1
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Hasan SM, Huq MS, Chowdury AZ, Baajour S, Kopchick J, Robison AJ, Thakkar KN, Haddad L, Amirsadri A, Thomas P, Khatib D, Rajan U, Stanley JA, Diwadkar VA. Learning without contingencies: A loss of synergy between memory and reward circuits in schizophrenia. Schizophr Res 2023; 258:21-35. [PMID: 37467677 PMCID: PMC10521382 DOI: 10.1016/j.schres.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/09/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Motivational deficits in schizophrenia may interact with foundational cognitive processes including learning and memory to induce impaired cognitive proficiency. If such a loss of synergy exists, it is likely to be underpinned by a loss of synchrony between the brains learning and reward sub-networks. Moreover, this loss should be observed even during tasks devoid of explicit reward contingencies given that such tasks are better models of real world performance than those with artificial contingencies. Here we applied undirected functional connectivity (uFC) analyses to fMRI data acquired while participants engaged in an associative learning task without contingencies or feedback. uFC was estimated and inter-group differences (between schizophrenia patients and controls, n = 54 total, n = 28 patients) were assessed within and between reward (VTA and NAcc) and learning/memory (Basal Ganglia, DPFC, Hippocampus, Parahippocampus, Occipital Lobe) sub-networks. The task paradigm itself alternated between Encoding, Consolidation, and Retrieval conditions, and uFC differences were quantified for each of the conditions. Significantly reduced uFC dominated the connectivity profiles of patients across all conditions. More pertinent to our motivations, these reductions were observed within and across classes of sub-networks (reward-related and learning/memory related). We suggest that disrupted functional connectivity between reward and learning sub-networks may drive many of the performance deficits that characterize schizophrenia. Thus, cognitive deficits in schizophrenia may in fact be underpinned by a loss of synergy between reward-sensitivity and cognitive processes.
Collapse
Affiliation(s)
- Sazid M Hasan
- Oakland University William Beaumont School of Medicine, USA
| | - Munajj S Huq
- Michigan State University, College of Osteopathic Medicine, USA
| | - Asadur Z Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Shahira Baajour
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - John Kopchick
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - A J Robison
- Dept. of Physiology, Michigan State University, USA
| | | | - Luay Haddad
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Alireza Amirsadri
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Patricia Thomas
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Dalal Khatib
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Usha Rajan
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Jeffrey A Stanley
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
3
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
4
|
Gadot R, Korst G, Shofty B, Gavvala JR, Sheth SA. Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. J Neurosurg 2022; 137:1210-1225. [PMID: 35276641 DOI: 10.3171/2022.1.jns212613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereoelectroencephalography (sEEG) is a well-established surgical method for defining the epileptogenic network. Traditionally reserved for identifying discrete cortical regions for resection or ablation, sEEG in current practice is also used for identifying more broadly involved subcortical epileptic network components, driven by the availability of brain-based neuromodulation strategies. In particular, sEEG investigations including thalamic nuclei are becoming more frequent in parallel with the increase in therapeutic strategies involving thalamic targets such as deep brain stimulation (DBS) and responsive neurostimulation (RNS). The objective to this study was to evaluate existing evidence and trends regarding the purpose, techniques, and relevant electrographic findings of thalamic sEEG. METHODS MEDLINE and Embase databases were systematically queried for eligible peer-reviewed studies involving sEEG electrode implantation into thalamic nuclei of patients with epilepsy. Available data were abstracted concerning preoperative workup and purpose for implanting the thalamus, thalamic targets and trajectories, and electrophysiological methodology and findings. RESULTS sEEG investigations have included thalamic targets for both basic and clinical research purposes. Medial pulvinar, dorsomedial, anterior, and centromedian nuclei have been the most frequently studied. Few studies have reported any complications with thalamic sEEG implantation, and no studies have reported long-term complications. Various methods have been utilized to characterize thalamic activity in epileptic disorders including evoked potentials, power spectrograms, synchronization indices, and the epileptogenicity index. Thalamic intracranial recordings are beginning to be used to guide neuromodulation strategies including RNS and DBS, as well as to understand complex, network-dependent seizure disorders. CONCLUSIONS Inclusion of thalamic coverage during sEEG evaluation in drug-resistant epilepsy is a growing practice and is amenable to various methods of electrographic data analysis. Further study is required to establish well-defined criteria for thalamic implantation during invasive investigations as well as safety and ethical considerations.
Collapse
Affiliation(s)
| | | | | | - Jay R Gavvala
- 2Neurology, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
5
|
Aggleton JP, Nelson AJD, O'Mara SM. Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 2022; 140:104813. [PMID: 35940310 PMCID: PMC10804970 DOI: 10.1016/j.neubiorev.2022.104813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
6
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
7
|
Nelson AJD. The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev 2021; 126:1-11. [PMID: 33737105 PMCID: PMC8363507 DOI: 10.1016/j.neubiorev.2021.02.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Anterior thalamic nuclei important for specific classes of temporal discriminations. Anterior thalamic nuclei required for hippocampal-dependent contextual processes. Critical role for anterior thalamic nuclei in selective attention. Significance of anterior thalamic – anterior cingulate interactions.
The anterior thalamic nuclei are a vital node within hippocampal-diencephalic-cingulate circuits that support spatial learning and memory. Reflecting this interconnectivity, the overwhelming focus of research into the cognitive functions of the anterior thalamic nuclei has been spatial processing. However, there is increasing evidence that the functions of the anterior thalamic nuclei extend beyond the spatial realm. This work has highlighted how these nuclei are required for certain classes of temporal discrimination as well as their importance for processing other contextual information; revealing parallels with the non-spatial functions of the hippocampal formation. Yet further work has shown how the anterior thalamic nuclei may be important for other forms of non-spatial learning, including a critical role for these nuclei in attentional mechanisms. This evidence signals the need to reconsider the functions of the anterior thalamic within the framework of their wider connections with sites including the anterior cingulate cortex that subserve non-spatial functions.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
8
|
Maksimenko V, Kuc A, Frolov N, Kurkin S, Hramov A. Effect of repetition on the behavioral and neuronal responses to ambiguous Necker cube images. Sci Rep 2021; 11:3454. [PMID: 33568692 PMCID: PMC7876129 DOI: 10.1038/s41598-021-82688-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
A repeated presentation of an item facilitates its subsequent detection or identification, a phenomenon of priming. Priming may involve different types of memory and attention and affects neural activity in various brain regions. Here we instructed participants to report on the orientation of repeatedly presented Necker cubes with high (HA) and low (LA) ambiguity. Manipulating the contrast of internal edges, we varied the ambiguity and orientation of the cube. We tested how both the repeated orientation (referred to as a stimulus factor) and the repeated ambiguity (referred to as a top-down factor) modulated neuronal and behavioral response. On the behavioral level, we observed higher speed and correctness of the response to the HA stimulus following the HA stimulus and a faster response to the right-oriented LA stimulus following the right-oriented stimulus. On the neuronal level, the prestimulus theta-band power grew for the repeated HA stimulus, indicating activation of the neural networks related to attention and uncertainty processing. The repeated HA stimulus enhanced hippocampal activation after stimulus onset. The right-oriented LA stimulus following the right-oriented stimulus enhanced activity in the precuneus and the left frontal gyri before the behavioral response. During the repeated HA stimulus processing, enhanced hippocampal activation may evidence retrieving information to disambiguate the stimulus and define its orientation. Increased activation of the precuneus and the left prefrontal cortex before responding to the right-oriented LA stimulus following the right-oriented stimulus may indicate a match between their orientations. Finally, we observed increased hippocampal activation after responding to the stimuli, reflecting the encoding stimulus features in memory. In line with the large body of works relating the hippocampal activity with episodic memory, we suppose that this type of memory may subserve the priming effect during the repeated presentation of ambiguous images.
Collapse
Affiliation(s)
- Vladimir Maksimenko
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, 112 Bolshaya Kazachia str., Saratov, Russia 410012
| | - Alexander Kuc
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Nikita Frolov
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Semen Kurkin
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Alexander Hramov
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, 112 Bolshaya Kazachia str., Saratov, Russia 410012
| |
Collapse
|
9
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
10
|
Schreiner T, Staudigl T. Electrophysiological signatures of memory reactivation in humans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190293. [PMID: 32248789 PMCID: PMC7209925 DOI: 10.1098/rstb.2019.0293] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reactivation of neural activity that was present during the encoding of an event is assumed to be essential for human episodic memory retrieval and the consolidation of memories during sleep. Pioneering animal work has already established a crucial role of memory reactivation to prepare and guide behaviour. Research in humans is now delineating the neural processes involved in memory reactivation during both wakefulness and sleep as well as their functional significance. Focusing on the electrophysiological signatures of memory reactivation in humans during both memory retrieval and sleep-related consolidation, this review provides an overview of the state of the art in the field. We outline recent advances, methodological developments and open questions and specifically highlight commonalities and differences in the neuronal signatures of memory reactivation during the states of wakefulness and sleep. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Thomas Schreiner
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|