1
|
Marin-Valencia I, Kocabas A, Rodriguez-Navas C, Miloushev VZ, González-Rodríguez M, Lees H, Henry KE, Vaynshteyn J, Longo V, Deh K, Eskandari R, Mamakhanyan A, Berishaj M, Keshari KR. Imaging brain glucose metabolism in vivo reveals propionate as a major anaplerotic substrate in pyruvate dehydrogenase deficiency. Cell Metab 2024; 36:1394-1410.e12. [PMID: 38838644 PMCID: PMC11187753 DOI: 10.1016/j.cmet.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA.
| | - Arif Kocabas
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Rodriguez-Navas
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Manuel González-Rodríguez
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Lees
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly E Henry
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jake Vaynshteyn
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Longo
- Small Animal Imaging Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kofi Deh
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roozbeh Eskandari
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arsen Mamakhanyan
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjan Berishaj
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayvan R Keshari
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Laxmi V, Gunasekaran PK, Kumar A, Manjunathan S, Tiwari S, Saini L. Acute Flaccid Paralysis due to Pyruvate Dehydrogenase E1-Alpha Deficiency. Indian J Pediatr 2024; 91:518. [PMID: 37787965 DOI: 10.1007/s12098-023-04853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023]
Affiliation(s)
- Veena Laxmi
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Pradeep Kumar Gunasekaran
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Ashna Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Sujatha Manjunathan
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Sarbesh Tiwari
- Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Lokesh Saini
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
3
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Croci C, Cataldi M, Baratto S, Bruno C, Trucco F, Doccini S, Romano A, Nesti C, Santorelli FM, Fiorillo C. Recurrent Sensory-Motor Neuropathy Mimicking CIDP as Predominant Presentation of PDH Deficiency. Neuropediatrics 2023; 54:211-216. [PMID: 36693417 DOI: 10.1055/a-2018-4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.
Collapse
Affiliation(s)
- Carolina Croci
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Matteo Cataldi
- Department of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federica Trucco
- Department of Neurorehabilitation, University of Milan, Milan, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandro Romano
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
5
|
Horvath R, Medina J, Reilly MM, Shy ME, Zuchner S. Peripheral neuropathy in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:99-116. [PMID: 36813324 DOI: 10.1016/b978-0-12-821751-1.00014-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondria are essential for the health and viability of both motor and sensory neurons and their axons. Processes that disrupt their normal distribution and transport along axons will likely cause peripheral neuropathies. Similarly, mutations in mtDNA or nuclear encoded genes result in neuropathies that either stand alone or are part of multisystem disorders. This chapter focuses on the more common genetic forms and characteristic clinical phenotypes of "mitochondrial" peripheral neuropathies. We also explain how these various mitochondrial abnormalities cause peripheral neuropathy. In a patient with a neuropathy either due to a mutation in a nuclear or an mtDNA gene, clinical investigations aim to characterize the neuropathy and make an accurate diagnosis. In some patients, this may be relatively straightforward, where a clinical assessment and nerve conduction studies followed by genetic testing is all that is needed. In others, multiple investigations including a muscle biopsy, CNS imaging, CSF analysis, and a wide range of metabolic and genetic tests in blood and muscle may be needed to establish diagnosis.
Collapse
Affiliation(s)
- Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge, United Kingdom.
| | - Jessica Medina
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
6
|
Florian IA, Lupan I, Sur L, Samasca G, Timiș TL. To be, or not to be… Guillain-Barré Syndrome. Autoimmun Rev 2021; 20:102983. [PMID: 34043803 DOI: 10.1016/j.autrev.2021.102983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
Guillain-Barré Syndrome (GBS) is currently the most frequent cause of acute flaccid paralysis on a global scale, being an autoimmune disorder wherein demyelination of the peripheral nerves occurs. Its main clinical features are a symmetrical ascending muscle weakness with reduced osteotendinous reflexes and variable sensory involvement. GBS most commonly occurs after an infection, especially viral (including COVID-19), but may also transpire after immunization with certain vaccines or in the development of specific malignancies. Immunoglobulins, plasmapheresis, and glucocorticoids represent the principal treatment modalities, however patients with severe disease progression may require supportive therapy in an intensive care unit. Due to its symptomology, which overlaps with numerous neurological and infectious illnesses, the diagnosis of GBS may often be misattributed to pathologies that are essentially different from this syndrome. Moreover, many of these require specific treatment methods distinct to those recommended for GBS, in lack of which the prognosis of the patient is drastically affected. Such diseases include exposure to toxins either environmental or foodborne, central nervous system infections, metabolic or serum ion alterations, demyelinating pathologies, or even conditions amenable to neurosurgical intervention. This extensive narrative review aims to systematically and comprehensively tackle the most notable and challenging differential diagnoses of GBS, emphasizing on the clinical discrepancies between the diseases, the appropriate paraclinical investigations, and suitable management indications.
Collapse
Affiliation(s)
- Ioan Alexandru Florian
- Department of Neurology, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania, Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Iulia Lupan
- Department of Molecular Biology, Babes Bolyai University, Cluj-Napoca, Romania.
| | - Lucia Sur
- Department of Pediatrics I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Teodora Larisa Timiș
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Sen K, Grahame G, Bedoyan JK, Gropman AL. Novel presentations associated with a PDHA1 variant - Alternating hemiplegia in Hemizygote proband and Guillain Barre Syndrome in Heterozygote mother. Eur J Paediatr Neurol 2021; 31:27-30. [PMID: 33592356 PMCID: PMC9745742 DOI: 10.1016/j.ejpn.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022]
Abstract
We report a 5-year-old male with a PDHA1 variant who presented with alternating hemiplegia of childhood and later developed developmental regression, basal ganglia injury and episodic lactic acidosis. Enzyme assay in lymphocytes confirmed a diagnosis of Pyruvate Dehydrogenase Complex (PDC) deficiency. His mother who was heterozygous for the same variant suffered from ophthalmoplegia, chronic migraine and developed flaccid paralysis at 36 years of age. PDHA1 is the most common genetic cause of PDC deficiency and presents with a myriad of neurological phenotypes including neonatal form with lactic acidosis, non-progressive infantile encephalopathy, Leigh syndrome subtype and intermittent ataxia. The presentations in our 2 patients contribute to the clinical heterogeneity of this neurogenetic condition.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, Washington DC, USA.
| | - George Grahame
- Center for Inherited Disorders of Energy Metabolism, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jirair K Bedoyan
- Center for Inherited Disorders of Energy Metabolism, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, USA
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, Washington DC, USA
| |
Collapse
|
8
|
Tiet MY, Lin Z, Gao F, Jennings MJ, Horvath R. Targeted Therapies for Leigh Syndrome: Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:885-897. [PMID: 34308912 PMCID: PMC8673543 DOI: 10.3233/jnd-210715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Leigh syndrome (LS) is the most frequent paediatric clinical presentation of mitochondrial disease. The clinical phenotype of LS is highly heterogeneous. Though historically the treatment for LS is largely supportive, new treatments are on the horizon. Due to the rarity of LS, large-scale interventional studies are scarce, limiting dissemination of information of therapeutic options to the wider scientific and clinical community. OBJECTIVE We conducted a systematic review of pharmacological therapies of LS following the guidelines for FAIR-compliant datasets. METHODS We searched for interventional studies within Clincialtrials.gov and European Clinical trials databases. Randomised controlled trials, observational studies, case reports and case series formed part of a wider MEDLINE search. RESULTS Of the 1,193 studies initially identified, 157 met our inclusion criteria, of which 104 were carried over into our final analysis. Treatments for LS included very few interventional trials using EPI-743 and cysteamine bitartrate. Wider literature searches identified case series and reports of treatments repleting glutathione stores, reduction of oxidative stress and restoration of oxidative phosphorylation. CONCLUSIONS Though interventional randomised controlled trials have begun for LS, the majority of evidence remains in case reports and case series for a number of treatable genes, encoding cofactors or transporter proteins of the mitochondria. Our findings will form part of the international expert-led Solve-RD efforts to assist clinicians initiating treatments in patients with treatable variants of LS.
Collapse
Affiliation(s)
- May Yung Tiet
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Zhiyuan Lin
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Fei Gao
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Matthew James Jennings
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Pyruvate Dehydrogenase Complex Deficiency: An Unusual Cause of Recurrent Lactic Acidosis in a Paediatric Critical Care Unit. ACTA ACUST UNITED AC 2019; 5:71-75. [PMID: 31161145 PMCID: PMC6534940 DOI: 10.2478/jccm-2019-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023]
Abstract
Pyruvate dehydrogenase complex deficiency (PDCD) is a rare neurodegenerative disorder associated with abnormal mitochondrial metabolism. Structural brain abnormalities are common in PDCD. A case of a patient with PDCD with an unusual presentation is described. A 20-month-old boy with hypotonia and developmental delay, presented with hypoxia and respiratory distress due to bronchiolitis. During hospitalisation, he was prescribed PediaSure® feeds. Two days after starting these feeds, he developed respiratory arrest requiring intubation. His blood gas before arrest revealed lactate of 8.9 mmol/L despite normal haemodynamics. After stabilisation and a period of compulsory fasting, subsequent feeding with PediaSure® resulted in the recurrence of lactic acidosis. A metabolic workup revealed an elevated serum pyruvate level. Brain MRI was normal. Skeletal muscle biopsy confirmed PDCD. The most common cause of PDCD is a mutation in the X-linked PDHA1 gene. The severity of PDCD can range from neonatal death to more delayed onset of symptoms as in our index case. Normal brain MRI is reported in only 2% of patients with PDCD. There is no effective treatment for PDCD. In patients with proximal muscle weakness and feeding intolerance with glucose-containing feeds, the presence of lactic acidosis should raise the suspicion of PDCD irrespective of the patient's age and normal MRI.
Collapse
|
10
|
|