1
|
Haddock CJ, Almeida-Pereira G, Stein LM, Hayes MR, Kolar GR, Samson WK, Yosten GLC. Signaling in rat brainstem via Gpr160 is required for the anorexigenic and antidipsogenic actions of cocaine- and amphetamine-regulated transcript peptide. Am J Physiol Regul Integr Comp Physiol 2021; 320:R236-R249. [PMID: 33206556 PMCID: PMC7988768 DOI: 10.1152/ajpregu.00096.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/26/2022]
Abstract
Recent work identified Gpr160 as a candidate receptor for cocaine- and amphetamine-regulated transcript peptide (CARTp) and described its role in pain modulation. The aims of the present study were to determine if Gpr160 is required for the CARTp's ability to reduce food intake and water intake and to initially identify the distribution of Gpr160-like immunoreactivity (Gpr160ir) in the rat brain. A passive immunoneutralization approach targeting Gpr160 was used to block the behavioral effects of a pharmacological dose of CARTp in the fourth cerebroventricle (4V) of rats and to determine the importance of endogenously produced CARTp in the control of ingestive behaviors. Passive immunoneutralization of Gpr160 in the 4V blocked the actions of CARTp to inhibit food intake and water intake. Blockade of Gpr160 in the 4V, independent of pharmacological CART treatment, caused an increase in both overnight food intake and water intake. The decrease in food intake, but not water intake, caused by central injection of CARTp was demonstrated to be interrupted by prior administration of a glucagon-like peptide 1 (GLP-1) receptor antagonist. Gpr160ir was observed in several, distinct sites throughout the rat brain, where CARTp staining has been described. Importantly, Gpr160ir was observed to be present in both neuronal and nonneuronal cell types. These data support the hypothesis that Gpr160 is required for the anorexigenic actions of central CARTp injection and extend these findings to water drinking. Gpr160ir was observed in both neuronal and nonneuronal cell types in regions known to be important in the multiple pharmacological effects of CARTp, identifying those areas as targets for future compromise of function studies.
Collapse
Affiliation(s)
- Christopher J Haddock
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Gislaine Almeida-Pereira
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
2
|
Ong ZY, McNally GP. CART in energy balance and drug addiction: Current insights and mechanisms. Brain Res 2020; 1740:146852. [DOI: 10.1016/j.brainres.2020.146852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
3
|
Morganstern I, Gulati G, Leibowitz SF. Role of melanin-concentrating hormone in drug use disorders. Brain Res 2020; 1741:146872. [PMID: 32360868 DOI: 10.1016/j.brainres.2020.146872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide primarily transcribed in the lateral hypothalamus (LH), with vast projections to many areas throughout the central nervous system that play an important role in motivated behaviors and drug use. Anatomical, pharmacological and genetic studies implicate MCH in mediating the intake and reinforcement of commonly abused substances, acting by influencing several systems including the mesolimbic dopaminergic system, glutamatergic as well as GABAergic signaling and being modulated by inflammatory neuroimmune pathways. Further support for the role of MCH in controlling behavior related to drug use will be discussed as it relates to cerebral ventricular volume transmission and intracellular molecules including cocaine- and amphetamine-regulated transcript peptide, dopamine- and cAMP-regulated phosphoprotein 32 kDa. The primary goal of this review is to introduce and summarize current literature surrounding the role of MCH in mediating the intake and reinforcement of commonly abused drugs, such as alcohol, cocaine, amphetamine, nicotine and opiates.
Collapse
Affiliation(s)
| | - Gazal Gulati
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Xiong L, Meng Q, Sun X, Lu X, Fu Q, Peng Q, Yang J, Oh KW, Hu Z. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca 2+ /calmodulin-dependent protein kinase II. J Neurochem 2018; 146:289-303. [PMID: 29313985 DOI: 10.1111/jnc.14289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. Cover Image for this issue: doi: 10.1111/jnc.14187.
Collapse
Affiliation(s)
- Lixia Xiong
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qing Meng
- Queen Mary Institute, School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Sun
- Anhui Sinobioway Cell Therapy CO., LTD, Hefei, Anhui, China
| | - Xiangtong Lu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.,Department of Respiration, Department Two, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Qinghua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key laboratory of Tumor Pathogens and Molecular Pathology and the Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
| |
Collapse
|
5
|
Yu C, Zhou X, Fu Q, Peng Q, Oh KW, Hu Z. A New Insight into the Role of CART in Cocaine Reward: Involvement of CaMKII and Inhibitory G-Protein Coupled Receptor Signaling. Front Cell Neurosci 2017; 11:244. [PMID: 28860971 PMCID: PMC5559471 DOI: 10.3389/fncel.2017.00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are neuropeptides that are expressed in brain regions associated with reward, such as the nucleus accumbens (NAc), and play a role in cocaine reward. Injection of CART into the NAc can inhibit the behavioral effects of cocaine, and injecting CART into the ventral tegmental area (VTA) reduces cocaine-seeking behavior. However, the exact mechanism of these effects is not clear. Recent research has demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and inhibitory G-protein coupled receptor (GPCR) signaling are involved in the mechanism of the effect of CART on cocaine reward. Hence, we review the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward and provide a new insight into the mechanism of that effect. In this article, we will first review the biological function of CART and discuss the role of CART in cocaine reward. Then, we will focus on the role of CaMKII and inhibitory GPCR signaling in cocaine reward. Furthermore, we will discuss how CaMKII and inhibitory GPCR signaling are involved in the mechanistic action of CART in cocaine reward. Finally, we will provide our opinions regarding the future directions of research on the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward.
Collapse
Affiliation(s)
- ChengPeng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang UniversityNanchang, China
| | - XiaoYan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang UniversityNanchang, China.,Department of Respiration, Department Two, Jiangxi Provincial People's HospitalNanchang, China
| | - QingHua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National UniversityCheongju, South Korea
| | - ZhenZhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical CollegeNanchang, China
| |
Collapse
|
6
|
Rakovska A, Baranyi M, Windisch K, Petkova-Kirova P, Gagov H, Kalfin R. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens. Brain Res Bull 2017; 134:246-252. [PMID: 28802898 DOI: 10.1016/j.brainresbull.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023]
Abstract
CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [3H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal levels of DOPET. At the same concentration, 0.1μM, CART (55-102) peptide did not have any effect on the release of noradrenaline. In the presence of CART (55-102) peptide, 0.1μM, the effect of cocaine, 30μM, on the basal dopamine release was inhibited and the effect on the basal DOPAC release substantially increased. To our knowledge, our findings are the first to show direct neurochemical evidence that CART (55-102) peptide plays a neuromodulatory role on the dopaminergic reward system by decreasing dopamine in the mouse nucleus accumbens and by attenuating cocaine-induced effects on dopamine release.
Collapse
Affiliation(s)
- Angelina Rakovska
- Lab. "Neuropeptides", Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria.
| | - Maria Baranyi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083, Budapest, Hungary
| | - Katalin Windisch
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083, Budapest, Hungary
| | - Polina Petkova-Kirova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Hristo Gagov
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tsankov Str. 8, 1164, Sofia, Bulgaria
| | - Reni Kalfin
- Lab. "Neuropeptides", Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
7
|
CART peptide in the nucleus accumbens regulates psychostimulants: Correlations between psychostimulant and CART peptide effects. Neuroscience 2017; 348:135-142. [PMID: 28215744 DOI: 10.1016/j.neuroscience.2017.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
In this study, we reexamined the effect of Cocaine-and-Amphetamine-Regulated-Transcript (CART) peptide on psychostimulant (PS)-induced locomotor activity (LMA) in individual rats. The Methods utilized were as previously published. The PS-induced LMA was defined as the distance traveled after PS administration (intraperitoneal), and the CART peptide effect was defined as the change in the PS-induced activity after bilateral intra-NAc administration of CART peptide. The experiments included both male and female Sprague-Dawley rats, and varying the CART peptide dose and the PS dose. While the average effect of CART peptide was to inhibit PS-induced LMA, the effect of CART peptide on individual PS-treated animals was not always inhibitory and sometimes even produced an increase or no change in PS-induced LMA. Upon further analysis, we observed a linear correlation, reported for the first time, between the magnitude of PS-induced LMA and the CART peptide effect. Because CART peptide inhibits PS-induced LMA when it is large, and increases PS-induced LMA when it is small, the peptide can be considered a homeostatic regulator of dopamine-induced LMA, which supports our earlier homeostatic hypothesis.
Collapse
|
8
|
Fu Q, Zhou X, Dong Y, Huang Y, Yang J, Oh KW, Hu Z. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction. PLoS One 2016; 11:e0159104. [PMID: 27404570 PMCID: PMC4942143 DOI: 10.1371/journal.pone.0159104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yun Dong
- Department of Breast Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- * E-mail: ;
| |
Collapse
|
9
|
Kaya E, Gozen O, Ugur M, Koylu EO, Kanit L, Balkan B. Nicotine regulates cocaine-amphetamine-Regulated Transcript (Cart) in the mesocorticolimbic system. Synapse 2016; 70:283-92. [PMID: 26990424 DOI: 10.1002/syn.21903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
Cocaine-and-Amphetamine Regulated Transcript (CART) mRNA and peptides are intensely expressed in the brain regions comprising mesocorticolimbic system. Studies suggest that CART peptides may have a role in the regulation of reward circuitry. The present study aimed to examine the effect of nicotine on CART expression in the mesocorticolimbic system. Three different doses of nicotine (0.2, 0.4, 0.6 mg/kg free base) were injected subcutaneously for 5 days, and on day 6, rats were decapitated following a challenge dose. CART mRNA and peptide levels in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (DST), amygdala (AMG), lateral hypothalamic area (LHA), and ventral tegmental area (VTA) were measured by quantitative real-time PCR (qPCR) and Western Blot analysis, respectively. In the mPFC, 0.4 and 0.6 mg/kg nicotine, decreased CART peptide levels whereas there was no effect on CART mRNA levels. In the VTA, a down-regulation of CART peptide expression was observed with 0.2 and 0.6 mg/kg nicotine. Conversely, 0.4 and 0.6 mg/kg nicotine increased CART mRNA levels in the AMG without affecting the CART peptide expression. Nicotine did not regulate CART mRNA or CART peptide expression in the NAc, DST, and LHA. We conclude that nicotine regulates CART expression in the mesocorticolimbic system and this regulation may play an important role in nicotine reward. Synapse 70:283-292, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Egemen Kaya
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Muzeyyen Ugur
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Ersin O Koylu
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Burcu Balkan
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| |
Collapse
|
10
|
Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015; 289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/27/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
|
11
|
Caffeine induces behavioural sensitization and overexpression of cocaine-regulated and amphetamine-regulated transcript peptides in mice. Behav Pharmacol 2014; 25:32-43. [PMID: 24366314 DOI: 10.1097/fbp.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study examined whether repeated administration of caffeine would induce behavioural sensitization and overexpression of cocaine-regulated and amphetamine-regulated transcript (CART) peptides in mice. The involvement of dopaminergic receptors and adenosine receptors in caffeine-induced behavioural sensitization and CART overexpression was studied. The relevance of D₁R and D₂R, and A₁R and A(2A)R in the overexpression of CART peptides in mouse striatum was also evaluated. Repeated administration of caffeine induced behavioural sensitization in mice. Significant increases in CART mRNA levels were observed on day 3 and peaked at day 5 of caffeine administration, and then decreased gradually. Higher proportions of CART⁺ cells were observed in the dorsolateral and ventrolateral part of the caudate putamen than in the nucleus accumbens shell and core. The behavioural sensitization induced by caffeine was inhibited by dopaminergic receptor antagonists and adenosine receptor agonists. D₁R and D₂R, and cyclic AMP (cAMP)/protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signalling were activated by caffeine, but A₁R and A(2A)R were inhibited. Overexpression of caffeine-induced CART peptides and pCREB activity were blocked by N-cyclopentyladenosine (CPA, an A₁R agonist) and 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680, an A(2A)R agonist), but not by R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390, a D₁R antagonist) or raclopride (a D₂R antagonist). Caffeine-induced overexpression of CART peptides was associated with the inhibition of A₁R and A(2A)R, and the activation of cAMP/PKA/pCREB signalling. Moreover, the A(2A)R-D₂R heterodimer might be involved in the overexpression of CART peptides induced by caffeine.
Collapse
|
12
|
Peng Q, Sun X, Liu Z, Yang J, Oh KW, Hu Z. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization. Neurochem Int 2014; 75:105-11. [PMID: 24953280 DOI: 10.1016/j.neuint.2014.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/15/2022]
Abstract
Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102.
Collapse
Affiliation(s)
- Qinghua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 33006, China
| | - Xi Sun
- Evidence Identification Center, Department of Jiangxi Provincial Public Security, Nanchang, Jiangxi 33006, China
| | - Ziyong Liu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 33006, China
| | - Jianghua Yang
- Evidence Identification Center, Department of Jiangxi Provincial Public Security, Nanchang, Jiangxi 33006, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 33006, China.
| |
Collapse
|
13
|
Lee JS, Lee HS. Reciprocal connections between CART-immunoreactive, hypothalamic paraventricular neurons and serotonergic dorsal raphe cells in the rat: Light microscopic study. Brain Res 2014; 1560:46-59. [DOI: 10.1016/j.brainres.2014.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/13/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
14
|
Job MO, Kuhar MJ. Intraperitoneal Administration of CART 55-102 Inhibits Psychostimulant-Induced Locomotion. ACTA ACUST UNITED AC 2012; 1. [PMID: 23705073 DOI: 10.4303/jdar/235601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CART (cocaine and amphetamine regulated transcript) peptide functions as both a neurotransmitter and a hormone and is found both in the central nervous system (CNS) and in the periphery. CART peptide in the nucleus accumbens (NAc) has been implicated in the regulation of cocaine-dopamine-mediated locomotion and self-administration, and amphetamine-mediated locomotion and behavior. However, there are no studies on the effect of systemic administration of CART peptide on cocaine and amphetamine-mediated locomotion. In this study, we tested if the systemic administration of CART 55-102 by the intraperitoneal (ip) route has a functional effect on psychostimulant-mediated locomotion in rats as it does when given into the brain. We determined that ip CART 55-102 attenuates psychostimulant-mediated locomotion as it does when administered into the NAc and display a biphasic dose response curve.
Collapse
Affiliation(s)
- Martin O Job
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA
| | | |
Collapse
|
15
|
Moffett MC, Song J, Kuhar MJ. CART peptide inhibits locomotor activity induced by simultaneous stimulation of D1 and D2 receptors, but not by stimulation of individual dopamine receptors. Synapse 2011; 65:1-7. [PMID: 20506412 DOI: 10.1002/syn.20815] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CART (Cocaine- and amphetamine-regulated transcript) peptide has been implicated in playing a modulatory role in reward and reinforcement. Previously, our laboratory demonstrated that injections of CART peptide (CART 55-102) into the nucleus accumbens (NAc) attenuated both cocaine- and dopamine-induced increases in locomotor activity (LMA), and attenuated cocaine reward as well. In this study, the effects of CART peptide on LMA induced by dopamine receptor agonists were evaluated after intraaccumbal injections in male, Sprague-Dawley rats. Effects of the D1 receptor agonist SKF-81,297, saline, CART 55-102, or CART 55-102 and SKF-81,297 together were compared. The SKF-81,297-induced increase in LMA was potentiated by coadministration of CART, while injection of CART alone had no significant effect. Injection of the D2 agonist 7-OH-DPAT had no effect on LMA, and the combination of both 7-OH-DPAT and CART peptide also had no effect. Quinelorane, a D3 receptor agonist, did not alter LMA, nor did the combination of CART peptide and quinelorane. The next experiment examined the effects of CART peptide on LMA induced by coinjection of both the D1 agonist SKF-81,297 and the D2 agonist 7-OH-DPAT. The combination of SKF-81,297 and 7-OH-DPAT induced greater LMA than SKF-81,297 alone. Coadministration of CART peptide along with the D1 and D2 agonists reduced LMA. These results strongly suggest that CART peptide reduces the effects of psychostimulants by modulating the simultaneous activation of both D1 and D2 dopamine receptors rather than by affecting the action of any individual dopamine receptor.
Collapse
Affiliation(s)
- Mark C Moffett
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
16
|
Upadhya MA, Dandekar MP, Kokare DM, Singru PS, Subhedar NK. Evidence for the participation of cocaine- and amphetamine-regulated transcript peptide (CART) in the fluoxetine-induced anti-hyperalgesia in neuropathic rats. Peptides 2011; 32:317-26. [PMID: 21167239 DOI: 10.1016/j.peptides.2010.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/24/2010] [Accepted: 09/25/2010] [Indexed: 11/21/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) has a role in chronic pain, and also in the actions of selective serotonin reuptake inhibitors (SSRIs) employed in the treatment of neuropathic pain. Herein, we test the hypothesis that CART may mediate the anti-hyperalgesic effect of the SSRI, fluoxetine, in neuropathic rats. Sciatic nerve in the right hind paw of rat was ligated to induce neuropathic pain, and the paw withdrawal latency was evaluated using Hargreaves apparatus. Fluoxetine [5-25mg/kg, intraperitoneal (ip)] or CART (54-102) [0.1-1.5μg/rat, intracerebroventricular (icv)] dose-dependently attenuated the hyperalgesic response observed in neuropathic rats, indicating anti-nociceptive properties of each agent. The anti-hyperalgesic effect of fluoxetine was potentiated by the subeffective dose of CART, and attenuated by CART-antibody (1:500 dilution; 5μl/rat, icv); CART-antibody had no effect per se. Isobolographic analysis showed a significant synergism between fluoxetine and CART, and antagonism between fluoxetine and CART-antibody. Immunocytochemical labeling with monoclonal antibodies against CART showed drastic increase in CART-immunoreactive fibers in the ventrolateral periaqueductal gray (VLPAG; 116%), dorsal subdivision of dorsal raphe nucleus (DRD; 176%), and locus coeruleus (LC; 733%) of neuropathic animals. Fluoxetine treatment significantly reduced the immunoreactivity in these areas. However, CART-immunoreactive cells and fibers in the arcuate nucleus did not respond to neuropathy or fluoxetine treatments. We suggest that the CART innervation of DRD, LC and VLPAG may be involved in the (i) central processing of neuropathic pain and (ii) fluoxetine-induced anti-hyperalgesic effect in neuropathic pain.
Collapse
Affiliation(s)
- Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur 440033, India
| | | | | | | | | |
Collapse
|
17
|
James MH, Charnley JL, Jones E, Levi EM, Yeoh JW, Flynn JR, Smith DW, Dayas CV. Cocaine- and amphetamine-regulated transcript (CART) signaling within the paraventricular thalamus modulates cocaine-seeking behaviour. PLoS One 2010; 5:e12980. [PMID: 20886038 PMCID: PMC2944892 DOI: 10.1371/journal.pone.0012980] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/23/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cocaine- and amphetamine-regulated transcript (CART) has been demonstrated to play a role in regulating the rewarding and reinforcing effects of various drugs of abuse. A recent study demonstrated that i.c.v. administration of CART negatively modulates reinstatement of alcohol seeking, however, the site(s) of action remains unclear. We investigated the paraventricular thalamus (PVT) as a potential site of relapse-relevant CART signaling, as this region is known to receive dense innervation from CART-containing hypothalamic cells and to project to a number of regions known to be involved in mediating reinstatement, including the nucleus accumbens (NAC), medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). METHODOLOGY/PRINCIPAL FINDINGS Male rats were trained to self-administer cocaine before being extinguished to a set criterion. One day following extinction, animals received intra-PVT infusions of saline, tetrodotoxin (TTX; 2.5 ng), CART (0.625 µg or 2.5 µg) or no injection, followed by a cocaine prime (10 mg/kg, i.p.). Animals were then tested under extinction conditions for one hour. Treatment with either TTX or CART resulted in a significant attenuation of drug-seeking behaviour following cocaine-prime, with the 2.5 µg dose of CART having the greatest effect. This effect was specific to the PVT region, as misplaced injections of both TTX and CART resulted in responding that was identical to controls. CONCLUSIONS/SIGNIFICANCE We show for the first time that CART signaling within the PVT acts to inhibit drug-primed reinstatement of cocaine seeking behaviour, presumably by negatively modulating PVT efferents that are important for drug seeking, including the NAC, mPFC and BLA. In this way, we identify a possible target for future pharmacological interventions designed to suppress drug seeking.
Collapse
Affiliation(s)
- Morgan H. James
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Janine L. Charnley
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Emma Jones
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Emily M. Levi
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jiann Wei Yeoh
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jamie R. Flynn
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Douglas W. Smith
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Christopher V. Dayas
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- * E-mail:
| |
Collapse
|
18
|
Eisener-Dorman AF, Grabowski-Boase L, Steffy BM, Wiltshire T, Tarantino LM. Quantitative trait locus and haplotype mapping in closely related inbred strains identifies a locus for open field behavior. Mamm Genome 2010; 21:231-46. [DOI: 10.1007/s00335-010-9260-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
19
|
Hubert GW, Manvich DF, Kuhar MJ. Cocaine and amphetamine-regulated transcript-containing neurons in the nucleus accumbens project to the ventral pallidum in the rat and may inhibit cocaine-induced locomotion. Neuroscience 2009; 165:179-87. [PMID: 19825396 DOI: 10.1016/j.neuroscience.2009.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide colocalizes with GABA, dynorphin, D1 receptors, and substance P in some neurons in the nucleus accumbens (NAcc). One of the main nuclei that receive accumbal efferents is the ventral pallidum (VP), and both dynorphin and substance P have been shown to be present in the cell bodies and terminals of this projection. Thus, we investigated whether CART peptide is also present in the VP in terminals that originate in the accumbens. The anterograde tracer Phaseolus vulgaris leukoagglutinin (PHA-L) colocalized with CART in neuronal processes in the VP when injected into the NAcc. Also, CART colocalized with the retrograde tracer r-BDA in accumbens cell bodies after the tracer was injected into the VP. Using electron microscopic immunocytochemistry, we examined CART terminals in the VP and found that CART-immunoreactive terminals formed symmetric synapses consistent with inhibitory GABAergic synapses. These synapses closely resemble GABAergic synapses in the substantia nigra pars reticulata (SNr), another nucleus that receives some CART-containing accumbal efferents. Lastly, we found that intra-pallidal injection of CART 55-102 inhibited cocaine-induced locomotion, indicating that CART peptide in the VP can have functional effects.
Collapse
Affiliation(s)
- G W Hubert
- Yerkes National Primate Research Center of Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
20
|
Dandekar MP, Singru PS, Kokare DM, Subhedar NK. Cocaine- and amphetamine-regulated transcript peptide plays a role in the manifestation of depression: social isolation and olfactory bulbectomy models reveal unifying principles. Neuropsychopharmacology 2009; 34:1288-300. [PMID: 19005467 DOI: 10.1038/npp.2008.201] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the effect of cocaine- and amphetamine-regulated transcript (CART) peptide on depression-like behavior in socially isolated and olfactory bulbectomized (OBX) rats. Administration of CART (54-102) into the lateral ventricle (50-100 ng) or central nucleus of amygdala (CeA) (10-20 ng) caused significant decrease in immobility time in the forced swim test (FST) without influencing locomotion, suggesting antidepressant-like effect. Social isolation as well as OBX models were undertaken to produce depression-like conditions. Although isolation reared (6 weeks) rats showed significant increase in immobility time in FST, OBX animals exhibited hyperactivity (increase in the ambulation, rearing, grooming, and defecation scores) on day 14 in the open-field test. The isolation- or OBX-induced depression-like phenotypes were reversed following acute or subchronic treatment of CART, respectively, given via intracerebroventricular and intra-CeA routes. Drastic reduction in CART-immunoreactivity was observed in most cells in the paraventricular (PVN), arcuate and Edinger-Westphal nuclei of the socially isolated and OBX animals. Although the fibers in the PVN showed variable response, those in ARC and prefrontal cortex did not change. The CART-immunoreactive fibers in the locus coeruleus also showed highly significant reduction. However, dramatic increase in CART-immunoreactive fibers was noticed in the CeA in both the experimental models. The response by the cells and fibers in the periventricular area and perifornical nucleus in the OBX and socially isolated rats was variable. The study underscores the possibility that endogenous CART system might play a major role in mediating symptoms of depression.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur, India
| | | | | | | |
Collapse
|
21
|
Regulation of CART peptide expression by CREB in the rat nucleus accumbens in vivo. Brain Res 2008; 1251:42-52. [PMID: 19046951 DOI: 10.1016/j.brainres.2008.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/22/2008] [Accepted: 11/01/2008] [Indexed: 11/20/2022]
Abstract
Production of mRNA from the cocaine- and amphetamine-regulated transcript (CART) gene is regulated by cocaine and other drugs of abuse in the nucleus accumbens (NAc), a brain reward region. Current hypotheses postulate that CART peptides there oppose the rewarding actions of cocaine by opposing the effects of dopaminergic transmission. Since over expression of CREB was shown to decrease cocaine-mediated reward, we hypothesized that CART could be a target gene for CREB in the NAc and that over expression of CREB would increase CART peptide levels. Transcription factor (TF) binding to DNA is influenced by sequences adjacent to consensus TF binding sites and other factors. We thus examined CREB binding to a 27mer oligonucleotide containing the CRE sequence from the CART gene proximal promoter. Using electrophoretic mobility shift assays and TF-antibody super shift assays, CREB was found to bind to the CRE sequence from the CART promoter. To test if over expression of CREB in the NAc affected CART peptide levels, Herpes simplex virus-1 vectors over expressing CREB (HSV-CREB), or a vector that expressed LacZ (HSV-LacZ) as a control, were injected into the NAc of rats. Western blotting and in situ hybridization showed that HSV-CREB injections increased CART mRNA and peptide levels. Injections of a dominant negative CREB mutant (HSV-mCREB) did not alter either CART mRNA or peptide levels. The finding that CREB can regulate the levels of CART mRNA and peptides in vivo in the NAc supports a role for CART peptides in psychostimulant-induced reward and reinforcement.
Collapse
|
22
|
Hubert GW, Kuhar MJ. Cocaine administration increases the fraction of CART cells in the rat nucleus accumbens that co-immunostain for c-Fos. Neuropeptides 2008; 42:339-43. [PMID: 18314190 PMCID: PMC2493299 DOI: 10.1016/j.npep.2008.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/14/2007] [Accepted: 01/12/2008] [Indexed: 11/29/2022]
Abstract
In order to further test whether or not psychostimulant drugs activate CART peptide-containing cells in the nucleus accumbens, we examined the fraction of CART positive cells that co-immunostained for c-Fos after administration of saline or cocaine (10 and 25 mg/kg i.p.). There was about a 45% increase in the fraction of cells that stained for both CART and c-Fos after administration of cocaine, but there was no change in the fraction after administration of saline. Moreover, the increase was not found 24h after injection and is therefore reversible. These results support the notion that psychostimulant drugs activate CART cells in the nucleus accumbens, even under conditions where it is difficult to show a change in CART levels.
Collapse
Affiliation(s)
- G W Hubert
- Division of Neuroscience, The National Yerkes Primate Research Center of Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
23
|
Jaworski JN, Hansen ST, Kuhar MJ, Mark GP. Injection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens reduces cocaine self-administration in rats. Behav Brain Res 2008; 191:266-71. [PMID: 18485497 DOI: 10.1016/j.bbr.2008.03.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/27/2008] [Accepted: 03/30/2008] [Indexed: 10/22/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides appear to modulate various effects of psychostimulant drugs. Injections of CART peptide into the nucleus accumbens (NAcc) inhibit locomotion produced by systemic injections of the psychostimulants cocaine and amphetamine. Intra-NAcc injections of CART peptide also inhibit locomotion produced by microinfusions of dopamine into the NAcc, suggesting that the effects of CART peptides may be due to an interaction with the dopaminergic system in the NAcc. We sought to determine if this inhibitory effect of CART peptide generalizes to other measures of dopaminergic function such as reward/reinforcement by testing the effect of bilateral intra-NAcc CART infusions (0, 0.25, 1.0 and 2.5 microg per side) on cocaine and food self-administration. One group of rats self-administered cocaine (0.75 mg/kg per 140 microl IV infusion) on a progressive ratio schedule. A separate group received 45 mg food pellets on the same progressive ratio schedule. Bilateral intra-NAcc injections of CART peptide dose-dependently decreased the number of cocaine infusions, the breakpoint of cocaine self-administration, and the total number of bar presses on the cocaine-associated lever. There were no effects of CART injections on the breakpoint for food reward. Thus, we conclude that injections of CART into the NAcc appear to functionally antagonize a major site of action for cocaine self-administration in rats.
Collapse
Affiliation(s)
- Jason N Jaworski
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, School of Medicine, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
24
|
Choi YH, Li C, Hartzell DL, Little DE, Della-Fera MA, Baile CA. ICV leptin effects on spontaneous physical activity and feeding behavior in rats. Behav Brain Res 2008; 188:100-8. [DOI: 10.1016/j.bbr.2007.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/19/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
25
|
Genetic regulation of hypothalamic cocaine and amphetamine-regulated transcript (CART) in BxD inbred mice. Brain Res 2007; 1194:1-7. [PMID: 18199428 DOI: 10.1016/j.brainres.2007.11.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Cocaine and Amphetamine-Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2 cM) and chromosome 11 (between 20-36 cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide.
Collapse
|
26
|
Hubert GW, Jones DC, Moffett MC, Rogge G, Kuhar MJ. CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem Pharmacol 2007; 75:57-62. [PMID: 17854774 PMCID: PMC3804336 DOI: 10.1016/j.bcp.2007.07.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 12/27/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides (CART 55-102 and CART 62-102) are peptidergic neurotransmitters that are widely but specifically distributed throughout the brain, gut and other parts of the body. They are found in many brain regions associated with drug addiction including the nucleus accumbens, ventral tegmental area and ventral pallidum. Injections of CART 55-102 into the nucleus accumbens have no effect on basal locomotor activity. However, an injection of CART just before an i.p. injection of cocaine reduces the locomotor activating effects of cocaine. These and other data suggest that CART in the accumbens blunts the effects of cocaine. A hypothesis is that CART is homeostatic in the accumbens and tends to oppose large increases in dopamine signaling. These actions would therefore be able to regulate the effects of some abused drugs such as the psychostimulants.
Collapse
Affiliation(s)
- George W Hubert
- Division of Neuroscience, The Yerkes National Primate Research Center of Emory University, 954 Gatewood Road, NE, Atlanta, GA 30329, USA.
| | | | | | | | | |
Collapse
|
27
|
Kim S, Yoon HS, Kim JH. CART peptide 55-102 microinjected into the nucleus accumbens inhibits the expression of behavioral sensitization by amphetamine. ACTA ACUST UNITED AC 2007; 144:6-9. [PMID: 17706801 DOI: 10.1016/j.regpep.2007.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/08/2007] [Accepted: 07/06/2007] [Indexed: 11/15/2022]
Abstract
CART peptide has been shown to regulate the actions of psychomotor stimulants. Here we have further investigated the role of the biologically active CART 55-102 peptide in the nucleus accumbens (NAcc) in the expression of behavioral sensitization by amphetamine (AMPH). Rats were pre-exposed 5 times to either saline or AMPH (1 mg/kg, i.p.). After 2 weeks of withdrawal, rats were microinjected into the NAcc with saline or CART 55-102 (1.0, or 2.5 microg/0.5 microl/side) followed by AMPH challenge (1 mg/kg, i.p.). The enhanced increase of locomotion and rearing produced by repeated AMPH pre-exposures was dose-dependently inhibited by microinjection into the NAcc of CART 55-102 peptide. These results indicate that CART 55-102 peptide in the NAcc can play a compensatory inhibitory role in the expression of behavioral sensitization by AMPH and further suggest that CART peptide may be a useful target to control the drug addiction by psychomotor stimulants.
Collapse
Affiliation(s)
- Seungwoo Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
28
|
Yoon HS, Kim S, Park HK, Kim JH. Microinjection of CART peptide 55-102 into the nucleus accumbens blocks both the expression of behavioral sensitization and ERK phosphorylation by cocaine. Neuropharmacology 2007; 53:344-51. [PMID: 17610912 DOI: 10.1016/j.neuropharm.2007.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/17/2007] [Accepted: 05/21/2007] [Indexed: 11/30/2022]
Abstract
The role of the biologically active CART 55-102 peptide in the nucleus accumbens (NAcc) in the expression of cocaine-induced behavioral sensitization was investigated. Rats were divided into four groups: one for saline and the other three for cocaine pre-exposures (15 mg/kg, i.p., once daily for 7 days). After 3 weeks of withdrawal, rats were microinjected into the NAcc either saline or CART 55-102 (1.0, or 2.5 microg/0.5 microl/side) followed by cocaine challenge (10 mg/kg, i.p.). Microinjection into the NAcc of CART 55-102 peptide dose-dependently blocked the expression of locomotor sensitization produced by repeated cocaine pre-exposures. Next, we further examined the effect of CART 55-102 microinjection on extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation levels in the NAcc. Additional four groups of rats were all cocaine pre-exposed and, after 3 weeks of withdrawal, they were either saline or cocaine challenged systemically following microinjection into the NAcc of either saline, CART 55-102 (2.5 microg/0.5 microl/side), or the equivalent mole amount of inactive CART 1-27 peptide. The increase of ERK1/2 phosphorylation levels in the NAcc by cocaine was completely blocked by CART 55-102 microinjection in this site, while it remains unaffected by inactive CART 1-27 peptide. These results suggest that CART 55-102 peptide in the NAcc may play a compensatory inhibitory role in the expression of behavioral sensitization by cocaine and these effects may be mediated by its inhibition of ERK1/2 phosphorylation in this site.
Collapse
Affiliation(s)
- Hyung Shin Yoon
- Department of Physiology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 134 Shinchondong, Seodaemungu, Seoul 120-752, South Korea
| | | | | | | |
Collapse
|
29
|
Jones DC, Kuhar MJ. CART receptor binding in primary cell cultures of the rat nucleus accumbens. Synapse 2007; 62:122-7. [DOI: 10.1002/syn.20476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|