1
|
Baranello G, Muntoni F. AAV gene therapy for Duchenne Muscular Dystrophy: lessons learned from a phase 3 trial. Gene Ther 2024:10.1038/s41434-024-00494-6. [PMID: 39443734 DOI: 10.1038/s41434-024-00494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Giovanni Baranello
- The Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre & Great Ormond Street Hospital NHS Foundation Trust, 30 Guilford Street, London, UK.
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre & Great Ormond Street Hospital NHS Foundation Trust, 30 Guilford Street, London, UK.
- The Genetic Therapy Accelerator, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
2
|
Chrzanowski S, Batra R. CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders. Pediatr Neurol 2024; 153:166-174. [PMID: 38394831 DOI: 10.1016/j.pediatrneurol.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
The emergence of gene editing technologies offers a unique opportunity to develop mutation-specific treatments for pediatric neurological disorders. Gene editing systems can potentially alter disease trajectory by correcting dysfunctional mutations or therapeutically altering gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches are attractive gene therapy platforms to personalize treatments because of their specificity, ease of design, versatility, and cost. However, many such approaches remain in the early stages of development, with ongoing efforts to optimize editing efficiency, minimize unintended off-target effects, and mitigate pathologic immune responses. Given the rapid evolution of CRISPR-based therapies, it is prudent for the clinically based child neurologist to have a conceptual understanding of what such therapies may entail, including both benefits and risks and how such therapies may be clinically applied. In this review, we describe the fundamentals of CRISPR-based therapies, discuss the opportunities and challenges that have arisen, and highlight preclinical work in several pediatric neurological diseases.
Collapse
Affiliation(s)
- Stephen Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.
| | | |
Collapse
|
3
|
Cataldi MP, Vannoy CH, Blaeser A, Tucker JD, Leroy V, Rawls R, Killilee J, Holbrook MC, Lu QL. Improved efficacy of FKRP AAV gene therapy by combination with ribitol treatment for LGMD2I. Mol Ther 2023; 31:3478-3489. [PMID: 37919902 PMCID: PMC10727973 DOI: 10.1016/j.ymthe.2023.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.
Collapse
Affiliation(s)
- Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| | - Charles H Vannoy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Jason D Tucker
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Victoria Leroy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Raegan Rawls
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Jessalyn Killilee
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Molly C Holbrook
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| |
Collapse
|
4
|
Redhead C, Taye N, Hubmacher D. En route towards a personalized medicine approach: Innovative therapeutic modalities for connective tissue disorders. Matrix Biol 2023; 122:46-54. [PMID: 37657665 PMCID: PMC10529529 DOI: 10.1016/j.matbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Connective tissue disorders can be caused by pathogenic variants (mutations) in genes encoding extracellular matrix (ECM) proteins. Such disorders typically manifest during development or postnatal growth and result in significant morbidity and mortality. The development of curative treatments for connective tissue disorders is hampered in part by the inability of many mature connective tissues to efficiently regenerate. To be most effective, therapeutic strategies designed to preserve or restore tissue function will likely need to be initiated during phases of significant endogenous connective tissue remodeling and organ sculpting postnatally and directly target the underlying ECM protein mutations. With recent advances in whole exome sequencing, in-vitro and in-vivo disease modeling, and the development of mutation-specific molecular therapeutic modalities, it is now feasible to directly correct disease-causing mutations underlying connective tissue disorders and ameliorate their pathogenic consequences. These technological advances may lead to potentially curative personalized medicine approaches for connective tissue disorders that have previously been considered incurable. In this review, we highlight innovative therapeutic modalities including gene replacement, exon skipping, DNA/mRNA editing, and pharmacological approaches that were used to preserve or restore tissue function in the context of connective tissue disorders. Inherent to a successful application of these approaches is the need to deepen the understanding of mechanisms that regulate ECM formation and homeostasis, and to decipher how individual mutations in ECM proteins compromise ECM and connective tissue development and function.
Collapse
Affiliation(s)
- Charlene Redhead
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Hanson B, Stenler S, Ahlskog N, Chwalenia K, Svrzikapa N, Coenen-Stass AM, Weinberg MS, Wood MJ, Roberts TC. Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:379-397. [PMID: 36420212 PMCID: PMC9664411 DOI: 10.1016/j.omtn.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the most prevalent inherited myopathy affecting children, caused by genetic loss of the gene encoding the dystrophin protein. Here we have investigated the use of the Staphylococcus aureus CRISPR-Cas9 system and a double-cut strategy, delivered using a pair of adeno-associated virus serotype 9 (AAV9) vectors, for dystrophin restoration in the severely affected dystrophin/utrophin double-knockout (dKO) mouse. Single guide RNAs were designed to excise Dmd exon 23, with flanking intronic regions repaired by non-homologous end joining. Exon 23 deletion was confirmed at the DNA level by PCR and Sanger sequencing, and at the RNA level by RT-qPCR. Restoration of dystrophin protein expression was demonstrated by western blot and immunofluorescence staining in mice treated via either intraperitoneal or intravenous routes of delivery. Dystrophin restoration was most effective in the diaphragm, where a maximum of 5.7% of wild-type dystrophin expression was observed. CRISPR treatment was insufficient to extend lifespan in the dKO mouse, and dystrophin was expressed in a within-fiber patchy manner in skeletal muscle tissues. Further analysis revealed a plethora of non-productive DNA repair events, including AAV genome integration at the CRISPR cut sites. This study highlights potential challenges for the successful development of CRISPR therapies in the context of DMD.
Collapse
Affiliation(s)
- Britt Hanson
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Sofia Stenler
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Nina Ahlskog
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Katarzyna Chwalenia
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Nenad Svrzikapa
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Wave Life Sciences Ltd., Cambridge, MA 02138, USA
| | - Anna M.L. Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Marc S. Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, WITS 2050, South Africa
- Asklepios BioPharmaceutical, Inc., Research Triangle Park, NC 27709, USA
| | - Matthew J.A. Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas C. Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
6
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
7
|
Farrokhi V, Walsh J, Palandra J, Brodfuehrer J, Caiazzo T, Owens J, Binks M, Neelakantan S, Yong F, Dua P, Le Guiner C, Neubert H. Dystrophin and mini-dystrophin quantification by mass spectrometry in skeletal muscle for gene therapy development in Duchenne muscular dystrophy. Gene Ther 2022; 29:608-615. [PMID: 34737451 PMCID: PMC9068826 DOI: 10.1038/s41434-021-00300-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disorder caused by mutations in the DMD gene, leading to severe reduction or absence of the protein dystrophin. Gene therapy strategies that aim to increase expression of a functional dystrophin protein (mini-dystrophin) are under investigation. The ability to accurately quantify dystrophin/mini-dystrophin is essential in assessing the level of gene transduction. We demonstrated the validation and application of a novel peptide immunoaffinity liquid chromatography-tandem mass spectrometry (IA-LC-MS/MS) assay. Data showed that dystrophin expression in Becker muscular dystrophy and DMD tissues, normalized against the mean of non-dystrophic control tissues (n = 20), was 4-84.5% (mean 32%, n = 20) and 0.4-24.1% (mean 5%, n = 20), respectively. In a DMD rat model, biceps femoris tissue from dystrophin-deficient rats treated with AAV9.hCK.Hopti-Dys3978.spA, an adeno-associated virus vector containing a mini-dystrophin transgene, showed a dose-dependent increase in mini-dystrophin expression at 6 months post-dose, exceeding wildtype dystrophin levels at high doses. Validation data showed that inter- and intra-assay precision were ≤20% (≤25% at the lower limit of quantification [LLOQ]) and inter- and intra-run relative error was within ±20% (±25% at LLOQ). IA-LC-MS/MS accurately quantifies dystrophin/mini-dystrophin in human and preclinical species with sufficient sensitivity for immediate application in preclinical/clinical trials.
Collapse
Affiliation(s)
- Vahid Farrokhi
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Jason Walsh
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Joe Palandra
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Joanne Brodfuehrer
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc, 610 Main Street, Cambridge, MA, 02139, USA
| | - Teresa Caiazzo
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Michael Binks
- Rare Disease Research Unit, Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Srividya Neelakantan
- Clinical Pharmacology, Early Clinical Development, Worldwide Research & Development, Pfizer Inc, 1 Portland St, Cambridge, MA, 02139, USA
| | - Florence Yong
- Biostatistics, Worldwide Research & Development, Pfizer Inc, Cambridge, MA, 02139, USA
| | - Pinky Dua
- Early Clinical Development, Clinical Pharmacology, Pfizer R&D UK Limited, Cambridge, UK
| | - Caroline Le Guiner
- Translational Gene Therapy Laboratory, University of Nantes, INSERM UMR1089, CHU de Nantes, IRS 2 Nantes Biotech, 22 Boulevard Benoni Goulin, 44200, Nantes, France
| | - Hendrik Neubert
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA.
| |
Collapse
|
8
|
Deng J, Zhang J, Shi K, Liu Z. Drug development progress in duchenne muscular dystrophy. Front Pharmacol 2022; 13:950651. [PMID: 35935842 PMCID: PMC9353054 DOI: 10.3389/fphar.2022.950651] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and incurable X-linked disorder caused by mutations in the dystrophin gene. Patients with DMD have an absence of functional dystrophin protein, which results in chronic damage of muscle fibers during contraction, thus leading to deterioration of muscle quality and loss of muscle mass over time. Although there is currently no cure for DMD, improvements in treatment care and management could delay disease progression and improve quality of life, thereby prolonging life expectancy for these patients. Furthermore, active research efforts are ongoing to develop therapeutic strategies that target dystrophin deficiency, such as gene replacement therapies, exon skipping, and readthrough therapy, as well as strategies that target secondary pathology of DMD, such as novel anti-inflammatory compounds, myostatin inhibitors, and cardioprotective compounds. Furthermore, longitudinal modeling approaches have been used to characterize the progression of MRI and functional endpoints for predictive purposes to inform Go/No Go decisions in drug development. This review showcases approved drugs or drug candidates along their development paths and also provides information on primary endpoints and enrollment size of Ph2/3 and Ph3 trials in the DMD space.
Collapse
Affiliation(s)
- Jiexin Deng
- School of Nursing and Health, Henan University, Kaifeng, China
- *Correspondence: Jiexin Deng, ; Zhigang Liu,
| | - Junshi Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Keli Shi
- School of Medicine, Henan University, Kaifeng, China
| | - Zhigang Liu
- Department of Orthopedics, First Affiliated Hospital of Henan University, Kaifeng, China
- *Correspondence: Jiexin Deng, ; Zhigang Liu,
| |
Collapse
|
9
|
Lambrescu I, Popa A, Manole E, Ceafalan LC, Gaina G. Application of Droplet Digital PCR Technology in Muscular Dystrophies Research. Int J Mol Sci 2022; 23:ijms23094802. [PMID: 35563191 PMCID: PMC9099497 DOI: 10.3390/ijms23094802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Although they are considered rare disorders, muscular dystrophies have a strong impact on people’s health. Increased disease severity with age, frequently accompanied by the loss of ability to walk in some people, and the lack of treatment, have directed the researchers towards the development of more effective therapeutic strategies aimed to improve the quality of life and life expectancy, slow down the progression, and delay the onset or convert a severe phenotype into a milder one. Improved understanding of the complex pathology of these diseases together with the tremendous advances in molecular biology technologies has led to personalized therapeutic procedures. Different approaches that are currently under extensive investigation require more efficient, sensitive, and less invasive methods. Due to its remarkable analytical sensitivity, droplet digital PCR has become a promising tool for accurate measurement of biomarkers that monitor disease progression and quantification of various therapeutic efficiency and can be considered a tool for non-invasive prenatal diagnosis and newborn screening. Here, we summarize the recent applications of droplet digital PCR in muscular dystrophy research and discuss the factors that should be considered to get the best performance with this technology.
Collapse
Affiliation(s)
- Ioana Lambrescu
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Popa
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Animal Production and Public Health, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| | - Emilia Manole
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Correspondence: ; Tel.: +40-21-319-2732
| |
Collapse
|
10
|
Pini V, Mariot V, Dumonceaux J, Counsell J, O'Neill HC, Farmer S, Conti F, Muntoni F. Transiently expressed CRISPR/Cas9 induces wild-type dystrophin in vitro in DMD patient myoblasts carrying duplications. Sci Rep 2022; 12:3756. [PMID: 35260651 PMCID: PMC8904532 DOI: 10.1038/s41598-022-07671-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/09/2022] [Indexed: 01/14/2023] Open
Abstract
Among the mutations arising in the DMD gene and causing Duchenne Muscular Dystrophy (DMD), 10–15% are multi-exon duplications. There are no current therapeutic approaches with the ability to excise large multi-exon duplications, leaving this patient cohort without mutation-specific treatment. Using CRISPR/Cas9 could provide a valid alternative to achieve targeted excision of genomic duplications of any size. Here we show that the expression of a single CRISPR/Cas9 nuclease targeting a genomic region within a DMD duplication can restore the production of wild-type dystrophin in vitro. We assessed the extent of dystrophin repair following both constitutive and transient nuclease expression by either transducing DMD patient-derived myoblasts with integrating lentiviral vectors or electroporating them with CRISPR/Cas9 expressing plasmids. Comparing genomic, transcript and protein data, we observed that both continuous and transient nuclease expression resulted in approximately 50% dystrophin protein restoration in treated myoblasts. Our data demonstrate that a high transient expression profile of Cas9 circumvents its requirement of continuous expression within the cell for targeting DMD duplications. This proof-of-concept study therefore helps progress towards a clinically relevant gene editing strategy for in vivo dystrophin restoration, by highlighting important considerations for optimizing future therapeutic approaches.
Collapse
Affiliation(s)
- Veronica Pini
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
| | - Virginie Mariot
- Translational Myology Laboratory, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Julie Dumonceaux
- Translational Myology Laboratory, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - John Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Helen C O'Neill
- Genome Editing and Reproductive Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Sarah Farmer
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Francesco Conti
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK. .,NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK.
| |
Collapse
|
11
|
Johnston JR, McNally EM. Genetic correction strategies for Duchenne Muscular Dystrophy and their impact on the heart. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 63. [PMID: 34898968 DOI: 10.1016/j.ppedcard.2021.101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder with early childhood onset characterized by profound loss of muscle strength and associated cardiomyopathy. DMD affects is most often caused by deletions involving single or multiple exons that disrupt the open reading frame of the DMD gene. Mutations causing loss or premature truncation of dystrophin result in dystrophin protein deficiency, which renders the plasma membrane of skeletal myofibers and cardiomyocytes weakened. Aim of Review Genetic correction is in use to treat DMD, since several drugs have been already approved which partially restore dystrophin production through the use of antisense oligonucleotides. There are multiple ongoing clinical trials to evaluate the efficacy of treating DMD with micro-dystrophins delivered by adeno-associated viruses. Future approaches entail gene editing to target the single copy of the DMD gene on the X-chromosome. The primary, near-term goal is restoration of skeletal muscle dystrophin, and for some of these treatments, the efficacy in the heart is not fully known. Here, we discuss the anticipated cardiac outcomes of dystrophin-targeted therapies, and how this information informs genomic medicine for cardiomyopathies, especially in childhood. Key Scientific Concepts of Review Many genetic treatment strategies are being implemented to treat DMD. Since most preclinical testing has focused on skeletal muscle, there is a gap in knowledge about the expected effects of these approaches on cardiac genetic correction and cardiomyopathy progression in DMD. Additional study is needed.
Collapse
Affiliation(s)
- Jamie R Johnston
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Torelli S, Scaglioni D, Sardone V, Ellis MJ, Domingos J, Jones A, Feng L, Chambers D, Eastwood DM, Leturcq F, Yaou RB, Urtizberea A, Sabouraud P, Barnerias C, Stojkovic T, Ricci E, Beuvin M, Bonne G, Sewry CA, Willis T, Kulshrestha R, Tasca G, Phadke R, Morgan JE, Muntoni F. High-Throughput Digital Image Analysis Reveals Distinct Patterns of Dystrophin Expression in Dystrophinopathy Patients. J Neuropathol Exp Neurol 2021; 80:955-965. [PMID: 34498054 PMCID: PMC8557329 DOI: 10.1093/jnen/nlab088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an incurable disease caused by out-of-frame DMD gene deletions while in frame deletions lead to the milder Becker muscular dystrophy (BMD). In the last decade several antisense oligonucleotides drugs have been developed to induce a partially functional internally deleted dystrophin, similar to that produced in BMD, and expected to ameliorate the disease course. The pattern of dystrophin expression and functionality in dystrophinopathy patients is variable due to multiple factors, such as molecular functionality of the dystrophin and its distribution. To benchmark the success of therapeutic intervention, a clear understanding of dystrophin expression patterns in dystrophinopathy patients is vital. Recently, several groups have used innovative techniques to quantify dystrophin in muscle biopsies of children but not in patients with milder BMD. This study reports on dystrophin expression using both Western blotting and an automated, high-throughput, image analysis platform in DMD, BMD, and intermediate DMD/BMD skeletal muscle biopsies. Our results found a significant correlation between Western blot and immunofluorescent quantification indicating consistency between the different methodologies. However, we identified significant inter- and intradisease heterogeneity of patterns of dystrophin expression in patients irrespective of the amount detected on blot, due to variability in both fluorescence intensity and dystrophin sarcolemmal circumference coverage. Our data highlight the heterogeneity of the pattern of dystrophin expression in BMD, which will assist the assessment of dystrophin restoration therapies.
Collapse
Affiliation(s)
- Silvia Torelli
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Domenic Scaglioni
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Valentina Sardone
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Matthew J Ellis
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Joana Domingos
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Adam Jones
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Darren Chambers
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Deborah M Eastwood
- Department of Orthopaedics, Great Ormond Street Hospital, London, UK.,The Royal National Orthopaedic Hospital, Stanmore and University College London, London, UK
| | - France Leturcq
- APHP, Laboratoire de Génétique et Biologie Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Rabah Ben Yaou
- APHP, Laboratoire de Génétique et Biologie Moléculaire, HUPC Hôpital Cochin, Paris, France.,APHP-Sorbonne Université, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Inserm, Institut de Myologie, Center de Recherche en Myologie, Paris, France
| | | | | | - Christine Barnerias
- Department of Pediatric Neurology, Necker Enfants Maladies Hospital, Paris, France
| | - Tanya Stojkovic
- Sorbonne Université, Inserm, Institut de Myologie, Center de Recherche en Myologie, Paris, France
| | - Enzo Ricci
- Institute of Neurology, Catholic University, Rome, Italy
| | - Maud Beuvin
- APHP-Sorbonne Université, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | - Gisele Bonne
- APHP-Sorbonne Université, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | - Caroline A Sewry
- Wolfson Centre for Inherited Neuromuscular Diseases and Department of Musculoskeletal Histopathology, RJAH Orthopaedic Hospital, Oswestry, UK
| | - Tracey Willis
- Wolfson Centre for Inherited Neuromuscular Diseases and Department of Musculoskeletal Histopathology, RJAH Orthopaedic Hospital, Oswestry, UK
| | - Richa Kulshrestha
- Wolfson Centre for Inherited Neuromuscular Diseases and Department of Musculoskeletal Histopathology, RJAH Orthopaedic Hospital, Oswestry, UK
| | - Giorgio Tasca
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jennifer E Morgan
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK.,School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Francesco Muntoni
- From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Morgan J, Muntoni F. Changes in Myonuclear Number During Postnatal Growth -Implications for AAV Gene Therapy for Muscular Dystrophy. J Neuromuscul Dis 2021; 8:S317-S324. [PMID: 34334413 PMCID: PMC8673494 DOI: 10.3233/jnd-210683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for dystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies.
Collapse
Affiliation(s)
- Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
14
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
15
|
Abstract
Recent advances in gene editing technologies are enabling the potential correction of devastating monogenic disorders through elimination of underlying genetic mutations. Duchenne muscular dystrophy (DMD) is an especially severe genetic disorder caused by mutations in the gene encoding dystrophin, a membrane-associated protein required for maintenance of muscle structure and function. Patients with DMD succumb to loss of mobility early in life, culminating in premature death from cardiac and respiratory failure. The disease has thus far defied all curative strategies. CRISPR gene editing has provided new opportunities to ameliorate the disease by eliminating DMD mutations and thereby restore dystrophin expression throughout skeletal and cardiac muscle. Proof-of-concept studies in rodents, large mammals, and human cells have validated the potential of this approach, but numerous challenges remain to be addressed, including optimization of gene editing, delivery of gene editing components throughout the musculature, and mitigation of possible immune responses. This paper provides an overview of recent work from our laboratory and others toward the genetic correction of DMD and considers the opportunities and challenges in the path to clinical translation. Lessons learned from these studies will undoubtedly enable further applications of gene editing to numerous other diseases of muscle and other tissues.
Collapse
|
16
|
Politano L. Read-through approach for stop mutations in Duchenne muscular dystrophy. An update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:43-50. [PMID: 33870095 PMCID: PMC8033424 DOI: 10.36185/2532-1900-041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
Dystrophinopathies are allelic conditions caused by deletions, duplications and point-mutations in the DMD gene, located on the X chromosome (Xp21.2). Mutations that prematurely interrupt the dystrophin protein synthesis lead to the most severe clinical form, Duchenne muscular Dystrophy, characterized by early involvement of muscle strength. There is no known cure for dystrophinopathies. In DMD, treatment with corticosteroids have changed the natural history and the progression of the disease, prolonging ambulation, and slowing the onset of respiratory and cardiac involvement and scoliosis by several years. In the last few years, new perspectives and options are deriving from the discovery of pharmacological approaches able to restore normal, full-length dystrophin and potentially reverse the course of the disease. Read-through (RT) of nonsense mutations, thanks to its ability to bypass the premature stop codon and to act on virtually any region of the dystrophin gene, independently of the location in which the mutation resides, is one of these promising approaches. This non-systematic review shows the different steps that, passing from yeast to humans, have made it possible to use this innovative successful approach to treat serious diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomiology and Medical Genetics, "Luigi Vanvitelli" University, Naples, Italy
| |
Collapse
|
17
|
Stephenson AA, Flanigan KM. Gene editing and modulation for Duchenne muscular dystrophy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:225-255. [PMID: 34175043 DOI: 10.1016/bs.pmbts.2021.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by loss of dystrophin protein, encoded by the DMD gene. DMD manifests early in childhood as difficulty walking, progresses to loss of ambulation by the teens, and leads to death in early adulthood. Adeno-associated virus-vectorized gene therapies to restore dystrophin protein expression using gene replacement or antisense oligonucleotide-mediated pre-mRNA splicing modulation have emerged, making great strides in uncovering barriers to gene therapies for DMD and other genetic diseases. While this first-generation of DMD therapies are being evaluated in ongoing clinical trials, uncertainties regarding durability and therapeutic efficacy prompted the development of new experimental therapies for DMD that take advantage of somatic cell gene editing. These experimental therapies continue to advance toward clinic trials, but questions remain unanswered regarding safety and translatable efficacy. Here we review the advancements toward treatment of DMD using gene editing and modulation therapies, with an emphasis on those nearest to clinical applications.
Collapse
Affiliation(s)
- Anthony A Stephenson
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kevin M Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States; Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
18
|
Pegoraro E. Molecular Diagnosis in 100% of Dystrophinopathies: Are We There Yet? Neurol Genet 2021; 7:e529. [PMID: 33728374 PMCID: PMC7954464 DOI: 10.1212/nxg.0000000000000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Pegoraro
- ERN Neuromuscular Unit, Department of Neurosciences, DNS, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Scaglioni D, Catapano F, Ellis M, Torelli S, Chambers D, Feng L, Beck M, Sewry C, Monforte M, Harriman S, Koenig E, Malhotra J, Popplewell L, Guglieri M, Straub V, Mercuri E, Servais L, Phadke R, Morgan J, Muntoni F. The administration of antisense oligonucleotide golodirsen reduces pathological regeneration in patients with Duchenne muscular dystrophy. Acta Neuropathol Commun 2021; 9:7. [PMID: 33407808 PMCID: PMC7789286 DOI: 10.1186/s40478-020-01106-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022] Open
Abstract
During the last decade, multiple clinical trials for Duchenne muscular dystrophy (DMD) have focused on the induction of dystrophin expression using different strategies. Many of these trials have reported a clear increase in dystrophin protein following treatment. However, the low levels of the induced dystrophin protein have raised questions on its functionality. In our present study, using an unbiased, high-throughput digital image analysis platform, we assessed markers of regeneration and levels of dystrophin associated protein via immunofluorescent analysis of whole muscle sections in 25 DMD boys who received 48-weeks treatment with exon 53 skipping morpholino antisense oligonucleotide (PMO) golodirsen. We demonstrate that the de novo dystrophin induced by exon skipping with PMO golodirsen is capable of conferring a histological benefit in treated patients with an increase in dystrophin associated proteins at the dystrophin positive regions of the sarcolemma in post-treatment biopsies. Although 48 weeks treatment with golodirsen did not result in a significant change in the levels of fetal/developmental myosins for the entire cohort, there was a significant negative correlation between the amount of dystrophin and levels of regeneration observed in different biopsy samples. Our results provide, for the first time, evidence of functionality of induced dystrophin following successful therapeutic intervention in the human.
Collapse
|
20
|
de Feraudy Y, Ben Yaou R, Wahbi K, Stalens C, Stantzou A, Laugel V, Desguerre I, Servais L, Leturcq F, Amthor H. Very Low Residual Dystrophin Quantity Is Associated with Milder Dystrophinopathy. Ann Neurol 2020; 89:280-292. [PMID: 33159473 PMCID: PMC7894170 DOI: 10.1002/ana.25951] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
Objective This study was undertaken to determine whether a low residual quantity of dystrophin protein is associated with delayed clinical milestones in patients with DMD mutations. Methods We performed a retrospective multicentric cohort study by using molecular and clinical data from patients with DMD mutations registered in the Universal Mutation Database–DMD France database. Patients with intronic, splice site, or nonsense DMD mutations, with available muscle biopsy Western blot data, were included irrespective of whether they presented with severe Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD). Patients were separated into 3 groups based on dystrophin protein levels. Clinical outcomes were ages at appearance of first symptoms; loss of ambulation; fall in vital capacity and left ventricular ejection fraction; interventions such as spinal fusion, tracheostomy, and noninvasive ventilation; and death. Results Of 3,880 patients with DMD mutations, 90 with mutations of interest were included. Forty‐two patients expressed no dystrophin (group A), and 31 of 42 (74%) developed DMD. Thirty‐four patients had dystrophin quantities < 5% (group B), and 21 of 34 (61%) developed BMD. Fourteen patients had dystrophin quantities ≥ 5% (group C), and all but 4 who lost ambulation beyond 24 years of age were ambulant. Dystrophin quantities of <5%, as low as <0.5%, were associated with milder phenotype for most of the evaluated clinical outcomes, including age at loss of ambulation (p < 0.001). Interpretation Very low residual dystrophin protein quantity can cause a shift in disease phenotype from DMD toward BMD. ANN NEUROL 2021;89:280–292
Collapse
Affiliation(s)
- Yvan de Feraudy
- Paris-Saclay University, UVSQ, Inserm, END-ICAP, Versailles, France.,Neuromuscular Reference Center, Pediatric Department, Raymond Poincaré Hospital, Garches, France
| | - Rabah Ben Yaou
- Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France.,Center of Research in Myology, Sorbonne University, Inserm UMRS 974, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - Karim Wahbi
- Cardiology Department, APHP, Cochin Hospital, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
| | - Caroline Stalens
- Biostatistic, Medical Affairs Direction, AFM-Théléthon, Evry, France
| | - Amalia Stantzou
- Paris-Saclay University, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Vincent Laugel
- Neuromuscular Reference Center, Pediatric Department, Hautepierre Hospital, Strasbourg, France
| | - Isabelle Desguerre
- Neuromuscular Reference Center, Pediatric Department, Necker-Enfants Malades Hospital, Paris, France
| | | | - Laurent Servais
- Department of Pediatrics, Neuromuscular Disease Reference Center, Division of Child Neurology, Faculty of Medicine, University of Liège, Liège, Belgium.,MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - France Leturcq
- Laboratory for Biochemistry and Molecular Genetics, Cochin Hospital, Paris, France
| | - Helge Amthor
- Paris-Saclay University, UVSQ, Inserm, END-ICAP, Versailles, France.,Neuromuscular Reference Center, Pediatric Department, Raymond Poincaré Hospital, Garches, France
| |
Collapse
|
21
|
Łoboda A, Dulak J. Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacol Rep 2020; 72:1227-1263. [PMID: 32691346 PMCID: PMC7550322 DOI: 10.1007/s43440-020-00134-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration and results in functional decline, loss of ambulation and early death of young men due to cardiac or respiratory failure. Although the major cause of the disease has been known for many years-namely mutation in the DMD gene encoding dystrophin, one of the largest human genes-DMD is still incurable, and its treatment is challenging. METHODS A comprehensive and systematic review of literature on the gene, cell, and pharmacological experimental therapies aimed at restoring functional dystrophin or to counteract the associated processes contributing to disease progression like inflammation, fibrosis, calcium signaling or angiogenesis was carried out. RESULTS Although some therapies lead to satisfying effects in skeletal muscle, they are highly ineffective in the heart; therefore, targeting defective cardiac and respiratory systems is vital in DMD patients. Unfortunately, most of the pharmacological compounds treat only the symptoms of the disease. Some drugs addressing the underlying cause, like eteplirsen, golodirsen, and ataluren, have recently been conditionally approved; however, they can correct only specific mutations in the DMD gene and are therefore suitable for small sub-populations of affected individuals. CONCLUSION In this review, we summarize the possible therapeutic options and describe the current status of various, still imperfect, strategies used for attenuating the disease progression.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
22
|
Sun C, Shen L, Zhang Z, Xie X. Therapeutic Strategies for Duchenne Muscular Dystrophy: An Update. Genes (Basel) 2020; 11:genes11080837. [PMID: 32717791 PMCID: PMC7463903 DOI: 10.3390/genes11080837] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Neuromuscular disorders encompass a heterogeneous group of conditions that impair the function of muscles, motor neurons, peripheral nerves, and neuromuscular junctions. Being the most common and most severe type of muscular dystrophy, Duchenne muscular dystrophy (DMD), is caused by mutations in the X-linked dystrophin gene. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. Over the last few years, there has been considerable development of diagnosis and therapeutics for DMD, but current treatments do not cure the disease. Here, we review the current status of DMD pathogenesis and therapy, focusing on mutational spectrum, diagnosis tools, clinical trials, and therapeutic approaches including dystrophin restoration, gene therapy, and myogenic cell transplantation. Furthermore, we present the clinical potential of advanced strategies combining gene editing, cell-based therapy with tissue engineering for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Luoan Shen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Correspondence: ; Tel.: +86-0571-87572326
| |
Collapse
|
23
|
Scaglioni D, Ellis M, Catapano F, Torelli S, Chambers D, Feng L, Sewry C, Morgan J, Muntoni F, Phadke R. A high-throughput digital script for multiplexed immunofluorescent analysis and quantification of sarcolemmal and sarcomeric proteins in muscular dystrophies. Acta Neuropathol Commun 2020; 8:53. [PMID: 32303261 PMCID: PMC7165405 DOI: 10.1186/s40478-020-00918-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
The primary molecular endpoint for many Duchenne muscular dystrophy (DMD) clinical trials is the induction, or increase in production, of dystrophin protein in striated muscle. For accurate endpoint analysis, it is essential to have reliable, robust and objective quantification methodologies capable of detecting subtle changes in dystrophin expression. In this work, we present further development and optimisation of an automated, digital, high-throughput script for quantitative analysis of multiplexed immunofluorescent (IF) whole slide images (WSI) of dystrophin, dystrophin associated proteins (DAPs) and regenerating myofibres (fetal/developmental myosin-positive) in transverse sections of DMD, Becker muscular dystrophy (BMD) and control skeletal muscle biopsies. The script enables extensive automated assessment of myofibre morphometrics, protein quantification by fluorescence intensity and sarcolemmal circumference coverage, colocalisation data for dystrophin and DAPs and regeneration at the single myofibre and whole section level. Analysis revealed significant variation in dystrophin intensity, percentage coverage and amounts of DAPs between differing DMD and BMD samples. Accurate identification of dystrophin via a novel background subtraction method allowed differential assessment of DAP fluorescence intensity within dystrophin positive compared to dystrophin negative sarcolemma regions. This enabled surrogate quantification of molecular functionality of dystrophin in the assembly of the DAP complex. Overall, the digital script is capable of multiparametric and unbiased analysis of markers of myofibre regeneration and dystrophin in relation to key DAPs and enabled better characterisation of the heterogeneity in dystrophin expression patterns seen in BMD and DMD alongside the surrogate assessment of molecular functionality of dystrophin. Both these aspects will be of significant relevance to ongoing and future DMD and other muscular dystrophies clinical trials to help benchmark therapeutic efficacy.
Collapse
|
24
|
van Westering TLE, Lomonosova Y, Coenen-Stass AML, Betts CA, Bhomra A, Hulsker M, Clark LE, McClorey G, Aartsma-Rus A, van Putten M, Wood MJA, Roberts TC. Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. J Cachexia Sarcopenia Muscle 2020; 11:578-593. [PMID: 31849191 PMCID: PMC7113513 DOI: 10.1002/jcsm.12506] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. METHODS Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-XistΔhs mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-XistΔhs mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin western blot and immunofluorescence staining. RESULTS The restoration of ex-myomiR abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-XistΔhs group, despite these animals expressing similar amounts of total dystrophin protein (~37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-XistΔhs mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-XistΔhs muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. CONCLUSIONS Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Yulia Lomonosova
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Margriet Hulsker
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lucy E Clark
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA, USA
| |
Collapse
|
25
|
Muscular Dystrophy and Rehabilitation Interventions with Regenerative Treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-019-00255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Datson NA, Bijl S, Janson A, Testerink J, van den Eijnde R, Weij R, Puoliväli J, Lehtimäki K, Bragge T, Ahtoniemi T, van Deutekom JC. Using a State-of-the-Art Toolbox to Evaluate Molecular and Functional Readouts of Antisense Oligonucleotide-Induced Exon Skipping in mdx Mice. Nucleic Acid Ther 2020; 30:50-65. [PMID: 31821107 PMCID: PMC7049912 DOI: 10.1089/nat.2019.0824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe childhood muscle disease primarily caused by the lack of functional dystrophin at the muscle fiber membranes. Multiple therapeutic approaches are currently in (pre)clinical development, aimed at restoring expression of (truncated) dystrophin. Key questions in this phase relate to route of drug administration, dose regimen, and levels of dystrophin required to improve muscle function. A series of studies applying antisense oligonucleotides (AONs) in the mdx mouse model for DMD has been reported over the last two decades, claiming a variable range of exon skipping and increased dystrophin levels correlated to some functional improvement. The aim of this study was to compare the efficacy of subcutaneous (SC) versus intravenous (IV) dosing routes of an mdx-specific AON at both the molecular and functional level, using state-of-the-art quantitative technologies, including digital droplet polymerase chain reaction, capillary Western immunoassay, magnetic resonance imaging, and automated kinematic analysis. The majority of all readouts we quantified, both molecular and functional, showed that IV dosing of the AON had a more pronounced beneficial effect than SC dosing in mdx mice. Last, but not least, the more quantitative molecular and functional data obtained in this study suggest that low levels of dystrophin protein of at least 2.5% of wild type may already have a beneficial effect on muscle leakiness and may improve motor performance of mdx mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Rudie Weij
- BioMarin Nederland BV, Leiden, the Netherlands
| | | | | | - Timo Bragge
- Charles River Discovery Research Services, Kuopio, Finland
| | - Toni Ahtoniemi
- Charles River Discovery Research Services, Kuopio, Finland
| | | |
Collapse
|
27
|
Meng J, Sweeney NP, Doreste B, Muntoni F, McClure M, Morgan J. Restoration of Functional Full-Length Dystrophin After Intramuscular Transplantation of Foamy Virus-Transduced Myoblasts. Hum Gene Ther 2020; 31:241-252. [PMID: 31801386 PMCID: PMC7047098 DOI: 10.1089/hum.2019.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising strategy to treat muscle diseases such as Duchenne muscular dystrophy (DMD). To avoid immune rejection of donor cells or donor-derived muscle, autologous cells, which have been genetically modified to express dystrophin, are preferable to cells derived from healthy donors. Restoration of full-length dystrophin (FL-dys) using viral vectors is extremely challenging, due to the limited packaging capacity of the vectors, but we have recently shown that either a foamy viral or lentiviral vector is able to package FL-dys open-reading frame and transduce myoblasts derived from a DMD patient. Differentiated myotubes derived from these transduced cells produced FL-dys. Here, we transplanted the foamy viral dystrophin-corrected DMD myoblasts intramuscularly into mdx nude mice, and showed that the transduced cells contributed to muscle regeneration, expressing FL-dys in nearly all the muscle fibers of donor origin. Furthermore, we showed that the restored FL-dys recruited members of the dystrophin-associated protein complex and neuronal nitric oxide synthase within donor-derived muscle fibers, evidence that the restored dystrophin protein is functional. Dystrophin-expressing donor-derived muscle fibers expressed lower levels of utrophin than host muscle fibers, providing additional evidence of functional improvement of donor-derived myofibers. This is the first in vivo evidence that foamy virus vector-transduced DMD myoblasts can contribute to muscle regeneration and mediate functional dystrophin restoration following their intramuscular transplantation, representing a promising therapeutic strategy for individual small muscles in DMD.
Collapse
Affiliation(s)
- Jinhong Meng
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Nathan Paul Sweeney
- Jefferiss Research Trust Laboratories, Imperial College London, London, United Kingdom
| | - Bruno Doreste
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Myra McClure
- Jefferiss Research Trust Laboratories, Imperial College London, London, United Kingdom
| | - Jennifer Morgan
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
28
|
Aartsma-Rus A, Morgan J, Lonkar P, Neubert H, Owens J, Binks M, Montolio M, Phadke R, Datson N, Van Deutekom J, Morris GE, Rao VA, Hoffman EP, Muntoni F, Arechavala-Gomeza V. Report of a TREAT-NMD/World Duchenne Organisation Meeting on Dystrophin Quantification Methodology. J Neuromuscul Dis 2020; 6:147-159. [PMID: 30614809 PMCID: PMC6398559 DOI: 10.3233/jnd-180357] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Representatives of academia, patient organisations, industry and the United States Food and Drug Administration attended a workshop on dystrophin quantification methodology. The aims of the workshop were to provide an overview of methods used to quantify dystrophin levels in human skeletal muscle and their applicability to clinical trial samples, outline the gaps with regards to validating the methods for robust clinical applications prior to regulatory agency review, and to align future efforts towards further optimizing these methods. The workshop facilitated a constructive but also critical discussion on the potential and limitations of techniques currently used in the field of translational research (western blot and immunofluorescence analysis) and emerging techniques (mass spectrometry and capillary western immunoassay). Notably, all participants reported variation in dystrophin levels between muscle biopsies from different healthy individuals and agreed on the need for a common reference sample.
Collapse
Affiliation(s)
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Hendrik Neubert
- Pfizer Inc, BioMedicine Design 1 Burtt Road, Andover, MA, USA
| | - Jane Owens
- Pfizer Inc, Rare Disease Research Unit, 610 Main Street, Cambridge, MA, USA
| | - Michael Binks
- Pfizer Inc, Rare Disease Research Unit, 610 Main Street, Cambridge, MA, USA
| | - Marisol Montolio
- Department of Cell Biology, Fisiology and Immunology, Faculty of Biology, University of Barcelona.,Duchenne Parent Project Spain, Spain
| | - Rahul Phadke
- National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, United Kingdom
| | | | | | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, Keele University and RJAH Orthopaedic Hospital, Oswestry, UK
| | - V Ashutosh Rao
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, MD, USA
| | - Eric P Hoffman
- Binghamton University-SUNY, Binghamton, NY, USA and AGADA BioSciences, Halifax, Nova Scotia, Canada
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1, N 1EH, United Kingdom
| | | | | |
Collapse
|
29
|
Hughes DC, Marcotte GR, Baehr LM, West DWD, Marshall AG, Ebert SM, Davidyan A, Adams CM, Bodine SC, Baar K. Alterations in the muscle force transfer apparatus in aged rats during unloading and reloading: impact of microRNA-31. J Physiol 2019; 596:2883-2900. [PMID: 29726007 DOI: 10.1113/jp275833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Force transfer is integral for maintaining skeletal muscle structure and function. One important component is dystrophin. There is limited understanding of how force transfer is impacted by age and loading. Here, we investigate the force transfer apparatus in muscles of adult and old rats exposed to periods of disuse and reloading. Our results demonstrate an increase in dystrophin protein during the reloading phase in the adult tibialis anterior muscle that is delayed in the old muscle. The consequence of this delay is an increased susceptibility towards contraction-induced muscle injury. Central to the lack of dystrophin protein is an increase in miR-31, a microRNA that inhibits dystrophin translation. In vivo electroporation with a miR-31 sponge led to increased dystrophin protein and decreased contraction-induced muscle injury in old skeletal muscle. Overall, our results detail the importance of the force transfer apparatus and provide new mechanisms for contraction-induced injury in ageing skeletal muscle. ABSTRACT In healthy muscle, the dystrophin-associated glycoprotein complex (DGC), the integrin/focal adhesion complex, intermediate filaments and Z-line proteins transmit force from the contractile proteins to the extracellular matrix. How loading and age affect these proteins is poorly understood. The experiments reported here sought to determine the effect of ageing on the force transfer apparatus following muscle unloading and reloading. Adult (9 months) and old (28 months) rats were subjected to 14 days of hindlimb unloading and 1, 3, 7 and 14 days of reloading. The DGC complex, intermediate filament and Z-line protein and mRNA levels, as well as dystrophin-targeting miRNAs (miR-31, -146b and -374) were examined in the tibialis anterior (TA) and medial gastrocnemius muscles at both ages. There was a significant increase in dystrophin protein levels (2.79-fold) upon 3 days of reloading in the adult TA muscle that did not occur in the old rats (P ≤ 0.05), and the rise in dystrophin protein occurred independent of dystrophin mRNA. The disconnect between dystrophin protein and mRNA levels can partially be explained by age-dependent differences in miR-31. The impaired dystrophin response in aged muscle was followed by an increase in other force transfer proteins (β-dystroglycan, desmuslin and LIM) that was not sufficient to prevent membrane disruption and muscle injury early in the reloading period. Inserting a miR-31 sponge increased dystrophin protein and decreased contraction-induced injury in the TA (P ≤ 0.05). Collectively, these data suggest that increased miR-31 with age contributes to an impaired dystrophin response and increased muscle injury after disuse.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - George R Marcotte
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Leslie M Baehr
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Daniel W D West
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Andrea G Marshall
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Scott M Ebert
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Arik Davidyan
- Molecular, Cellular, and Integrative Physiology Graduate Group, University of California Davis, Davis, CA, USA
| | - Christopher M Adams
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Sue C Bodine
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
30
|
Piekarowicz K, Bertrand AT, Azibani F, Beuvin M, Julien L, Machowska M, Bonne G, Rzepecki R. A Muscle Hybrid Promoter as a Novel Tool for Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:157-169. [PMID: 31660418 PMCID: PMC6807297 DOI: 10.1016/j.omtm.2019.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023]
Abstract
Gene therapy is a promising strategy to cure rare diseases. The lack of regulatory sequences ensuring specific and robust expression in skeletal and cardiac muscle is a substantial limitation of gene therapy efficiency targeting the muscle tissue. Here we describe a novel muscle hybrid (MH) promoter that is highly active in both skeletal and cardiac muscle cells. It has an easily exchangeable modular structure, including an intronic module that highly enhances the expression of the gene driven by it. In cultured myoblasts, myotubes, and cardiomyocytes, the MH promoter gives relatively stable expression as well as higher activity and protein levels than the standard CMV and desmin gene promoters or the previously developed synthetic or CKM-based promoters. Combined with AAV2/9, the MH promoter also provides a high in vivo expression level in skeletal muscle and the heart after both intramuscular and systemic delivery. It is much more efficient than the desmin-encoding gene promoter, and it maintains the same specificity. This novel promoter has potential for gene therapy in muscle cells. It can provide stable transgene expression, ensuring high levels of therapeutic protein, and limited side effects because of its specificity. This constitutes an improvement in the efficiency of genetic disease therapy.
Collapse
Affiliation(s)
- Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| | - Anne T Bertrand
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Feriel Azibani
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Maud Beuvin
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Laura Julien
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| |
Collapse
|
31
|
Young CS, Pyle AD, Spencer MJ. CRISPR for Neuromuscular Disorders: Gene Editing and Beyond. Physiology (Bethesda) 2019; 34:341-353. [PMID: 31389773 PMCID: PMC6863376 DOI: 10.1152/physiol.00012.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
This is a review describing advances in CRISPR/Cas-mediated therapies for neuromuscular disorders (NMDs). We explore both CRISPR-mediated editing and dead Cas approaches as potential therapeutic strategies for multiple NMDs. Last, therapeutic considerations, including delivery and off-target effects, are also discussed.
Collapse
Affiliation(s)
- Courtney S Young
- Department of Neurology, University of California, Los Angeles, California
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
| | - April D Pyle
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California
| | - Melissa J Spencer
- Department of Neurology, University of California, Los Angeles, California
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
| |
Collapse
|
32
|
Wells DJ. What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy? J Muscle Res Cell Motil 2019; 40:141-150. [PMID: 31289969 DOI: 10.1007/s10974-019-09535-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disease. The disease is due to mutations in the DMD gene that encodes for a large intracellular protein called dystrophin. Dystrophin plays a critical role in linking the internal cytoskeleton of the striated muscle cell with the extracellular matrix as well as having cell signalling functions. In its absence muscle contraction is associated with cycles of damage, repair, inflammation and fibrosis with eventual loss of muscle and replacement with fat. Experiments in animal models of DMD have generated a number of different approaches to the induction of dystrophin including viral vector mediated delivery of a recombinant dystrophin gene, antisense oligonucleotide mediated exon-skipping to restore the open reading frame in the dystrophin mRNA, read-through of premature stop mutations, genome modification using CRISPR-Cas9 or cell based transfer of a functional dystrophin gene. In all cases, it will be important to understand how much dystrophin expression is required for a clinically effective therapy and this review examines the data from humans and animal models to estimate the percentage of endogenous dystrophin that is likely to have significant clinical benefit. While there are a number of important caveats to consider, including the appropriate outcome measures, this review suggests that approximately 20% of endogenous levels uniformly distributed within the skeletal muscles and the heart may be sufficient to largely prevent disease progression.
Collapse
Affiliation(s)
- Dominic J Wells
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
33
|
Carmen L, Maria V, Morales-Medina JC, Vallelunga A, Palmieri B, Iannitti T. Role of proteoglycans and glycosaminoglycans in Duchenne muscular dystrophy. Glycobiology 2019; 29:110-123. [PMID: 29924302 DOI: 10.1093/glycob/cwy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an inherited fatal X-linked myogenic disorder with a prevalence of 1 in 3500 male live births. It affects voluntary muscles, and heart and breathing muscles. DMD is characterized by continuous degeneration and regeneration cycles resulting in extensive fibrosis and a progressive reduction in muscle mass. Since the identification of a reduction in dystrophin protein as the cause of this disorder, numerous innovative and experimental therapies, focusing on increasing the levels of dystrophin, have been proposed, but the clinical improvement has been unsatisfactory. Dystrophin forms the dystrophin-associated glycoprotein complex and its proteins have been studied as a promising novel therapeutic target to treat DMD. Among these proteins, cell surface glycosaminoglycans (GAGs) are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with numerous ligands, including ECM constituents, adhesion molecules and growth factors that play a crucial role in muscle development and maintenance. In this article, we have reviewed in vitro, in vivo and clinical studies focused on the functional role of GAGs in the pathophysiology of DMD with the final aim of summarizing the state of the art of GAG dysregulation within the ECM in DMD and discussing future therapeutic perspectives.
Collapse
Affiliation(s)
- Laurino Carmen
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Vadala' Maria
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, CP, AP 62, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | | |
Collapse
|
34
|
Min YL, Li H, Rodriguez-Caycedo C, Mireault AA, Huang J, Shelton JM, McAnally JR, Amoasii L, Mammen PPA, Bassel-Duby R, Olson EN. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. SCIENCE ADVANCES 2019; 5:eaav4324. [PMID: 30854433 PMCID: PMC6402849 DOI: 10.1126/sciadv.aav4324] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/28/2019] [Indexed: 05/16/2023]
Abstract
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), which is characterized by lethal degeneration of cardiac and skeletal muscles. Mutations that delete exon 44 of the dystrophin gene represent one of the most common causes of DMD and can be corrected in ~12% of patients by editing surrounding exons, which restores the dystrophin open reading frame. Here, we present a simple and efficient strategy for correction of exon 44 deletion mutations by CRISPR-Cas9 gene editing in cardiomyocytes obtained from patient-derived induced pluripotent stem cells and in a new mouse model harboring the same deletion mutation. Using AAV9 encoding Cas9 and single guide RNAs, we also demonstrate the importance of the dosages of these gene editing components for optimal gene correction in vivo. Our findings represent a significant step toward possible clinical application of gene editing for correction of DMD.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cristina Rodriguez-Caycedo
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alex A. Mireault
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jian Huang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John M. Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John R. McAnally
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Exonics Therapeutics, 490 Arsenal Way, Watertown, MA 02472, USA
| | - Pradeep P. A. Mammen
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
35
|
Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. J Pers Med 2018; 8:jpm8040041. [PMID: 30544634 PMCID: PMC6313462 DOI: 10.3390/jpm8040041] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), a fatal X-linked recessive disorder, is caused mostly by frame-disrupting, out-of-frame deletions in the dystrophin (DMD) gene. Antisense oligonucleotide-mediated exon skipping is a promising therapy for DMD. Exon skipping aims to convert out-of-frame mRNA to in-frame mRNA and induce the production of internally-deleted dystrophin as seen in the less severe Becker muscular dystrophy. Currently, multiple exon skipping has gained special interest as a new therapeutic modality for this approach. Previous retrospective database studies represented a potential therapeutic application of multiple exon skipping. Since then, public DMD databases have become more useful with an increase in patient registration and advances in molecular diagnosis. Here, we provide an update on DMD genotype-phenotype associations using a global DMD database and further provide the rationale for multiple exon skipping development, particularly for exons 45–55 skipping and an emerging therapeutic concept, exons 3–9 skipping. Importantly, this review highlights the potential of multiple exon skipping for enabling the production of functionally-corrected dystrophin and for treating symptomatic patients not only with out-of-frame deletions but also those with in-frame deletions. We will also discuss prospects and challenges in multiple exon skipping therapy, referring to recent progress in antisense chemistry and design, as well as disease models.
Collapse
|
36
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To construct a framework to understand the different molecular interventions for muscular dystrophy. RECENT FINDINGS The recent approval of antisense oligonucleotides treatment for Duchenne muscular dystrophy and spinal muscular atrophy and current clinical trials using recombinant adeno-associated virus for the treatment of those diseases suggests that we are at a tipping point where we are able to treat and potentially cure muscular dystrophies. Understanding the basic molecular pathogenesis of muscular dystrophies and the molecular biology of the treatment allows for critical evaluation of the proposed therapies.
Collapse
Affiliation(s)
- Ava Y Lin
- Department of Neurology, University of Washington, Box 356465, 1959 NE Pacific Street, Seattle, WA, 98195-6465, USA
| | - Leo H Wang
- Department of Neurology, University of Washington, Box 356465, 1959 NE Pacific Street, Seattle, WA, 98195-6465, USA.
| |
Collapse
|
38
|
Iyer PS, Mavoungou LO, Ronzoni F, Zemla J, Schmid-Siegert E, Antonini S, Neff LA, Dorchies OM, Jaconi M, Lekka M, Messina G, Mermod N. Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Mol Ther 2018; 26:1093-1108. [PMID: 29503200 PMCID: PMC6079556 DOI: 10.1016/j.ymthe.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD.
Collapse
Affiliation(s)
- Pavithra S Iyer
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Lionel O Mavoungou
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Flavio Ronzoni
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Joanna Zemla
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | | | - Laurence A Neff
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Marisa Jaconi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
39
|
Abstract
Our understanding of satellite cells, now known to be the obligate stem cells of skeletal muscle, has increased dramatically in recent years due to the introduction of new molecular, genetic, and technical resources. In addition to their role in acute repair of damaged muscle, satellite cells are of interest in the fields of aging, exercise, neuromuscular disease, and stem cell therapy, and all of these applications have driven a dramatic increase in our understanding of the activity and potential of satellite cells. However, many fundamental questions of satellite cell biology remain to be answered, including their emergence as a specific lineage, the degree and significance of heterogeneity within the satellite cell population, the roles of their interactions with other resident and infiltrating cell types during homeostasis and regeneration, and the relative roles of intrinsic vs extrinsic factors that may contribute to satellite cell dysfunction in the context of aging or disease. This review will address the current state of these open questions in satellite cell biology.
Collapse
Affiliation(s)
- Ddw Cornelison
- University of Missouri, Columbia, MO, United States; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
40
|
Hagan M, Ashraf M, Kim IM, Weintraub NL, Tang Y. Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Med Hypotheses 2017; 110:97-100. [PMID: 29317080 DOI: 10.1016/j.mehy.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disease caused by a lack of dystrophin, which eventually leads to apoptosis of muscle cells and impaired muscle contractility. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) gene editing of induced pluripotent stem cells (IPSC) offers the potential to correct the DMD gene defect and create healthy IPSC for autologous cell transplantation without causing immune activation. However, IPSC carry a risk of tumor formation, which can potentially be mitigated by differentiation of IPSC into myogenic progenitor cells (MPC). We hypothesize that precise genetic editing in IPSC using CRISPR-Cas9 technology, coupled with MPC differentiation and autologous transplantation, can lead to safe and effective muscle repair. With future research, our hypothesis may provide an optimal autologous stem cell-based approach to treat the dystrophic pathology and improve the quality of life for patients with DMD.
Collapse
Affiliation(s)
- Mackenzie Hagan
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Muhammad Ashraf
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Il-Man Kim
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
41
|
Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy. J Pers Med 2017; 7:jpm7040013. [PMID: 29035327 PMCID: PMC5748625 DOI: 10.3390/jpm7040013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA) conditionally approved the first AO-based drug, eteplirsen (Exondys 51), developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.
Collapse
|
42
|
Kyrychenko V, Kyrychenko S, Tiburcy M, Shelton JM, Long C, Schneider JW, Zimmermann WH, Bassel-Duby R, Olson EN. Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight 2017; 2:95918. [PMID: 28931764 DOI: 10.1172/jci.insight.95918] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2-8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3-9, 6-9, or 7-11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3-9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1.
Collapse
Affiliation(s)
- Viktoriia Kyrychenko
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sergii Kyrychenko
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chengzu Long
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jay W Schneider
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N Olson
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
43
|
Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39:547-556. [PMID: 28390761 DOI: 10.1016/j.braindev.2017.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Peng Wu
- Department of Social Science, Hebei University of Engineering, Handan 056038, PR China
| | - Zhi-Min Shi
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yan-Li Xu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Zhi-Jun Liu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| |
Collapse
|
44
|
Echigoya Y, Lim KRQ, Trieu N, Bao B, Miskew Nichols B, Vila MC, Novak JS, Hara Y, Lee J, Touznik A, Mamchaoui K, Aoki Y, Takeda S, Nagaraju K, Mouly V, Maruyama R, Duddy W, Yokota T. Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy. Mol Ther 2017; 25:2561-2572. [PMID: 28865998 DOI: 10.1016/j.ymthe.2017.07.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nhu Trieu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bo Bao
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bailey Miskew Nichols
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Maria Candida Vila
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Yuko Hara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Joshua Lee
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Aleksander Touznik
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kamel Mamchaoui
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-Binghamton University, Binghamton, NY 13902-6000, USA
| | - Vincent Mouly
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
45
|
Normal and altered pre-mRNA processing in the DMD gene. Hum Genet 2017; 136:1155-1172. [DOI: 10.1007/s00439-017-1820-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
|
46
|
Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017; 8:14454. [PMID: 28195574 PMCID: PMC5316861 DOI: 10.1038/ncomms14454] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022] Open
Abstract
Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders.
Collapse
Affiliation(s)
- Niclas E. Bengtsson
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - John K. Hall
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - Michael P. Phelps
- Department of Pathology, University of Washington, Seattle, Washington 98195-7720, USA
| | - Colin R. Andrus
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - R. David Hawkins
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Stephen D. Hauschka
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7720, USA
| | - Joel R. Chamberlain
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7720, USA
| |
Collapse
|
47
|
Viral Vector-Mediated Antisense Therapy for Genetic Diseases. Genes (Basel) 2017; 8:genes8020051. [PMID: 28134780 PMCID: PMC5333040 DOI: 10.3390/genes8020051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
RNA plays complex roles in normal health and disease and is becoming an important target for therapeutic intervention; accordingly, therapeutic strategies that modulate RNA function have gained great interest over the past decade. Antisense oligonucleotides (AOs) are perhaps the most promising strategy to modulate RNA expression through a variety of post binding events such as gene silencing through degradative or non-degradative mechanisms, or splicing modulation which has recently demonstrated promising results. However, AO technology still faces issues like poor cellular-uptake, low efficacy in target tissues and relatively rapid clearance from the circulation which means repeated injections are essential to complete therapeutic efficacy. To overcome these limitations, viral vectors encoding small nuclear RNAs have been engineered to shuttle antisense sequences into cells, allowing appropriate subcellular localization with pre-mRNAs and permanent correction. In this review, we outline the different strategies for antisense therapy mediated by viral vectors and provide examples of each approach. We also address the advantages and limitations of viral vector use, with an emphasis on their clinical application.
Collapse
|
48
|
Tabebordbar M, Cheng J, Wagers AJ. Therapeutic Gene Editing in Muscles and Muscle Stem Cells. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Uniform low-level dystrophin expression in the heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomyopathy. J Mol Cell Cardiol 2016; 102:45-52. [PMID: 27908661 DOI: 10.1016/j.yjmcc.2016.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/16/2023]
Abstract
Dystrophin deficiency results in Duchenne cardiomyopathy, a primary cause of death in Duchenne muscular dystrophy (DMD). Gene therapy has shown great promise in ameliorating the cardiac phenotype in mouse models of DMD. However, it is not completely clear how much dystrophin is required to treat dystrophic heart disease. We and others have shown that mosaic dystrophin expression at the wild-type level, depending on the percentage of dystrophin positive cardiomyocytes, can either delay the onset of or fully prevent cardiomyopathy in dystrophin-null mdx mice. Many gene therapy strategies will unlikely restore dystrophin to the wild-type level in a cardiomyocyte. To determine whether low-level dystrophin expression can reduce the cardiac manifestations in DMD, we examined heart histology, ECG and hemodynamics in 21-m-old normal BL6 and two strains of BL6-background dystrophin-deficient mice. Mdx3cv mice show uniform low-level expression of a near full-length dystrophin protein in every myofiber while mdx4cv mice have no dystrophin expression. Immunostaining and western blot confirmed marginal level dystrophin expression in the heart of mdx3cv mice. Although low-level expression did not reduce myocardial histopathology, it significantly ameliorated QRS prolongation and normalized diastolic hemodynamic deficiencies. Our study demonstrates for the first time that low-level dystrophin can partially preserve heart function.
Collapse
|
50
|
Abstract
There is still no curative treatment for Duchenne muscular dystrophy (DMD). In this issue of Cell Stem Cell, Young et al. (2016) demonstrate a genome editing approach applicable to 60% of DMD patients with CRISPR/Cas9 using one pair of guide RNAs.
Collapse
|