1
|
Poceviciute I, Brazaityte A, Buisas R, Vengeliene V. Scopolamine animal model of memory impairment. Behav Brain Res 2025; 479:115344. [PMID: 39566583 DOI: 10.1016/j.bbr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
In this study, we reassessed the suitability of a commonly used pharmacological animal model of Alzheimer's disease (AD) - scopolamine-induced memory impairment. The goal of the study was to explore if this animal model induces other behavioral changes associated with AD. One of the key behavioral features of AD, manifesting already during the early stages of the illness, is apathy-like behavior. We also evaluated how behavioral alterations induced by scopolamine compare to those seen in healthy aging animals. To achieve these goals, locomotor activity and short-term memory of young male Wistar rats were tested in the open field, novel object recognition (NOR) and T-maze spontaneous alternation tests before, during and after 21 daily administrations of scopolamine. Three-, ten- and nineteen-month-old male and female rats were used to measure age-related changes in these behaviors. Our data showed that although both scopolamine treatment and aging reduced the number of approaches to the objects and their exploration time during the NOR test, correlation with impaired object recognition memory was only observed in the scopolamine treated animals. Furthermore, treatment with scopolamine significantly increased the locomotor activity, which could be observed even one week after treatment discontinuation. Contrary, locomotor activity in older rats was significantly lower than that of younger rats. These findings demonstrate that the animal model of scopolamine-induced memory impairment fails to incorporate apathy-like symptoms characteristic to the AD and age-related reduction in physical activity of older rats.
Collapse
Affiliation(s)
- Ieva Poceviciute
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Agne Brazaityte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Rokas Buisas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Valentina Vengeliene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania.
| |
Collapse
|
2
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
3
|
Zeng G, Simpson EA, Paukner A. Maximizing valid eye-tracking data in human and macaque infants by optimizing calibration and adjusting areas of interest. Behav Res Methods 2024; 56:881-907. [PMID: 36890330 DOI: 10.3758/s13428-022-02056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2022] [Indexed: 03/10/2023]
Abstract
Remote eye tracking with automated corneal reflection provides insights into the emergence and development of cognitive, social, and emotional functions in human infants and non-human primates. However, because most eye-tracking systems were designed for use in human adults, the accuracy of eye-tracking data collected in other populations is unclear, as are potential approaches to minimize measurement error. For instance, data quality may differ across species or ages, which are necessary considerations for comparative and developmental studies. Here we examined how the calibration method and adjustments to areas of interest (AOIs) of the Tobii TX300 changed the mapping of fixations to AOIs in a cross-species longitudinal study. We tested humans (N = 119) at 2, 4, 6, 8, and 14 months of age and macaques (Macaca mulatta; N = 21) at 2 weeks, 3 weeks, and 6 months of age. In all groups, we found improvement in the proportion of AOI hits detected as the number of successful calibration points increased, suggesting calibration approaches with more points may be advantageous. Spatially enlarging and temporally prolonging AOIs increased the number of fixation-AOI mappings, suggesting improvements in capturing infants' gaze behaviors; however, these benefits varied across age groups and species, suggesting different parameters may be ideal, depending on the population studied. In sum, to maximize usable sessions and minimize measurement error, eye-tracking data collection and extraction approaches may need adjustments for the age groups and species studied. Doing so may make it easier to standardize and replicate eye-tracking research findings.
Collapse
Affiliation(s)
- Guangyu Zeng
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | | | - Annika Paukner
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
4
|
Ryan AM, Bauman MD. Primate Models as a Translational Tool for Understanding Prenatal Origins of Neurodevelopmental Disorders Associated With Maternal Infection. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:510-523. [PMID: 35276404 PMCID: PMC8902899 DOI: 10.1016/j.bpsc.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
Pregnant women represent a uniquely vulnerable population during an infectious disease outbreak, such as the COVID-19 pandemic. Although we are at the early stages of understanding the specific impact of SARS-CoV-2 exposure during pregnancy, mounting epidemiological evidence strongly supports a link between exposure to a variety of maternal infections and an increased risk for offspring neurodevelopmental disorders. Inflammatory biomarkers identified from archived or prospectively collected maternal biospecimens suggest that the maternal immune response is the critical link between infection during pregnancy and altered offspring neurodevelopment. This maternal immune activation (MIA) hypothesis has been tested in animal models by artificially activating the immune system during pregnancy and evaluating the neurodevelopmental consequences in MIA-exposed offspring. Although the vast majority of MIA model research is carried out in rodents, the nonhuman primate model has emerged in recent years as an important translational tool. In this review, we briefly summarize human epidemiological studies that have prompted the development of translationally relevant MIA models. We then highlight notable similarities between humans and nonhuman primates, including placental structure, pregnancy physiology, gestational timelines, and offspring neurodevelopmental stages, that provide an opportunity to explore the MIA hypothesis in species more closely related to humans. Finally, we provide a comprehensive review of neurodevelopmental alterations reported in current nonhuman primate models of maternal infection and discuss future directions for this promising area of research.
Collapse
Affiliation(s)
- Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| |
Collapse
|
5
|
Dunn GA, Mitchell AJ, Selby M, Fair DA, Gustafsson HC, Sullivan EL. Maternal diet and obesity shape offspring central and peripheral inflammatory outcomes in juvenile non-human primates. Brain Behav Immun 2022; 102:224-236. [PMID: 35217175 PMCID: PMC8995380 DOI: 10.1016/j.bbi.2022.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022] Open
Abstract
The obesity epidemic affects 40% of adults in the US, with approximately one-third of pregnant women classified as obese. Previous research suggests that children born to obese mothers are at increased risk for a number of health conditions. The mechanisms behind this increased risk are poorly understood. Increased exposure to in-utero inflammation induced by maternal obesity is proposed as an underlying mechanism for neurodevelopmental alterations in offspring. Utilizing a non-human primate model of maternal obesity, we hypothesized that maternal consumption of an obesogenic diet will predict offspring peripheral (e.g., cytokines and chemokines) and central (microglia number) inflammatory outcomes via the diet's effects on maternal adiposity and maternal inflammatory state during the third trimester. We used structural equation modeling to simultaneously examine the complex associations among maternal diet, metabolic state, adiposity, inflammation, and offspring central and peripheral inflammation. Four latent variables were created to capture maternal chemokines and pro-inflammatory cytokines, and offspring cytokine and chemokines. Model results showed that offspring microglia counts in the basolateral amygdala were associated with maternal diet (β = -0.622, p < 0.01), adiposity (β = 0.593, p < 0.01), and length of gestation (β = 0.164, p < 0.05) but not with maternal chemokines (β = 0.135, p = 0.528) or maternal pro-inflammatory cytokines (β = 0.083, p = 0.683). Additionally, we found that juvenile offspring peripheral cytokines (β = -0.389, p < 0.01) and chemokines (β = -0.298, p < 0.05) were associated with a maternal adiposity-induced decrease in maternal circulating chemokines during the third trimester (β = -0.426, p < 0.01). In summary, these data suggest that maternal diet and adiposity appear to directly predict offspring amygdala microglial counts while maternal adiposity influences offspring peripheral inflammatory outcomes via maternal inflammatory state.
Collapse
Affiliation(s)
| | - A J Mitchell
- Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA
| | - Matthew Selby
- University of Oregon, Department of Human Physiology, USA
| | - Damien A Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, USA
| | | | - Elinor L Sullivan
- University of Oregon, Department of Human Physiology, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA; Oregon Health & Science University, Department of Psychiatry, USA.
| |
Collapse
|
6
|
Gunter C, Harris RA, Kovacs-Balint Z, Raveendran M, Michopoulos V, Bachevalier J, Raper J, Sanchez MM, Rogers J. Heritability of social behavioral phenotypes and preliminary associations with autism spectrum disorder risk genes in rhesus macaques: A whole exome sequencing study. Autism Res 2022; 15:447-463. [PMID: 35092647 PMCID: PMC8930433 DOI: 10.1002/aur.2675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Nonhuman primates and especially rhesus macaques (Macaca mulatta) have been indispensable animal models for studies of various aspects of neurobiology, developmental psychology, and other aspects of neuroscience. While remarkable progress has been made in our understanding of influences on atypical human social behavior, such as that observed in autism spectrum disorders (ASD), many significant questions remain. Improved understanding of the relationships among variation in specific genes and variation in expressed social behavior in a nonhuman primate would benefit efforts to investigate risk factors, developmental mechanisms, and potential therapies for behavioral disorders including ASD. To study genetic influences on key aspects of social behavior and interactions-individual competence and/or motivation for specific aspects of social behavior-we quantified individual variation in social interactions among juvenile rhesus macaques using both a standard macaque ethogram and a macaque-relevant modification of the human Social Responsiveness Scale. Our analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with estimated quantitative genetic effects similar to that described for ASD in human children. We also performed exome sequencing and analyzed variants in 143 genes previously suggested to influence risk for human ASD. We find preliminary evidence for genetic association between specific variants and both individual behaviors and multi-behavioral factor scores. To our knowledge, this is the first demonstration that spontaneous social behaviors performed by free-ranging juvenile rhesus macaques display significant genetic heritability and then to use exome sequencing data to examine potential macaque genetic associations in genes associated with human ASD.
Collapse
Affiliation(s)
- Chris Gunter
- Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA,Departments of Pediatrics Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jocelyne Bachevalier
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jessica Raper
- Departments of Pediatrics Human Genetics, Emory University School of Medicine, Atlanta, GA, USA,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mar M. Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Joma M, Fovet CM, Seddiki N, Gressens P, Laforge M. COVID-19 and Pregnancy: Vertical Transmission and Inflammation Impact on Newborns. Vaccines (Basel) 2021; 9:391. [PMID: 33921113 PMCID: PMC8071483 DOI: 10.3390/vaccines9040391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic is ongoing and we are still compiling new findings to decipher and understand SARS-CoV-2 infection during pregnancy. No reports encompass any conclusive confirmation of vertical transmission. Nevertheless, cases of fetal distress and multiple organ failure have been reported, as well as rare cases of fetal demise. While clinicians and scientists continue to seek proof of vertical transmission, they miss the greater point, namely the cause of preterm delivery. In this review, we suggest that the cause might not be due to the viral infection but the fetal exposure to maternal inflammation or cytokine storm that translates into a complication of COVID-19. This statement is extrapolated from previous experience with infections and inflammation which were reported to be fatal by increasing the risk of preterm delivery and causing abnormal neonatal brain development and resulting in neurological disorders like atypical behavioral phenotype or autistic syndrome. Given the potentially fatal consequences on neonate health, we highlight the urgent need for an animal model to study vertical transmission. The preclinical model will allow us to make the link between SARS-COV-2 infection, inflammation and long-term follow-up of child brain development.
Collapse
Affiliation(s)
- Mohamed Joma
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| | - Claire-Maelle Fovet
- INSERM U1184, CEA, IDMIT Department, Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Université Paris-Saclay, 92265 Fontenay-aux-Roses, France; (C.-M.F.); (N.S.)
| | - Nabila Seddiki
- INSERM U1184, CEA, IDMIT Department, Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Université Paris-Saclay, 92265 Fontenay-aux-Roses, France; (C.-M.F.); (N.S.)
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| | - Mireille Laforge
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| |
Collapse
|
8
|
Ryan AM, Murai T, Lau AR, Hogrefe CE, McAllister AK, Carter CS, Bauman MD. New approaches to quantify social development in rhesus macaques (Macaca mulatta): Integrating eye tracking with traditional assessments of social behavior. Dev Psychobiol 2020; 62:950-962. [PMID: 32666534 PMCID: PMC8754470 DOI: 10.1002/dev.22003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
The nonhuman primate provides a sophisticated animal model system both to explore neurobiological mechanisms underlying complex behaviors and to facilitate preclinical research for neurodevelopmental and neuropsychiatric disease. A better understanding of evolutionarily conserved behaviors and brain processes between humans and nonhuman primates will be needed to successfully apply recently released NIMH guidelines (NOT-MH-19-053) for conducting rigorous nonhuman primate neurobehavioral research. Here, we explore the relationship between two measures of social behavior that can be used in both humans and nonhuman primates-traditional observations of social interactions with conspecifics and eye gaze detection in response to social stimuli. Infant male rhesus macaques (Macaca mulatta) serving as controls (N = 14) for an ongoing study were observed in their social rearing groups and participated in a noninvasive, longitudinal eye-tracking study. We found significant positive relationships between time spent viewing eyes of faces in an eye tracker and number of initiations made for social interactions with peers that is consistent with similar observations in human populations. Although future studies are needed to determine if this relationship represents species-typical social developmental processes, these preliminary results provide a novel framework to explore the relationship between social interactions and social attention in nonhuman primate models for neurobehavioral development.
Collapse
Affiliation(s)
- Amy M. Ryan
- The UC Davis MIND Institute, University of California, Davis
- Department of Psychiatry and Behavioral Sciences, University of California, Davis
- California National Primate Research Center, Osaka, Japan
| | | | - Allison R. Lau
- Department of Psychiatry and Behavioral Sciences, University of California, Davis
- California National Primate Research Center, Osaka, Japan
- Animal Behavior Graduate Group, University of California, Davis
| | | | | | - Cameron S. Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis
| | - Melissa D. Bauman
- The UC Davis MIND Institute, University of California, Davis
- Department of Psychiatry and Behavioral Sciences, University of California, Davis
- California National Primate Research Center, Osaka, Japan
| |
Collapse
|
9
|
O'Tuathaigh CMP, Desbonnet L, Payne C, Petit E, Cox R, Loftus S, Clarke G, Cryan JF, Tighe O, Wilson S, Kirby BP, Dinan TG, Waddington JL. Ethologically based behavioural and neurochemical characterisation of mice with isoform-specific loss of dysbindin-1A in the context of schizophrenia. Neurosci Lett 2020; 736:135218. [PMID: 32615248 DOI: 10.1016/j.neulet.2020.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Dysbindin-1 is implicated in several aspects of schizophrenia, including cognition and both glutamatergic and dopaminergic neurotransmission. Targeted knockout of dysbindin-1A (Dys-1A KO), the most abundant and widely expressed isoform in the brain, is associated with deficits in delay/interference-dependent working memory. Using an ethologically based approach, the following behavioural phenotypes were examined in Dys-1A KO mice: exploratory activity, social interaction, anxiety and problem-solving ability. Levels of monoamines and their metabolites were measured in striatum, hippocampus and prefrontal cortex using high-performance liquid chromatography with electrochemical detection. The ethogram of initial exploration in Dys-1A KO mice was characterised by increased rearing from a seated position; over subsequent habituation, stillness was decreased relative to wildtype. In a test of dyadic social interaction with an unfamiliar conspecific in a novel environment, female KO mice showed an increase in investigative social behaviours. Marble burying behaviour was unchanged. Using the puzzle-box test to measure general problem-solving performance, no effect of genotype was observed across nine trials of increasing complexity. Dys-1A KO demonstrated lower levels of 5-HT in ratio to its metabolite 5-HIAA in the prefrontal cortex. These studies elaborate the behavioural and neurochemical phenotype of Dys-1A KO mice, revealing subtle genotype-related differences in non-social and social exploratory behaviours and habituation of exploration in a novel environment, as well as changes in 5-HT activity in brain areas related to schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Medical Education Unit, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland.
| | - Lieve Desbonnet
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Psychology, National University of Ireland, Galway, Galway, Ireland
| | - Christina Payne
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie Petit
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rachel Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Samim Loftus
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - Orna Tighe
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - Brian P Kirby
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Ševčíková M, Petríková I, Šlamberová R. Methamphetamine exposure during the first, but not the second half of prenatal development, affects social play behavior. Physiol Res 2020; 69:319-330. [PMID: 32199010 DOI: 10.33549/physiolres.934230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Methamphetamine (MA), as a psychostimulant drug that crosses the placental barrier, may disrupt the development of social play. The present study aims to examine the effect of prenatal MA (5 mg/kg) exposure during the first (gestational day (GD) 1-11) or second (GD 12-22) halves of prenatal development of rats on social play behavior. To investigate an acute effect of MA on social play in adulthood, juvenile rats were exposed to a dose of 1 mg/kg MA or saline on the test day and tested for social play for 15 min. Prenatal exposure to MA during GD 1-11 increased social play behavior during 5-10 min interval of the test in males but not females. Prenatal MA during GD 12-22 did not influence social play in males nor females. However, social play occurred to a greater extent in GD 12-22 groups compared with GD 1-11. Acute exposure to MA eliminated playful behavior in all groups and decreased social exploration in GD 1-11. Our results suggest that manipulation of prenatal development during the first half of the gestational period has a greater impact on social play behavior than during the second half.
Collapse
Affiliation(s)
- M Ševčíková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
11
|
Bauman MD, Van de Water J. Translational opportunities in the prenatal immune environment: Promises and limitations of the maternal immune activation model. Neurobiol Dis 2020; 141:104864. [PMID: 32278881 DOI: 10.1016/j.nbd.2020.104864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
The prenatal environment, and in particular, the maternal-fetal immune environment, has emerged as a targeted area of research for central nervous system (CNS) diseases with neurodevelopmental origins. Converging evidence from both clinical and preclinical research indicates that changes in the maternal gestational immune environment can alter fetal brain development and increase the risk for certain neurodevelopmental disorders. Here we focus on the translational potential of one prenatal animal model - the maternal immune activation (MIA) model. This model stems from the observation that a subset of pregnant women who are exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder, such as autism spectrum disorder (ASD) or schizophrenia (SZ). The preclinical MIA model provides a system in which to explore causal relationships, identify underlying neurobiological mechanisms, and, ultimately, develop novel therapeutic interventions and preventative strategies. In this review, we will highlight converging evidence from clinical and preclinical research that links changes in the maternal-fetal immune environment with lasting changes in offspring brain and behavioral development. We will then explore the promises and limitations of the MIA model as a translational tool to develop novel therapeutic interventions. As the translational potential of the MIA model has been the focus of several excellent review articles, here we will focus on what is perhaps the least well developed area of MIA model research - novel preventative strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States of America; California National Primate Research Center, University of California, Davis, United States of America; The MIND Institute, University of California, Davis, United States of America.
| | - Judy Van de Water
- The MIND Institute, University of California, Davis, United States of America; Rheumatology/Allergy and Clinical Immunology, University of California, Davis, United States of America
| |
Collapse
|