1
|
Sun S, Chen J. Recent Advances in Hydrogel-Based Biosensors for Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46988-47002. [PMID: 39190320 PMCID: PMC11403555 DOI: 10.1021/acsami.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Early cancer detection is crucial for effective treatment, but current methods have limitations. Novel biomaterials, such as hydrogels, offer promising alternatives for developing biosensors for cancer detection. Hydrogels are three-dimensional and cross-linked networks of hydrophilic polymers that have properties similar to biological tissues. They can be combined with various biosensors to achieve high sensitivity, specificity, and stability. This review summarizes the recent advances in hydrogel-based biosensors for cancer detection, their synthesis, their applications, and their challenges. It also discusses the implications and future directions of this emerging field.
Collapse
Affiliation(s)
- Shengwei Sun
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Jinju Chen
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
2
|
Naikoo GA, Arshad F, Hassan IU, Awan T, Salim H, Pedram MZ, Ahmed W, Patel V, Karakoti AS, Vinu A. Nanomaterials-based sensors for the detection of COVID-19: A review. Bioeng Transl Med 2022; 7:e10305. [PMID: 35599642 PMCID: PMC9110902 DOI: 10.1002/btm2.10305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Fareeha Arshad
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Israr U. Hassan
- College of Engineering, Dhofar UniversitySalalahSultanate of Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Mona Z. Pedram
- Faculty of Mechanical Engineering‐Energy DivisionK.N. Toosi University of TechnologyTehranIran
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnUK
| | - Vaishwik Patel
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajay S. Karakoti
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajayan Vinu
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| |
Collapse
|
3
|
Feng Z, Zhang Y, Pan Y, Zhang D, Zhang L, Wang Q. Mass screening is a key component to fight against SARS-CoV-2 and return to normalcy. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:197-212. [PMID: 35862506 PMCID: PMC9274759 DOI: 10.1515/mr-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/19/2022] [Indexed: 06/01/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had highly transmissible and pathogenic, which caused serious economic loss and hazard to public health. Different countries have developed strategies to deal with the COVID-19 pandemic that fit their epidemiological situations, capacities, and values. Mass screening combined with control measures rapidly reduced the transmission of the SARS-CoV-2 infection. The COVID-19 pandemic has dramatically highlighted the essential role of diagnostics capacity in the control of communicable diseases. Mass screening has been increasingly used to detect suspected COVID-19 cases and their close contacts, asymptomatic case, patients attending fever clinics, high-risk populations, employees, even all population to identify infectious individuals. Mass screening is a key component to fight against SARS-CoV-2 and return to normalcy. Here we describe the history of mass screening, define the scope of mass screening, describe its application scenarios, and discuss the impact and challenges of using this approach to control COVID-19. We conclude that through a comprehension screening program and strong testing capabilities, mass screening could help us return to normalcy more quickly.
Collapse
Affiliation(s)
- Zhaomin Feng
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yi Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yang Pan
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Daitao Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lei Zhang
- Queensland University of Technology, Brisbane, Australia
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
4
|
Dhar BC. Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Anal Bioanal Chem 2022; 414:2903-2934. [PMID: 35211785 PMCID: PMC8872642 DOI: 10.1007/s00216-022-03918-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has transmitted to humans in practically all parts of the world, producing socio-economic turmoil. There is an urgent need for precise, fast, and affordable diagnostic testing to be widely available for detecting SARS-CoV-2 and its mutations in various phases of the disease. Early diagnosis with great precision has been achieved using real-time polymerase chain reaction (RT-PCR) and similar other molecular methods, but theseapproaches are costly and involve rigorous processes that are not easily obtainable. Conversely, immunoassays that detect a small number of antibodies have been employed for quick, low-cost tests, but their efficiency in diagnosing infected people has been restricted. The use of biosensors in the detection of SARS-CoV-2 is vital for the COVID-19 pandemic’s control. This review gives an overview of COVID-19 diagnostic approaches that are currently being developed as well as nanomaterial-based biosensor technologies, to aid future technological advancement and innovation. These approaches can be integrated into point-of-care (POC) devices to quickly identify a large number of infected patients and asymptomatic carriers. The ongoing research endeavors and developments in complementary technologies will play a significant role in curbing the spread of the COVID-19 pandemic and fill the knowledge gaps in current diagnostic accuracy and capacity.
Collapse
Affiliation(s)
- Bidhan C Dhar
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC), 205 S Columbia St, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
5
|
Shahrajabian MH. Powerful Stress Relieving Medicinal Plants for Anger, Anxiety, Depression, and Stress During Global Pandemic. Recent Pat Biotechnol 2022; 16:284-310. [PMID: 35319401 DOI: 10.2174/1872208316666220321102216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Consideration and improvement for anxiety and depression are important during a global pandemic. Appropriate healthcare can be obtained by paying more attention to traditional medicinal sciences. The adverse effects of stress with various symptoms can be managed by introducing plants that boost mental health. The most relevant psychological reactions in the general population related to the global pandemic are pervasive anxiety, frustration and boredom, specific and uncontrolled fear, disabling loneliness, significant lifestyle changes, and psychiatric conditions. Ginseng, chamomile, passionflower, herbal tea, lavender, saffron, kava, rose, cardamom, Chinese date, and some chief formula like yokukansan, Dan-zhi-xiao-yao-san, so-ochim-tang-gamiband, and saikokaryukotsuboreito are notable herbal treatments for mental health problems. The most common medicinal plants that have been used in Iran for the cure of stress and anxiety are Viper's-buglosses, Dracocephalum, valerian, chamomile, common hop, hawthorns, and lavender. Medicinal plants and herbs can be used for the treatment and alleviation of the negative effects of stress, anger, and depression during the global pandemic.
Collapse
|
6
|
Ishay Y, Potruch A, Schwartz A, Berg M, Jamil K, Agus S, Ilan Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed Pharmacother 2021; 143:112228. [PMID: 34649354 PMCID: PMC8455249 DOI: 10.1016/j.biopha.2021.112228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is a respiratory illness associated with high mortality, has been classified as a pandemic. The major obstacles for the clinicians to contain the disease are limited information availability, difficulty in disease diagnosis, predicting disease prognosis, and lack of disease monitoring tools. Additionally, the lack of valid therapies has further contributed to the difficulties in containing the pandemic. Recent studies have reported that the dysregulation of the immune system leads to an ineffective antiviral response and promotes pathological immune response, which manifests as ARDS, myocarditis, and hepatitis. In this study, a novel platform has been described for disseminating information to physicians for the diagnosis and monitoring of patients with COVID-19. An adjuvant approach using compounds that can potentiate antiviral immune response and mitigate COVID-19-induced immune-mediated target organ damage has been presented. A prolonged beneficial effect is achieved by implementing algorithm-based individualized variability measures in the treatment regimen.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Assaf Potruch
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Asaf Schwartz
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Marc Berg
- Altus Care powered by Oberon Sciences, Denmark, Israel; Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, USA.
| | - Khurram Jamil
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Samuel Agus
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
7
|
Clinical validation of automated and rapid mariPOC SARS-CoV-2 antigen test. Sci Rep 2021; 11:20363. [PMID: 34645929 PMCID: PMC8514458 DOI: 10.1038/s41598-021-99886-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 diagnostics was quickly ramped up worldwide early 2020 based on the detection of viral RNA. However, based on the scientific knowledge for pre-existing coronaviruses, it was expected that the SARS-CoV-2 RNA will be detected from symptomatic and at significant rates also from asymptomatic individuals due to persistence of non-infectious RNA. To increase the efficacy of diagnostics, surveillance, screening and pandemic control, rapid methods, such as antigen tests, are needed for decentralized testing and to assess infectiousness. A novel automated mariPOC SARS-CoV-2 test was developed for the detection of conserved structural viral nucleocapsid proteins. The test utilizes sophisticated optical laser technology for two-photon excitation and individual detection of immunoassay solid-phase particles. We validated the new method against qRT-PCR. Sensitivity of the test was 100.0% (13/13) directly from nasopharyngeal swab specimens and 84.4% (38/45) from swab specimens in undefined transport mediums. Specificity of the test was 100.0% (201/201). The test's limit of detection was 2.7 TCID50/test. It showed no cross-reactions. Our study shows that the new test can detect infectious individuals already in 20 min with clinical sensitivity close to qRT-PCR. The mariPOC is a versatile platform for syndromic testing and for high capacity infection control screening of infectious individuals.
Collapse
|
8
|
Ameen F, Mamidala E, Davella R, Vallala S. Rilpivirine inhibits SARS-CoV-2 protein targets: A potential multi-target drug. J Infect Public Health 2021; 14:1454-1460. [PMID: 34326009 PMCID: PMC8294774 DOI: 10.1016/j.jiph.2021.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND COVID-19 disease caused by SARS-CoV-2 is lacking efficient medication although certain medications are used to relief its symptoms. OBJECTIVES We tested an FDA-approved antiviral medication namely rilpivirine to find a drug against SARS-CoV-2. METHODS The inhibition of rilpivirine against multiple SARS-CoV-2 therapeutic targets was studied using in silico method. The binding attraction of the protein-ligand complexes were calculated using molecular docking analysis. RESULTS Docking rilpivirine with main protease (Mpro), papin like protease (PLpro), sprike protein (Spro), human angiotensin converting enzyme-2 (ACE2), and RNA dependent-RNA polymerase (RdRp) yielded binding energies of -8.07, -8.40, -7.55, -9.11, and -8.69 kcal/mol, respectively. The electrostatic interaction is the key force in stabilizing the RdRp-rilpivirine complex, while van der Waals interaction dominates in the ACE2 rilpivirine case. Our findings suggest that rilpivirine can inhibit SARS-CoV-2 replication by targeting not only ACE2, but also RdRp and other targets, and therefore, it can be used to invoke altered mechanisms at the pre-entry and post-entry phases. CONCLUSION As a result of our in silico molecular docking study, we suggest that rilpivirine is a compound that could act as a powerful inhibitor against SARS-CoV-2 targets. Although in vitro and in vivo experiments are needed to verify this prediction we believe that this antiviral drug may be used in preclinical trials to fight against SARS coronavirus.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Estari Mamidala
- Infectious Diseases Research Lab, Department of Zoology, Kakatiya University, Warangal 506 009 TS, India
| | - Rakesh Davella
- Infectious Diseases Research Lab, Department of Zoology, Kakatiya University, Warangal 506 009 TS, India
| | - Shravan Vallala
- Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
9
|
Wallace MG, Wang Y. Pollen antigens and atmospheric circulation driven seasonal respiratory viral outbreak and its implication to the Covid-19 pandemic. Sci Rep 2021; 11:16945. [PMID: 34417513 PMCID: PMC8379151 DOI: 10.1038/s41598-021-96282-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
The patterns of respiratory virus illness are expressed differently between temperate and tropical climates. Tropical outbreaks often peak in wet seasons. Temperate outbreaks typically peak during the winter. The prevailing causal hypotheses focus on sunlight, temperature and humidity variations. Yet no consistent factors have been identified to sufficiently explain seasonal virus emergence and decline at any latitude. Here we demonstrate close connections among global-scale atmospheric circulations, IgE antibody enhancement through seasonal pollen inhalation, and respiratory virus patterns at any populated latitude, with a focus on the US. Pollens emerge each Spring, and the renewed IgE titers in the population are argued to terminate each winter peak of respiratory illness. Globally circulated airborne viruses are postulated to subsequently deposit across the Southern US during lower zonal geostrophic winds each late Summer. This seasonally refreshed viral load is postulated to trigger a new influenza outbreak, once the existing IgE antibodies diminish to a critical value each Fall. Our study offers a new and consistent explanation for the seasonal diminishment of respiratory viral illnesses in temperate climates, the subdued seasonal signature in the tropics, the annually circulated virus phenotypes, and the northerly migration of influenza across the US every year. Our integrated geospatial and IgE hypothesis provides a new perspective for prediction, mitigation and prevention of the outbreak and spread of seasonal respiratory viruses including Covid-19 pandemic.
Collapse
Affiliation(s)
- Michael G Wallace
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185-0779, USA.
| | - Yifeng Wang
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185-0779, USA.
| |
Collapse
|
10
|
Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. MATERIALS TODAY. CHEMISTRY 2021; 20:100443. [PMID: 33615086 PMCID: PMC7877231 DOI: 10.1016/j.mtchem.2021.100443] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
The World Health Organization (WHO) has declared the COVID-19 an international health emergency due to the severity of infection progression, which became more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the reverse transcription polymerase chain reaction (RT-PCR) technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times, invasive and painful screening, and high costs have restricted the use of RT-PCR methods for rapid diagnostics. Therefore, the development of cost-effective, portable, sensitive, prompt and selective sensing systems to detect SARS-CoV-2 in biofluids at fM/pM/nM concentrations would be a breakthrough in diagnostics. Immunosensors that show increased specificity and sensitivity are considerably fast and do not imply costly reagents or instruments, reducing the cost for COVID-19 detection. The current developments in immunosensors perhaps signify the most significant opportunity for a rapid assay to detect COVID-19, without the need of highly skilled professionals and specialized tools to interpret results. Artificial intelligence (AI) and the Internet of Medical Things (IoMT) can also be equipped with this immunosensing approach to investigate useful networking through database management, sharing, and analytics to prevent and manage COVID-19. Herein, we represent the collective concepts of biomarker-based immunosensors along with AI and IoMT as smart sensing strategies with bioinformatics approach to monitor non-invasive early stage SARS-CoV-2 development, with fast point-of-care (POC) diagnostics as the crucial goal. This approach should be implemented quickly and verified practicality for clinical samples before being set in the present times for mass-diagnostic research.
Collapse
Affiliation(s)
- A K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - D Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, 201301, India
| | - A Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - P Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110017, India
| | - P R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
11
|
Rezvani Ghomi E, Khosravi F, Mohseni-M A, Nourbakhsh N, Haji Mohammad Hoseini M, Singh S, Hedenqvist MS, Ramakrishna S. A collection of the novel coronavirus (COVID-19) detection assays, issues, and challenges. Heliyon 2021; 7:e07247. [PMID: 34124407 PMCID: PMC8179727 DOI: 10.1016/j.heliyon.2021.e07247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/12/2020] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
The global pandemic of COVID-19 has rapidly increased the number of infected cases as well as asymptomatic individuals in many, if not all the societies around the world. This issue increases the demand for accurate and rapid detection of SARS-CoV-2. While accurate and rapid detection is critical for diagnosing SARS-CoV-2, the appropriate course of treatment must be chosen to help patients and prevent its further spread. Testing platform accuracy with high sensitivity and specificity for SARS-CoV-2 is equally important for clinical, regional, and global arenas to mitigate secondary transmission rounds. The objective of this article is to compare the current detection technology and introduce the most accurate and rapid ones that are suitable for pandemic circumstances. Hence, the importance of rapid detection in societies is discussed initially. Following this, the current technology for rapid detection of SARS-CoV-2 is explained and classified into three different categories: nucleic acid-based, protein-based, and point of care (PoC) detection testing. Then, the current issues for diagnostic procedures in laboratories are discussed. Finally, the role of new technologies in countering COVID-19 is also introduced to assist researchers in the development of accurate and timely detection of coronaviruses. As coronavirus continues to affect human lives in a detrimental manner, the development of rapid and accurate virus detection methods could promote COVID-19 diagnosis accessible to both individuals and the mass population at patient care. In this regard, rRT-PCR and multiplex RT-PCR detection techniques hold promise.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117581, Singapore
| | - Fatemeh Khosravi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117581, Singapore
| | - Ali Mohseni-M
- Executive Vice President and Chief Food Safety Officer, American Foods Group, LLC, 500 South Washington St., Green Bay, WI, 54301, USA
- Dir. Ag. Group. Qoqnoos – Phoenix Project Incorporated, USA
| | - Nooshin Nourbakhsh
- Yong Loo Lin School of Medicine, Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | | | - Sunpreet Singh
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117581, Singapore
| | - Mikael S. Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117581, Singapore
| |
Collapse
|
12
|
Suhito IR, Koo KM, Kim TH. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines 2020; 9:15. [PMID: 33375330 PMCID: PMC7824644 DOI: 10.3390/biomedicines9010015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Electrochemical sensors are considered an auspicious tool to detect biomolecules (e.g., DNA, proteins, and lipids), which are valuable sources for the early diagnosis of diseases and disorders. Advances in electrochemical sensing platforms have enabled the development of a new type of biosensor, enabling label-free, non-destructive detection of viability, function, and the genetic signature of whole cells. Numerous studies have attempted to enhance both the sensitivity and selectivity of electrochemical sensors, which are the most critical parameters for assessing sensor performance. Various nanomaterials, including metal nanoparticles, carbon nanotubes, graphene and its derivatives, and metal oxide nanoparticles, have been used to improve the electrical conductivity and electrocatalytic properties of working electrodes, increasing sensor sensitivity. Further modifications have been implemented to advance sensor platform selectivity and biocompatibility using biomaterials such as antibodies, aptamers, extracellular matrix (ECM) proteins, and peptide composites. This paper summarizes recent electrochemical sensors designed to detect target biomolecules and animal cells (cancer cells and stem cells). We hope that this review will inspire researchers to increase their efforts to accelerate biosensor progress-enabling a prosperous future in regenerative medicine and the biomedical industry.
Collapse
Affiliation(s)
- Intan Rosalina Suhito
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (I.R.S.); (K.-M.K.)
- Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung Ang University, Seoul 06974, Korea
| |
Collapse
|
13
|
Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect 2020; 9:747-756. [PMID: 32196430 PMCID: PMC7172701 DOI: 10.1080/22221751.2020.1745095] [Citation(s) in RCA: 493] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
Abstract
The three unprecedented outbreaks of emerging human coronavirus (HCoV) infections at the beginning of the twenty-first century have highlighted the necessity for readily available, accurate and fast diagnostic testing methods. The laboratory diagnostic methods for human coronavirus infections have evolved substantially, with the development of novel assays as well as the availability of updated tests for emerging ones. Newer laboratory methods are fast, highly sensitive and specific, and are gradually replacing the conventional gold standards. This presentation reviews the current laboratory methods available for testing coronaviruses by focusing on the coronavirus disease 2019 (COVID-19) outbreak going on in Wuhan. Viral pneumonias typically do not result in the production of purulent sputum. Thus, a nasopharyngeal swab is usually the collection method used to obtain a specimen for testing. Nasopharyngeal specimens may miss some infections; a deeper specimen may need to be obtained by bronchoscopy. Alternatively, repeated testing can be used because over time, the likelihood of the SARS-CoV-2 being present in the nasopharynx increases. Several integrated, random-access, point-of-care molecular devices are currently under development for fast and accurate diagnosis of SARS-CoV-2 infections. These assays are simple, fast and safe and can be used in the local hospitals and clinics bearing the burden of identifying and treating patients.
Collapse
Affiliation(s)
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic
Platform, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Hosseini A, Pandey R, Osman E, Victorious A, Li F, Didar T, Soleymani L. Roadmap to the Bioanalytical Testing of COVID-19: From Sample Collection to Disease Surveillance. ACS Sens 2020; 5:3328-3345. [PMID: 33124797 PMCID: PMC7605339 DOI: 10.1021/acssensors.0c01377] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The disease caused by SARS-CoV-2, coronavirus disease 2019 (COVID-19), has led to a global pandemic with tremendous mortality, morbidity, and economic loss. The current lack of effective vaccines and treatments places tremendous value on widespread screening, early detection, and contact tracing of COVID-19 for controlling its spread and minimizing the resultant health and societal impact. Bioanalytical diagnostic technologies have played a critical role in the mitigation of the COVID-19 pandemic and will continue to be foundational in the prevention of the subsequent waves of this pandemic along with future infectious disease outbreaks. In this Review, we aim at presenting a roadmap to the bioanalytical testing of COVID-19, with a focus on the performance metrics as well as the limitations of various techniques. The state-of-the-art technologies, mostly limited to centralized laboratories, set the clinical metrics against which the emerging technologies are measured. Technologies for point-of-care and do-it-yourself testing are rapidly emerging, which open the route for testing in the community, at home, and at points-of-entry to widely screen and monitor individuals for enabling normal life despite of an infectious disease pandemic. The combination of different classes of diagnostic technologies (centralized and point-of-care and relying on multiple biomarkers) are needed for effective diagnosis, treatment selection, prognosis, patient monitoring, and epidemiological surveillance in the event of major pandemics such as COVID-19.
Collapse
Affiliation(s)
- Amin Hosseini
- School of Biomedical Engineering,
McMaster University, Hamilton, ON L8S
4L8, Canada
| | - Richa Pandey
- Department of Engineering Physics,
McMaster University, Hamilton, ON L8S
4L8, Canada
| | - Enas Osman
- School of Biomedical Engineering,
McMaster University, Hamilton, ON L8S
4L8, Canada
| | - Amanda Victorious
- School of Biomedical Engineering,
McMaster University, Hamilton, ON L8S
4L8, Canada
| | - Feng Li
- Department of Chemistry,
Brock University, St. Catharines, ON
L2S 3A1, Canada
- Key Laboratory of Green Chemistry and
Technology of Ministry of Education, College of Chemistry,
Sichuan University, Chengdu, Sichuan
610065, China
| | - Tohid Didar
- School of Biomedical Engineering,
McMaster University, Hamilton, ON L8S
4L8, Canada
- Department of Mechanical Engineering,
McMaster University, Hamilton, ON L8S
4L8, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering,
McMaster University, Hamilton, ON L8S
4L8, Canada
- Department of Engineering Physics,
McMaster University, Hamilton, ON L8S
4L8, Canada
| |
Collapse
|
15
|
A comprehensive overview of proteomics approach for COVID 19: new perspectives in target therapy strategies. ACTA ACUST UNITED AC 2020; 11:223-232. [PMID: 33162722 PMCID: PMC7605460 DOI: 10.1007/s42485-020-00052-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 12/24/2022]
Abstract
World Health Organisation declared COVID-19 a pandemic on March 11, 2020. It was temporarily named as 2019-nCoV then subsequently named as COVID-19 virus. A coronavirus is a group of viruses, known to be zoonotic, causing illness ranging from acute to mild respiratory infections. These are spherical or pleomorphic enveloped particles containing positive sense RNA. The virus enters host cells, its uncoated genetic material transcribes, and translates. Since it has started spreading rapidly, protective measures have been taken all over the world. However, its transmission has been proved to be unstoppable and the absence of an effective drug makes the situation worse. The scientific community has gone all-out to discover and develop a possible vaccine or a competent antiviral drug. Other domains of biological sciences that promise effective results and target somewhat stable entities that are proteins, could be very useful in this time of crisis. Proteomics and metabolomics are the vast fields that are equipped with sufficient technologies to face this challenge. Various protein separation and identification techniques are available which facilitates the analysis of various types of interactions among proteins and their evolutionary lineages. The presented review aims at confronting the question: 'how proteomics can help in tackling SARS-CoV-2?' It deals with the role of upcoming proteome technology in these pandemic situations and discusses the proteomics approach towards the COVID-19 dilemma.
Collapse
|
16
|
Mohamed RAEH, Aleanizy FS, Alqahtani FY, Alanazi MS, Mohamed N. Common Co-morbidities Are Challenging in the Diagnosis of Middle East Respiratory Syndrome (MERS-CoV) in Saudi Arabia. Pak J Biol Sci 2020; 23:119-125. [PMID: 31944070 DOI: 10.3923/pjbs.2020.119.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Middle East respiratory syndrome coronavirus (MERS-CoV) is a relatively recent human disease reported initially in Saudi Arabia in September, 2012. Morbidities investigation includes a process of excluding other possible options until certain suspected cases are confirmed. MATERIAL AND METHODS In this study, we formulated a model under the authorization of the Saudi Ministry of Health to accurately identify cases among admitted suspected cases depending on specific signs and symptoms. Real-time polymerase chain reaction was used for confirmation of the positive cases. RESULTS The results showed that the number of patients with combined symptoms of fever/sore throat and fever/cough/SOB was significantly higher in confirmed cases than in non-confirmed cases (p<0.05). Besides, the number of confirmed MERS-CoV cases was significantly higher among cases included in the study than excluded cases. It was also clearly demonstrated that fever combined with other symptoms represents 60% of the confirmed cases, which is significantly higher than for cases with other combined symptoms (p<0.0001). CONCLUSION To the best of our knowledge, there are no appropriate diagnostic models that can differentiate human MERS-CoV infection among other respiratory infections. Therefore, we recommend the adoption of this newly established model of MERS-CoV to short- list corona suspected cases in Saudi Arabia.
Collapse
|
17
|
Habas K, Nganwuchu C, Shahzad F, Gopalan R, Haque M, Rahman S, Majumder AA, Nasim T. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev Anti Infect Ther 2020; 18:1201-1211. [PMID: 32749914 DOI: 10.1080/14787210.2020.1797487] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) was first detected in China in December, 2019, and declared as a pandemic by the World Health Organization (WHO) on March 11, 2020. The current management of COVID-19 is based generally on supportive therapy and treatment to prevent respiratory failure. The effective option of antiviral therapy and vaccination are currently under evaluation and development. AREAS COVERED A literature search was performed using PubMed between December 1, 2019-June 23, 2020. This review highlights the current state of knowledge on the viral replication and pathogenicity, diagnostic and therapeutic strategies, and management of COVID-19. This review will be of interest to scientists and clinicians and make a significant contribution toward development of vaccines and targeted therapies to contain the pandemic. EXPERT OPINION The exit strategy for a path back to normal life is required, which should involve a multi-prong effort toward development of new treatment and a successful vaccine to protect public health worldwide and prevent future COVID-19 outbreaks. Therefore, the bench to bedside translational research as well as reverse translational works focusing bedside to bench is very important and would provide the foundation for the development of targeted drugs and vaccines for COVID-19 infections.
Collapse
Affiliation(s)
- Khaled Habas
- Faculty of Life Sciences, University of Bradford , West Yorkshire, UK
| | - Chioma Nganwuchu
- Faculty of Life Sciences, University of Bradford , West Yorkshire, UK
| | - Fanila Shahzad
- Faculty of Life Sciences, University of Bradford , West Yorkshire, UK
| | - Rajendran Gopalan
- Faculty of Life Sciences, University of Bradford , West Yorkshire, UK
| | - Mainul Haque
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, (National Defence University of Malaysia) , Kuala Lumpur, Malaysia
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences , Bridgetown, Barbados, West Indies
| | - Anwarul Azim Majumder
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus , Bridgetown, Barbados, West Indies
| | - Talat Nasim
- Faculty of Life Sciences, University of Bradford , West Yorkshire, UK.,Research Division, Centre for Health, Agriculture and Socio-economic Advancements (CHASA) , Lalmonirhat, Bangladesh
| |
Collapse
|
18
|
Magro F, Rahier JF, Abeu C, MacMahon E, Hart A, van der Woude CJ, Gordon H, Adamina M, Viget N, Vavricka S, Kucharzik T, Leone S, Siegmund B, Danese S, Peyrin-Biroulet L. Inflammatory Bowel Disease Management During the COVID-19 Outbreak: The Ten Do's and Don'ts from the ECCO-COVID Taskforce. J Crohns Colitis 2020; 14:S798-S806. [PMID: 32722754 PMCID: PMC7454472 DOI: 10.1093/ecco-jcc/jjaa160] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Our knowledge of COVID-19 is changing and evolving rapidly, with novel insights and recommendations, almost on a daily basis. It behooves the medical community to provide updated information on a regular basis, on best practice to facilitate optimal care of infected patients and on appropriate advice for the general population. This is particularly important in the case of patients with chronic conditions, such as inflammatory bowel disease [IBD]. In this review, we have compiled existing evidence on the impact of COVID-19 in IBD patients and provide guidance on the most appropriate care to adopt during the pandemic. Our review highlights that IBD, per se, is not a risk factor for COVID-19. However, all IBD patients with symptoms should be tested for SARS-CoV-2 and the procedures for disease management should be carefully adapted: [i] in SARS-CoV-2-positive IBD patients, medical treatments should be re-evaluated [with a particular focus on corticosteroids] always with the purpose of treating active disease and maintaining remission; [ii] non-urgent surgeries and endoscopic procedures should be postponed for all patients; [iii] online consultancy should be implemented; and [iv] hospitalization and surgery should be limited to life-threatening situations.
Collapse
Affiliation(s)
- F Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Gastroenterology, Centro Hospitalar de São João, Porto, Portugal;Department of Clinical Pharmacology Centro Hospitalar de São João, Porto, Portugal
| | - J-F Rahier
- CHU UCL Namur, Université catholique de Louvain, service de Hépato-gastroentérologie, Yvoir, Belgium
| | - C Abeu
- Infectious Diseases Service, Centro Hospitalar Universitário São João, Porto, Portugal. Instituto de Inovação e Investigação em Saúde (I3s), Faculty of Medicine, Department of Medicine, University of Porto,Portugal
| | - E MacMahon
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, U.K
| | - A Hart
- IBD Unit, St Mark’s Hospital, London, UK
| | - C J van der Woude
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlnads
| | - H Gordon
- Department of Gastroenterology Royal London Hospital, Barts Health NHS Trust, London, England. Centre for Immunobiology, The Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, England
| | - M Adamina
- Department of Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - N Viget
- Department of Infectious Diseases, Tourcoing Hospital, Tourcoing
| | - S Vavricka
- Center for Gastroenterology and Hepatology, Zürich, Switzerland
| | - T Kucharzik
- Lüneburg Hospital, University of Hamburg, Department of Gastroenterology, Lüneburg, Germany
| | - S Leone
- EFCCA, European Federation of Crohn’s and Ulcerative Colitis Associations, Brussels, Belgium
| | - B Siegmund
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - S Danese
- Division of Gastroenterology, IBD Center, Humanitas University, Rozzano, Milan, Italy
| | - L Peyrin-Biroulet
- Department of Gastroenterology Nancy University Hospital, Vandoeuvre-Les-Nancy, France,Inserm NGERE U1256, Lorraine University, Vandoeuvre-Les-Nancy, France,Correspondence author: Laurent Peyrin-Biroulet, MD, PhD Inserm NGERE and Department of Gastroenterology Nancy University Hospital, University of Lorraine 1 Allée du Morvan, 54511 Vandoeuvre-lès-Nancy, France Tel: (+33) 383153661 Fax: (+33) 383153633
| |
Collapse
|
19
|
Vasala A, Hytönen VP, Laitinen OH. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Front Cell Infect Microbiol 2020; 10:308. [PMID: 32760676 PMCID: PMC7373752 DOI: 10.3389/fcimb.2020.00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fast, robust, and affordable antimicrobial susceptibility testing (AST) is required, as roughly 50% of antibiotic treatments are started with wrong antibiotics and without a proper diagnosis of the pathogen. Validated growth-based AST according to EUCAST or CLSI (European Committee on Antimicrobial Susceptibility Testing, Clinical Laboratory Standards Institute) recommendations is currently suggested to guide the antimicrobial therapy. Any new AST should be validated against these standard methods. Many rapid diagnostic techniques can already provide pathogen identification. Some of them can additionally detect the presence of resistance genes or resistance proteins, but usually isolated pure cultures are needed for AST. We discuss the value of the technologies applying nucleic acid amplification, whole genome sequencing, and hybridization as well as immunodiagnostic and mass spectrometry-based methods and biosensor-based AST. Additionally, we evaluate the potential of integrated systems applying microfluidics to integrate cultivation, lysis, purification, and signal reading steps. We discuss technologies and commercial products with potential for Point-of-Care Testing (POCT) and their capability to analyze polymicrobial samples without pre-purification steps. The purpose of this critical review is to present the needs and drivers for AST development, to show the benefits and limitations of AST methods, to introduce promising new POCT-compatible technologies, and to discuss AST technologies that are likely to thrive in the future.
Collapse
Affiliation(s)
- Antti Vasala
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P. Hytönen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Olli H. Laitinen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
20
|
Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. INFECTION GENETICS AND EVOLUTION 2020; 84:104451. [PMID: 32640381 PMCID: PMC7335633 DOI: 10.1016/j.meegid.2020.104451] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai 600025, India
| | - Niranjan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon 122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
21
|
Ciuca IM. COVID-19 in Children: An Ample Review. Risk Manag Healthc Policy 2020; 13:661-669. [PMID: 32636686 PMCID: PMC7334563 DOI: 10.2147/rmhp.s257180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
The aim of this review was to describe the current knowledge about coronavirus disease 2019 (COVID-19, which is caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) in children, from epidemiological, clinical, and laboratory perspectives, including knowledge on the disease course, treatment, and prognosis. An extensive literature search was performed to identify papers on COVID-19 (SARS-CoV-2 infection) in children, published between January 1, 2020 and April 1, 2020. There were 44 relevant papers on COVID-19 in children. The results showed that COVID-19 occurs in 0.39-12.3% of children. Clinical signs and symptoms are comparable to those in adults, but milder forms and a large percentage of asymptomatic carriers are found among children. Elevated inflammatory markers are associated with complications and linked to various co-infections. Chest computed tomography (CT) scans in children revealed structural changes similar to those found in adults, with consolidations surrounded by halos being somewhat specific for children with COVID-19. The recommended treatment includes providing symptomatic therapy, with no specific drug recommendations for children. The prognosis is much better for children compared to adults. This review highlights that COVID-19 in children is similar to the disease in the adult population, but with particularities regarding clinical manifestations, laboratory test results, chest imaging, and treatment. The prognosis is much better for children compared to adults, but with the progression of the pandemic; the cases in children might change in the future.
Collapse
Affiliation(s)
- Ioana M Ciuca
- Pediatric Department, University of Medicine and Pharmacy “Victor Babes”, Pediatric Pulmonology Unit, Clinical County Hospital, Timisoara, Romania
| |
Collapse
|
22
|
Liu X, Liu C, Liu G, Luo W, Xia N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics 2020; 10:7821-7835. [PMID: 32685022 PMCID: PMC7359073 DOI: 10.7150/thno.47987] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently become a pandemic. As the sudden emergence and rapid spread of SARS-CoV-2 is endangering global health and the economy, the development of strategies to contain the virus's spread are urgently needed. At present, various diagnostic kits to test for SARS-CoV-2 are available for use to initiate appropriate treatment faster and to limit further spread of the virus. Several drugs have demonstrated in vitro activity against SARS-CoV-2 or potential clinical benefits. In addition, institutions and companies worldwide are working tirelessly to develop treatments and vaccines against COVID-19. However, no drug or vaccine has yet been specifically approved for COVID-19. Given the urgency of the outbreak, we focus here on recent advances in the diagnostics, treatment, and vaccine development for SARS-CoV-2 infection, helping to guide strategies to address the current COVID-19 pandemic.
Collapse
|
23
|
Ujjan ID, Devrajani BR, Ghanghro AA, Shah SZA. The clinical and demographical profile of Coronavirus illness: The tale of Tablighi Jamaat and Zaireen in Quarantine / Isolation center at Sukkur and Hyderabad. Pak J Med Sci 2020; 36:S12-S16. [PMID: 32582307 PMCID: PMC7306966 DOI: 10.12669/pjms.36.covid19-s4.2829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objectives: To determine the clinical and demographical profile of corona-virus illness among Tablighi Jamaat and Zaireen kept in quarantine / isolation center at Sukkur and Hyderabad Sindh. Methods: The cross-sectional descriptive study (late March-2020 to mid of April-2020) was conducted at Diagnostic & Research Laboratory LUMHS Jamshoro / Hyderabad. All the suspected cases for COVID-19 were recruited and screened for corona virus infection. The study explored the data of the suspected and diagnosed (confirmed) case of COVID-2019 (Tablighi Jamaat and Zaireen) reported by Diagnostic Research Laboratory Liaquat University of Medical and Health Sciences (LUMHS) Jamshoro who belonged to various parts of the country in general and province Sindh in particular. All the individuals regardless of age and gender presented either as asymptomatic, critical ill or having non-specific symptoms as fever, flu, cough; sore throat and shortness of breath were screened for COVID-19 by real time PCR after taking informed consent whereas the frequency / percentages (%) and means ±SD computed for study variables. Results: During study period total 920 patients were explored and screened for Corona virus infection. The mean ± SD for age (yrs) of overall population of city Sukkur and Hyderabad was 57.83±8.84 and 59.62±9.72 respectively. The 700 people from Sukkur city was screened and out of them 276 (39.4%) were positive and 424 (60.5) were negative while the cure rate was 245 (88.7%) along with mean ± SD for recovery time was 9.41±2.97. The 220 people from Hyderabad city was screened and out of them 106 (48.1%) were positive and 114 (51.8%) were negative while the cure rate was 106 (100%) along with mean ± SD for recovery time was 11.54±3.42. The majority of cases at both centers were asymptomatic (90%), symptomatic (7%) and critically ill (3%). The mortality accounted for 2.8% cases at Hyderabad isolation center and all were having smoking history and co-morbidities as ischemic heart diseases, diabetes mellitus, obstructive lung disease and cerebrovascular accident whereas no mortality was observed at Sukkur isolation center. Conclusion: RT-PCR measure allowed fast, delicate, and explicit discovery of SARS-CoV in biochemical diagnosis. The majority of cases at both centers were asymptomatic while the mortality was identified in 2.8% cases (having co-morbidities) at Hyderabad isolation center whereas no mortality was observed at Sukkur isolation center.
Collapse
Affiliation(s)
- Ikram Din Ujjan
- Prof. Ikram Din Ujjan, Department of Pathology, LUMHS, Jamshoro, Pakistan
| | | | - Akbar Ali Ghanghro
- Akbar Ali Ghanghro Field Epidemiologist / National Stop Transmission of Polio Program in Pakistan, (CDC-USA, WHO and MOH funded program) LUMHS, Jamshoro, Pakistan
| | - Syed Zulfiquar Ali Shah
- Syed Zulfiquar Ali Shah Assistant Professor, Department of Medicine LUMHS, Jamshoro, Pakistan
| |
Collapse
|
24
|
Nguyen T, Duong Bang D, Wolff A. 2019 Novel Coronavirus Disease (COVID-19): Paving the Road for Rapid Detection and Point-of-Care Diagnostics. MICROMACHINES 2020; 11:E306. [PMID: 32183357 PMCID: PMC7142866 DOI: 10.3390/mi11030306] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
We believe a point-of-care (PoC) device for the rapid detection of the 2019 novel Coronavirus (SARS-CoV-2) is crucial and urgently needed. With this perspective, we give suggestions regarding a potential candidate for the rapid detection of the coronavirus disease 2019 (COVID-19), as well as factors for the preparedness and response to the outbreak of the COVID-19.
Collapse
Affiliation(s)
- Trieu Nguyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Division of Microbiology and Production, National Food Institute, Technical University of Denmark. Kemitorvet, Building 204, 2800 Lyngby Denmark;
| | - Anders Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
25
|
Abstract
BACKGROUND Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. MAIN BODY This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. CONCLUSIONS The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|