270-278. [DOI: 10.1016/j.bbr.2018.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 11/21/2022]
|
25
|
Chronic Oxycodone Self-administration Altered Reward-related Genes in the Ventral and Dorsal Striatum of C57BL/6J Mice: An RNA-seq Analysis. Neuroscience 2018; 393:333-349. [PMID: 30059705 DOI: 10.1016/j.neuroscience.2018.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Prescription opioid abuse, for example of oxycodone, is a pressing public health issue. This study focuses on how chronic oxycodone self-administration (SA) affects the reward pathways in the mouse brain. In this study, we tested the hypothesis that the expression of reward-related genes in the ventral and dorsal striatum, areas involved in different aspects of opioid addiction models, was altered within 1 h after chronic oxycodone SA, using transcriptome-wide sequencing (RNA-seq). Based on results from earlier human genetic and rodent preclinical studies, we focused on a set of genes that may be associated with the development of addictive diseases and the rewarding effect of drugs of abuse, primarily in the opioid, stress response and classical neurotransmitter systems. We found that 32 transcripts in the ventral striatum, and 7 in the dorsal striatum, were altered significantly in adult mice that had self-administered oxycodone (n = 5) for 14 consecutive days (4 h/day) compared with yoked saline controls (n = 5). The following 5 genes in the ventral striatum showed experiment-wise significant changes: proopiomelanocortin (Pomc) and serotonin 5-HT-2A receptor (Htr2a) were upregulated; serotonin receptor 7 (Htr7), galanin receptor1 (Galr1) and glycine receptor 1 (Glra1) were downregulated. Some genes detected by RNA-seq were confirmed by quantitative polymerase chain reaction (qPCR). Conclusion: A RNA-seq study shows that chronic oxycodone SA alters the expression of several reward-related genes in the dorsal and ventral striatum. These results suggest potential mechanisms underlying neuronal adaptation to chronic oxycodone self-exposure, of relevance to our mechanistic understanding of prescription opioid abuse.
Collapse
|
26
|
Structural insights into serotonin receptor ligands polypharmacology. Eur J Med Chem 2018; 151:797-814. [DOI: 10.1016/j.ejmech.2018.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/03/2023]
|
27
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
28
|
Canale V, Partyka A, Kurczab R, Krawczyk M, Kos T, Satała G, Kubica B, Jastrzębska-Więsek M, Wesołowska A, Bojarski AJ, Popik P, Zajdel P. Novel 5-HT 7R antagonists, arylsulfonamide derivatives of (aryloxy)propyl piperidines: Add-on effect to the antidepressant activity of SSRI and DRI, and pro-cognitive profile. Bioorg Med Chem 2017; 25:2789-2799. [PMID: 28391970 DOI: 10.1016/j.bmc.2017.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
Abstract
A novel series of arylsulfonamide derivatives of (aryloxy)propyl piperidines was designed to obtain potent 5-HT7R antagonists. Among the compounds evaluated herein, 3-chloro-N-{1-[3-(1,1-biphenyl-2-yloxy)2-hydroxypropyl]piperidin-4-yl}benzenesulfonamide (25) exhibited antagonistic properties at 5-HT7R and showed selectivity over selected serotoninergic and dopaminergic receptors, as well as over serotonin, noradrenaline and dopamine transporters. Compound 25 demonstrated significant antidepressant-like activity in the forced swim test (0.625-2.5mg/kg, i.p.) and in the tail suspension test (1.25mg/kg, i.p.), augmented the antidepressant effect of inactive doses of escitalopram (selective serotonin reuptake inhibitor) and bupropion (dopamine reuptake inhibitor) in the FST in mice, and similarly to SB-269970, exerted pro-cognitive properties in the novel object recognition task in cognitively unimpaired conditions in rats (0.3mg/kg, i.p.). Such an extended pharmacological profile, especially the augmentation effect of the identified 5-HT7R antagonist on SSRI activity, seems promising regarding the complexity of affective disorders and potentially improved outcomes, including mnemonic performance.
Collapse
Affiliation(s)
- Vittorio Canale
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Martyna Krawczyk
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Tomasz Kos
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Bartłomiej Kubica
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland; Faculty of Health Sciences, Jagiellonian University Medical College, 20 Michałowskiego Street, 31-126 Kraków, Poland
| | - Paweł Zajdel
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| |
Collapse
|