1
|
Barbosa GADC, Rubinho MP, Aquino-Júnior MK, Pedro JR, Donato LF, Trisciuzzi L, Silva AO, Ruginsk SG, Ceron CS, Peixoto N, Dias MVS, Pereira MGAG. Neuritogenesis and protective effects activated by Angiotensin 1-7 in astrocytes-neuron interaction. Neuropeptides 2024; 108:102480. [PMID: 39500142 DOI: 10.1016/j.npep.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024]
Abstract
The renin angiotensin system (RAS) has been studied for its effects on various neurological disorders. The identification of functional receptors for Ang-(1-7) and Ang II peptides in astrocytes highlights the physiological modulation and the important role of these cells in the central nervous system. The present study aims to understand the role of RAS peptides, particularly Ang-(1-7) and Ang II, in the secretion of trophic factors by astrocytes and their effects on hippocampal neurons. We used primary cultures of astrocytes and neurons from the hippocampus of either sex neonate of Wistar strain rats. In the present study, we demonstrated that the treatment of astrocytes with Ang-(1-7) acts on the modulation of these cells, inducing reactive astrogliosis, identified through the increase in the expression of GFAP. Furthermore, we obtained a conditioned medium from astrocytes treated with Ang-(1-7), which in addition to promoting the secretion of neurotrophic factors essential for neuronal-glial interactions that are fundamental for neuritogenesis and neuronal survival, showed a neuroprotective effect against glutamatergic excitotoxicity. In turn, Ang II does not exhibit the same effects on astrocyte modulation, exacerbating deleterious effects on brain RAS. Neuron-astrocyte interactions have been shown to be an integral part of the central effects mediated by RAS, and this study has significantly contributed to the understanding of the biochemical mechanisms involved in the functioning of this system.
Collapse
Affiliation(s)
| | - Marina Prado Rubinho
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Lívia Fligioli Donato
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Leonardo Trisciuzzi
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Silvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nathalia Peixoto
- Electrical & Computer Engineering Department, George Mason University, Fairfax, VA, United States of America
| | | | | |
Collapse
|
2
|
Gallardo-Ortíz IA, Oros-González A, Rodríguez-Manzo G, Garduño-Gutiérrez R, Aragón-Martínez A, Páez-Martínez N. Effect of exercise duration on toluene-induced locomotor sensitization in mice: a focus on the Renin Angiotensin System. Psychopharmacology (Berl) 2024; 241:2157-2170. [PMID: 38839630 DOI: 10.1007/s00213-024-06626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Exercise attenuates addictive behavior; however, little is known about the contribution of exercise duration to this positive effect. The Renin Angiotensin System (RAS) has been implicated both in addictive responses and in the beneficial effects of exercise; though, its role in the advantageous effects of exercise on toluene-induced addictive responses has not been explored. OBJECTIVES To evaluate the impact of different exercise regimens in mitigating the expression of toluene-induced locomotor sensitization and to analyze changes in RAS elements' expression at the mesocorticolimbic system after repeated toluene exposure and following voluntary wheel running in toluene-sensitized animals. METHODS Toluene-induced addictive-like response was evaluated with a locomotor sensitization model in mice. Toluene-sensitized animals had access to running wheels 1, 2, 4 or 24 h/day for 4 weeks; thereafter, locomotor sensitization expression was evaluated after a toluene challenge. RAS elements (ACE and ACE2 enzymes; AT1, AT2 and Mas receptors) expression was determined by Western blot in the VTA, NAc and PFCx of toluene-sensitized mice with and without exercise. RESULTS Individual differences in toluene-induced locomotor sensitization development were observed. Access to wheel running 1 and 2 h/day reduced but 4 and 24 h/day completely blocked locomotor sensitization expression. Repeated toluene exposure changed RAS elements' expression in the VTA, NAc and PFCx, while exercise mainly modified ACE and AT1 in air-exposed and toluene-sensitized mice. CONCLUSIONS Inhalant-exposed animals show different sensitization phenotypes. Exercise duration determined its efficacy to attenuate the addictive-like response. Toluene exposure and exercise each modified RAS, the latter also modifying toluene-induced changes.
Collapse
Affiliation(s)
- Itzell A Gallardo-Ortíz
- Unidad de Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Alain Oros-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Sede Sur, Ciudad de México, México
| | - René Garduño-Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Sede Sur, Ciudad de México, México
| | - Andrés Aragón-Martínez
- Unidad de Biomedicina, Carrera de Biología, Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Nayeli Páez-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.
- Laboratorio Integrativo para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México, México.
| |
Collapse
|
3
|
Guo X, Ma H, Cui Z, Zhao Q, Zhang Y, Jia L, Zhang L, Guo H, Zhang X, Zhang Y, Guan Y, Ma H. Chronic Intermittent Hypobaric Hypoxia Reduces Hypothalamic N-Methyl-d-Aspartate Receptor Activity and Sympathetic Outflow in Spontaneously Hypertensive Rats. High Alt Med Biol 2024; 25:77-88. [PMID: 38241485 DOI: 10.1089/ham.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Guo, Xinqi, Hongyu Ma, Ziye Cui, Qiyue Zhao, Ying Zhang, Lu Jia, Liping Zhang, Hui Guo, Xiangjian Zhang, Yi Zhang, Yue Guan, and Huijie Ma. Chronic intermittent hypobaric hypoxia reduces hypothalamic N-Methyl-d-Aspartate Receptor activity and sympathetic outflow in spontaneously hypertensive rats. High Alt Med Biol. 25:77-88, 2024. Objective: This study aims to determine the role of hypothalamic renin-angiotensin system (RAS) in the antihypertensive effect of chronic intermittent hypobaric hypoxia (CIHH). Methods: Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) received 35 days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h/day. The levels of RAS, blood pressure, and N-methyl-d-aspartate receptor (NMDAR) activities of hypothalamic paraventricular nucleus (PVN) presympathetic neurons from each group of rats were determined. Results: The systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure (MAP) of SHRs significantly decreased from the third week of CIHH treatment. This blood pressure reduction effect could be maintained for at least 2 weeks after stopping the CIHH treatment. CIHH treatment also attenuated the decrease in MAP and renal sympathetic nerve activity induced by hexamethonium administration in SHRs, but not in WKY rats. Furthermore, CIHH reversed the increase in serum angiotensin (Ang)II concentration and the expression of PVN angiotensin-converting enzyme (ACE) and AngII type 1 (AT1) receptors, as well as the decrease in serum Ang1-7 concentration and the expression of PVN ACE2 and Mas receptors in SHRs. In addition, the administration of CIHH resulted in a reduction in the frequency of miniature excitatory postsynaptic currents and amplitude of NMDAR current in PVN presympathetic neurons of SHRs, which means that CIHH decreased the pre- and postsynaptic NMDAR activity of PVN presympathetic neurons in SHRs. However, pretreatment with A779 (a Mas receptor blocker) or AngII abrogated the above effects. Meanwhile, Ang1-7 pretreatment mimicked the CIHH effect on pre- and postsynaptic NMDAR activity of presympathetic neurons in SHRs. Conclusions: Our data indicate that CIHH reduces pre- and postsynaptic NMDAR activity of PVN presympathetic neurons, sympathetic outflow, and blood pressure by decreasing the activity of the ACE/AngII/AT1 axis and increasing the activity of ACE2/Ang1-7/Mas axis in the hypothalamus in hypertension.
Collapse
Affiliation(s)
- Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ziye Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ying Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lu Jia
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
4
|
Gomes-de-Souza L, Santana FG, Duarte JO, Barretto-de-Souza L, Crestani CC. Angiotensinergic neurotransmission in the bed nucleus of the stria terminalis is involved in cardiovascular responses to acute restraint stress in rats. Pflugers Arch 2023; 475:517-526. [PMID: 36715761 DOI: 10.1007/s00424-023-02791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023]
Abstract
The brain angiotensin II acting via AT1 receptors is a prominent mechanism involved in physiological and behavioral responses during aversive situations. The AT2 receptor has also been implicated in stress responses, but its role was less explored. Despite these pieces of evidence, the brain sites related to control of the changes during aversive threats by the brain renin-angiotensin system (RAS) are poorly understood. The bed nucleus of the stria terminalis (BNST) is a limbic structure related to the cardiovascular responses by stress, and components of the RAS system were identified in this forebrain region. Therefore, we investigated the role of angiotensinergic neurotransmission present within the BNST acting via local AT1 and AT2 receptors in cardiovascular responses evoked by an acute session of restraint stress in rats. For this, rats were subjected to bilateral microinjection of either the angiotensin-converting enzyme inhibitor captopril, the selective AT1 receptor antagonist losartan, or the selective AT2 receptor antagonist PD123319 before they underwent the restraint stress session. We observed that BNST treatment with captopril reduced the decrease in tail skin temperature evoked by restraint stress, without affecting the pressor and tachycardic responses. Local AT2 receptor antagonism within the BNST reduced both the tachycardia and the drop in tail skin temperature during restraint. Bilateral microinjection of losartan into the BNST did not affect the restraint-evoked cardiovascular changes. Taken together, these data indicate an involvement of BNST angiotensinergic neurotransmission acting via local AT2 receptors in cardiovascular responses during stressful situations.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Flávia G Santana
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Barretto-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
5
|
Rukavina Mikusic NL, Gironacci MM. Mas receptor endocytosis and signaling in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:49-65. [PMID: 36631200 DOI: 10.1016/bs.pmbts.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The renin angiotensin system (RAS) plays a major role in blood pressure regulation and electrolyte homeostasis and is mainly composed by two axes mediating opposite effects. The pressor axis, constituted by angiotensin (Ang) II and the Ang II type 1 receptor (AT1R), exerts vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory actions, while the depressor/protective axis, represented by Ang-(1-7), its Mas receptor (MasR) and the Ang II type 2 receptor (AT2R), opposes the actions elicited by the pressor arm. The MasR belongs to the G protein-coupled receptor (GPCR) family. To avoid receptor overstimulation, GPCRs undergo internalization and trafficking into the cell after being stimulated. Then, the receptor may induce other signaling cascades or it may even interact with other receptors, generating distinct biological responses. Thus, control of a GPCR regarding space and time affects the specificity of the signals transduced by the receptor and the ultimate cellular response. The present chapter is focused on the signaling and trafficking pathways of MasR under physiological conditions and its participation in the pathogenesis of numerous brain diseases.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- From Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- From Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
7
|
Xue B, Xue J, Yu Y, Wei SG, Beltz TG, Felder RB, Johnson AK. Predator Scent-Induced Sensitization of Hypertension and Anxiety-like Behaviors. Cell Mol Neurobiol 2022; 42:1141-1152. [PMID: 33201417 PMCID: PMC8126575 DOI: 10.1007/s10571-020-01005-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD), an anxiety-related syndrome, is associated with increased risk for cardiovascular diseases. The present study investigated whether predator scent (PS) stress, a model of PTSD, induces sensitization of hypertension and anxiety-like behaviors and underlying mechanisms related to renin-angiotensin systems (RAS) and inflammation. Coyote urine, as a PS stressor, was used to model PTSD. After PS exposures, separate cohorts of rats were studied for hypertensive response sensitization (HTRS), anxiety-like behaviors, and changes in plasma levels and mRNA expression of several components of the RAS and proinflammatory cytokines (PICs) in the lamina terminalis (LT), paraventricular nucleus (PVN), and amygdala (AMY). Rats exposed to PS as compared to control animals exhibited (1) a significantly greater hypertensive response (i.e., HTRS) when challenged with a slow-pressor dose of angiotensin (ANG) II, (2) significant decrease in locomotor activity and increase in time spent in the closed arms of a plus maze as well as general immobility (i.e., behavioral signs of increased anxiety), (3) upregulated plasma levels of ANG II and interleukin-6, and (4) increased expression of message for components of the RAS and PICs in key brain nuclei. All the PS-induced adverse effects were blocked by pretreatment with either an angiotensin-converting enzyme antagonist or a tumor necrosis factor-α inhibitor. The results suggest that PS, used as an experimental model of PTSD, sensitizes ANG II-induced hypertension and produces behavioral signs of anxiety, probably through upregulation of RAS components and inflammatory markers in plasma and brain areas associated with anxiety and blood pressure control.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA.
| | - Jiarui Xue
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA
| | - Yang Yu
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Shun-Guang Wei
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- The Franҫois M. Abboud Cardiovascular Research Center University of Iowa, Iowa City, IA, 52242, USA
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA
| | - Robert B Felder
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- The Franҫois M. Abboud Cardiovascular Research Center University of Iowa, Iowa City, IA, 52242, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, PBSB, 340 Iowa Ave, Iowa City, IA, 52242, USA
- Health and Human Physiology, University of Iowa, Iowa City, IA, 52242, USA
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
- The Franҫois M. Abboud Cardiovascular Research Center University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
8
|
Rukavina Mikusic NL, Pineda AM, Gironacci MM. Angiotensin-(1-7) and Mas receptor in the brain. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte homeostasis. Besides its importance as regulator of the cardiovascular function, the RAS has also been associated to the modulation of higher brain functions, including cognition, memory, depression and anxiety. For many years, angiotensin II (Ang II) has been considered the major bioactive component of the RAS. However, the existence of many other biologically active RAS components has currently been recognized, with similar, opposite, or distinct effects to those exerted by Ang II. Today, it is considered that the RAS is primarily constituted by two opposite arms. The pressor arm is composed by Ang II and the Ang II type 1 (AT1) receptor (AT1R), which mediates the vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory effects of the RAS. The depressor arm is mainly composed by Ang-(1-7), its Mas receptor (MasR) which mediates the depressor, vasodilatory, antiproliferative, antioxidant and anti-inflammatory effects of Ang-(1-7) and the AT2 receptor (AT2R), which opposes to the effects mediated by AT1R activation. Central Ang-(1-7) is implicated in the control of the cardiovascular function, thus participating in the regulation of blood pressure. Ang-(1-7) also exerts neuroprotective actions through MasR activation by opposing to the harmful effects of the Ang II/AT1R axis. This review is focused on the expression and regulation of the Ang-(1-7)/MasR axis in the brain, its main neuroprotective effects and the evidence regarding its involvement in the pathophysiology of several diseases at cardiovascular and neurological level.
Collapse
Affiliation(s)
- Natalia L. Rukavina Mikusic
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Angélica M. Pineda
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| |
Collapse
|
9
|
Marchi-Coelho C, Costa-Ferreira W, Reis-Silva LL, Crestani CC. Angiotensinergic Neurotransmissions in the Medial Amygdala Nucleus Modulate Behavioral Changes in the Forced Swimming Test Evoked by Acute Restraint Stress in Rats. Cells 2021; 10:1217. [PMID: 34067508 PMCID: PMC8156471 DOI: 10.3390/cells10051217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of angiotensin II type 1 (AT1 receptor) and type 2 (AT2 receptor) and MAS receptors present in the medial amygdaloid nucleus (MeA) in behavioral changes in the forced swimming test (FST) evoked by acute restraint stress in male rats. For this, rats received bilateral microinjection of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective MAS receptor antagonist A-779, or vehicle 10 min before a 60 min restraint session. Then, behavior in the FST was evaluated immediately after the restraint (15 min session) and 24 h later (5 min session). The behavior in the FST of a non-stressed group was also evaluated. We observed that acute restraint stress decreased immobility during both sessions of the FST in animals treated with vehicle in the MeA. The decreased immobility during the first session was inhibited by intra-MeA administration of PD123319, whereas the effect during the second session was not identified in animals treated with A-779 into the MeA. Microinjection of PD123319 into the MeA also affected the pattern of active behaviors (i.e., swimming and climbing) during the second session of the FST. Taken together, these results indicate an involvement of angiotensinergic neurotransmissions within the MeA in behavioral changes in the FST evoked by stress.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists/pharmacology
- Angiotensins/metabolism
- Animals
- Behavior, Animal/drug effects
- Corticomedial Nuclear Complex/drug effects
- Corticomedial Nuclear Complex/metabolism
- Corticomedial Nuclear Complex/physiopathology
- Disease Models, Animal
- Male
- Motor Activity/drug effects
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Rats, Wistar
- Reaction Time
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Restraint, Physical
- Signal Transduction
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Swimming
- Time Factors
- Rats
Collapse
Affiliation(s)
- Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Lilian L. Reis-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Carlos C. Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
10
|
de Deus LA, Neves RVP, Corrêa HDL, Reis AL, Honorato FS, Silva VL, de Araújo TB, Souza MK, Sousa CV, Simões HG, Prestes J, Silva Neto LS, Rodrigues Santos CA, Melo GF, Stone WJ, Rosa TS. Improving the prognosis of renal patients: The effects of blood flow-restricted resistance training on redox balance and cardiac autonomic function. Exp Physiol 2021; 106:1099-1109. [PMID: 33586254 DOI: 10.1113/ep089341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/28/2021] [Indexed: 12/28/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can resistance training with and without blood flow restriction improve redox balance and positively impact the autonomic cardiac modulation in chronic kidney disease patients? What is the main finding and its importance? Resistance training with and without blood flow restriction improved antioxidant defence (paraoxonase 1), decreased the pro-oxidative myeloperoxidase, improved cardiac autonomic function and slowed the decrease in renal function. We draw attention to the important clinical implications for the management of redox balance and autonomic cardiac function in chronic kidney disease patients. ABSTRACT Patients with chronic kidney disease (CKD) are prone to cardiovascular diseases secondary to abnormalities in both autonomic cardiac function and redox balance [myeloperoxidase (MPO) to paraoxonase 1 (PON1) ratio]. Although aerobic training improves both autonomic balance and redox balance in patients with CKD, the cardioprotective effects of resistance training (RT), with and without blood flow restriction (BFR), remain unknown. We aimed to compare the effects of RT and RT+BFR on antioxidant defence (PON1), pro-oxidative status (MPO), cardiac autonomic function (quantified by heart rate variability analysis) and renal function. Conservative CKD (stages 1 to 5 who do not need hemodialysis) patients (n = 105, 33 female) of both sexes were randomized into three groups: control (CTL; 57.6 ± 5.2 years; body mass index, 33.23 ± 1.62 kg/m2 ), RT (58.09 ± 6.26 years; body mass index 33.63 ± 2.05 kg/m2 ) and RT+BFR (58.06 ± 6.47 years; body mass index, 33.32 ± 1.87 kg/m2 ). Patients completed 6 months of RT or RT+BFR on three non-consecutive days per week under the supervision of strength and conditioning professionals. Training loads were adjusted every 2 months. Heart rate variability was recorded with a Polar-RS800 and data were analysed for time and frequency domains using Kubios software. The redox balance markers were PON1 and MPO, which were analysed in plasma samples. Renal function was estimated as estimated glomerular filtration rate. The RT and RT+BFR decreased pro-oxidative MPO (RT, ∼34 ng/ml and RT+BFR, ∼27 ng/ml), improved both antioxidant defence (PON1: RT, ∼23 U/L and RT+BFR, ∼31 U/L) and cardiac autonomic function (R-R interval: RT, ∼120.4 ms and RT+BFR, ∼117.7 ms), and slowed the deterioration of renal function (P < 0.0001). Redox balance markers were inversely correlated with heart rate variability time-domain indices. Our data indicated that both training models were effective as non-pharmacological tools to increase the antioxidant defences, decrease oxidative stress and improve the cardiac autonomic function of CKD patients.
Collapse
Affiliation(s)
| | | | - Hugo de Luca Corrêa
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Andrea Lucena Reis
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | | | - Victor Lopes Silva
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | | | - Michel Kendy Souza
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | - Caio Victor Sousa
- Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | | | - Jonato Prestes
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| | | | | | | | - Whitley Jo Stone
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Thiago Santos Rosa
- Graduate Program in Physical Education, Catholic University of Brasília, DF, Brazil
| |
Collapse
|
11
|
Peters EMJ, Schedlowski M, Watzl C, Gimsa U. To stress or not to stress: Brain-behavior-immune interaction may weaken or promote the immune response to SARS-CoV-2. Neurobiol Stress 2021; 14:100296. [PMID: 33527083 PMCID: PMC7839386 DOI: 10.1016/j.ynstr.2021.100296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic continues to strongly affect people with health disadvantages, creating a heavy burden on medical systems and societies worldwide. Research is growing rapidly and recently revealed that stress-related factors such as socio-economic status, may also play a pivotal role. However, stress research investigating the underlying psychoneuroimmune interactions is missing. Here we address the question whether stress-associated neuroendocrine-immune mechanisms can possibly contribute to an increase in SARS-CoV-2 infections and influence the course of COVID-19 disease. Additionally, we discuss that not all forms of stress (e.g. acute versus chronic) are detrimental and that some types of stress could attenuate infection-risk and -progression. The overall aim of this review is to motivate future research efforts to clarify whether psychosocial interventions have the potential to optimize neuroendocrine-immune responses against respiratory viral infections during and beyond the COVID-19 pandemic. The current state of research on different types of stress is summarized in a comprehensive narrative review to promote a psychoneuroimmune understanding of how stress and its mediators cortisol, (nor)adrenaline, neuropeptides and neurotrophins can shape the immune defense against viral diseases. Based on this understanding, we describe how people with high psychosocial stress can be identified, which behaviors and psychosocial interventions may contribute to optimal stress management, and how psychoneuroimmune knowledge can be used to improve adequate care for COVID-19 and other patients with viral infections.
Collapse
Affiliation(s)
- Eva M J Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University Giessen, Giessen and Universitätsmedizin-Charité, Berlin, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Germany and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
12
|
Peters EMJ, Schedlowski M, Watzl C, Gimsa U. [Can Stress Interact with SARS-CoV-2? A Narrative Review with a Focus on Stress-Reducing Interventions that may Improve Defence against COVID-19]. Psychother Psychosom Med Psychol 2021; 71:61-71. [PMID: 33440452 DOI: 10.1055/a-1322-3205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The COVID-19 pandemic is on the rise and causes many concerns and fears in the population as well as among medical care givers. This raises the question as to how psychosocial stress associated with the pandemic can be managed, and also if certain forms of stress can contribute to an increase in infections and critical illnesses. METHODS Against the background of the current state of research on stress and the immune response, we provide a narrative review of studies addressing the question as to how stress can influence the immune defence against viral diseases. RESULTS Excessive stress can compromise the barrier function of the airways and alter neuroendocrine control of immune function, which can create a virus-permissive immune response. DISCUSSION Because certain forms of stress can play a role in the successful immune defence against viral respiratory disease, it is important to identify people with high psychosocial stress and to help them manage their stress. Conclusion Psychosocial measures that contribute to improved stress management may have a positive effect on the immune response against viral respiratory infections.
Collapse
Affiliation(s)
- Eva Milena Johanne Peters
- Klinik für Psychosomatik und Psychotherapie, Psychoneuroimmunologie Labor, Justus-Liebig Universität Gießen, Deutschland.,Medizinische Klinik mit Schwerpunkt Psychosomatik und Psychotherapie, CharitéCentrum 12 (CC12) für Innere Medizin und Dermatologie, Berlin, Deutschland
| | - Manfred Schedlowski
- Institut für Medizinische Psychologie und Verhaltensimmunbiologie, Universitätsklinik Essen, Deutschland.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Watzl
- Fachbereich Immunologie, Leibniz-Institut für Arbeitsforschung an der TU Dortmund, Deutschland
| | - Ulrike Gimsa
- Institut für Verhaltensphysiologie, Leibniz-Institut für Nutztierbiologie, Dummerstorf, Deutschland
| |
Collapse
|
13
|
Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. Role of angiotensin receptors in the medial amygdaloid nucleus in autonomic, baroreflex and cardiovascular changes evoked by chronic stress in rats. Eur J Neurosci 2021; 53:763-777. [PMID: 33372338 DOI: 10.1111/ejn.15094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023]
Abstract
This study investigated the role of AT1 , AT2 and Mas angiotensinergic receptors within the MeA in autonomic, cardiovascular and baroreflex changes evoked by a 10-day (1 hr daily) repeated restraint stress (RRS) protocol. Analysis of cardiovascular function after the end of the RRS protocol indicated increased values of arterial pressure, without heart rate changes. Arterial pressure increase was not affected by acute MeA treatment after the RRS with either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319 or the selective Mas receptor antagonist A-779. Analysis of heart rate variability indicated that RRS increased the sympathetic tone to the heart, which was inhibited by MeA treatment with either losartan, PD123319 or A-779. Baroreflex function assessed using the pharmacological approach via intravenous infusion of vasoactive agents revealed a facilitation of tachycardia evoked by blood pressure decrease in chronically stressed animals, which was inhibited by MeA treatment with losartan. Conversely, baroreflex responses during spontaneous fluctuations of blood pressure were impaired by RRS, and this effect was not affected by injection of the angiotensinergic receptor antagonists into the MeA. Altogether, the data reported in the present study suggest an involvement of both angiotensinergic receptors present in the MeA in autonomic imbalance evoked by RRS, as well as an involvement of MeA AT1 receptor in the enhanced baroreflex responses during full range of blood pressure changes. Results also indicate that RRS-evoked increase in arterial pressure and impairment of baroreflex responses during spontaneous variations of arterial pressure are independent of MeA angiotensinergic receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
14
|
de Melo LA, Almeida-Santos AF. Neuropsychiatric Properties of the ACE2/Ang-(1-7)/Mas Pathway: A Brief Review. Protein Pept Lett 2020; 27:476-483. [PMID: 31868143 DOI: 10.2174/0929866527666191223143230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
The current pharmacological strategies for the management of anxiety disorders and depression, serious conditions which are gaining greater prevalence worldwide, depend on only two therapeutic classes of mood-stabilizing drugs: Serotonin Reuptake Inhibitors (SSRIs) and Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs). Although first line agents with proven efficacy, their clinical success in the management of anxiety disorders and depression is still considered highly complex due to the multifaceted nature of such conditions. Several studies have shown a possible therapeutic target could be found in the form of the Angiotensin-Converting Enzyme [ACE] type 2 (ACE2), Angiotensin [Ang]-(1-7) and Mas receptor pathway of the Renin- Angiotensin System (RAS), which as will be discussed, has been described to exhibit promising therapeutic properties for the management of anxiety disorders and depression. In this article, the literature to describe recent findings related to the role of the RAS in anxiety and depression disorders was briefly revised. The literature used covers a time range from 1988 to 2019 and were acquired from the National Center for Biotechnology Information's (NCBI) PubMed search engine. The results demonstrated in this review are promising and encourage the development of new research for the treatment of anxiety and depression disorders focusing on the RAS. In conclusion, the ACE2/Ang-(1-7)/Mas pathway may exhibit anxiolytic and anti-depressive effects through many possible biochemical mechanisms both centrally and peripherally, and result in highly promising mental health benefits which justifies further investigation into this system as a possible new therapeutic target in the management of neuropsychiatric disorders, including any as of yet undescribed risk-benefit analysis compared to currently-implemented pharmacological strategies.
Collapse
Affiliation(s)
- Leonardo Augusto de Melo
- Nucleo de Neurociencias, Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Flávia Almeida-Santos
- Nucleo de Neurociencias, Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Moreno-Santos B, Marchi-Coelho C, Costa-Ferreira W, Crestani CC. Angiotensinergic receptors in the medial amygdaloid nucleus differently modulate behavioral responses in the elevated plus-maze and forced swimming test in rats. Behav Brain Res 2020; 397:112947. [PMID: 33011187 DOI: 10.1016/j.bbr.2020.112947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
The brain renin-angiotensin system (RAS) has been implicated in anxiety and depression disorders, but the specific brain sites involved are poorly understood. The medial amygdaloid nucleus (MeA) is involved in expression of behavioral responses. However, despite evidence of the presence of all angiotensinergic receptors in this amygdaloid nucleus, regulation of anxiety- and depressive-like behaviors by angiotensinergic neurotransmissions within the MeA has never been reported. Thus, the present study aimed to investigate the role angiotensin II (AT1 and AT2 receptors) and angiotensin-(1-7) (Mas receptor) receptors present within the MeA in behavioral responses in the elevated plus-maze (EPM) and forced swimming test (FST). For this, male Wistar rats had cannula-guide bilaterally implanted into the MeA, and independent sets of animals received bilateral microinjections of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective Mas receptor antagonist A-779 or vehicle into the MeA before the EPM and FST. Treatment of the MeA with either PD123319 or A-779 decreased the EPM open arms exploration, while losartan did not affect behavioral responses in this apparatus. However, intra-MeA microinjection of losartan decreased immobility in the FST. Administration of either PD123319 or A-779 into the MeA did not affect the immobility during the FST, but changed the pattern of the active behaviors swimming and climbing. Altogether, these results indicate the presence of different angiotensinergic mechanisms within the MeA controlling behavioral responses in the FST and EPM.
Collapse
Affiliation(s)
- Beatriz Moreno-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
16
|
Silva CC, Correa AMB, Kushmerick C, Sharma NM, Patel KP, de Almeida JFQ, Moreira FA, Ferreira AJ, Fontes MAP. Angiotensin-converting enzyme 2 activator, DIZE in the basolateral amygdala attenuates the tachycardic response to acute stress by modulating glutamatergic tone. Neuropeptides 2020; 83:102076. [PMID: 32800589 DOI: 10.1016/j.npep.2020.102076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
The basolateral amygdala (BLA) is critical in the control of the sympathetic output during stress. Studies demonstrated the involvement of the renin-angiotensin system components in the BLA. Angiotensin-(1-7) [Ang-(1-7)], acting through Mas receptors, reduces stress effects. Considering that angiotensin-converting enzyme 2 (ACE2) is the principal enzyme for the production of Ang-(1-7), here we evaluate the cardiovascular reactivity to acute stress after administration of the ACE2 activator, diminazene aceturate (DIZE) into the BLA. We also tested whether systemic treatment with DIZE could modify synaptic activity in the BLA and its effect directly on the expression of the N-methyl-d-aspartate receptors (NMDARs) in NG108 neurons in-vitro. Administration of DIZE into the BLA (200 pmol/100 nL) attenuated the tachycardia to stress (ΔHR, bpm: vehicle = 103 ± 17 vs DIZE = 49 ± 7 p = 0.018); this effect was inhibited by Ang-(1-7) antagonist, A-779 (ΔHR, bpm: DIZE = 49 ± 7 vs A-779 + DIZE = 100 ± 15 p = 0.04). Systemic treatment with DIZE attenuated the excitatory synaptic activity in the BLA (Frequency (Hz): vehicle = 2.9 ± 0.4 vs. DIZE =1.8 ± 0.3 p < 0.04). NG108 cells treated with DIZE demonstrated decreased expression of l subunit NMDAR-NR1 (NR1 expression (a.u): control = 0.534 ± 0.0593 vs. DIZE = 0.254 ± 0.0260) of NMDAR and increases of Mas receptors expression. These data demonstrate that DIZE attenuates the tachycardia evoked by acute stress. This effect results from a central action in the BLA involving activation of Mas receptors. The ACE2 activation via DIZE treatment attenuated the frequency of excitatory synaptic activity in the basolateral amygdala and this effect can be related with the decreases of the NMDAR-NR1 receptor expression.
Collapse
Affiliation(s)
- Carina Cunha Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Bernal Correa
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Neeru M Sharma
- Department of Cellular & Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, United States
| | - Kaushik P Patel
- Department of Cellular & Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, United States
| | | | - Fabrício A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson José Ferreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco Antônio Peliky Fontes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil..
| |
Collapse
|
17
|
Zhu D, Sun M, Liu Q, Yue Y, Lu J, Lin X, Shi J. Angiotensin (1-7) through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism exerts an anxiolytic-like effect in rats. Behav Brain Res 2020; 390:112671. [PMID: 32437889 DOI: 10.1016/j.bbr.2020.112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023]
Abstract
Although recent studies have shown that angiotensin (1-7) (Ang [1-7]) exerts anti-stress and anxiolytic-like effects, the underlying mechanisms remain elusive. The ventral hippocampus (VH) is proposed to be a critical brain region for mood and stress management through the N-methyl-d-aspartate receptor (NMDAR) signaling pathway. However, the role of VH NMDAR signaling in the effects of Ang (1-7) remains unclear. In the present study, Ang (1-7) was injected into the bilateral VH of stressed rats, or in combination with a Fyn kinase inhibitor, NMDAR antagonist, neuronal nitric oxide synthase (nNOS) inhibitor, or nitric oxide (NO) scavenger. Anxiety-like behaviors were assessed using the open field test and elevated plus maze test, while alterations in NMDAR-nNOS-NO signaling and serotonergic metabolism were examined in the VH. After 21 days of chronic restraint stress, anxiety-like behaviors were evident. Levels of phosphorylated NR2B (a key NMDAR subunit), its upstream kinase Fyn, as well as activity of nNOS and monoamine oxidase (MAO) were markedly reduced. In contrast, levels of serotonin were increased. Bilateral VH infusion of Ang (1-7) recovered NMDAR-nNOS-NO signaling and MAO-mediated serotonin metabolism, as well as reducing anxiety-like behaviors in stressed rats. These effects were diminished by blockade of MasR (Ang [1-7]-specific receptor), Fyn kinase, NMDAR, nNOS, or NO production. Altogether, these findings indicate that Ang (1-7) exerts anxiolytic effects through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism. Future translational research should focus on the relationship between Ang (1-7), glutamatergic neurotransmission, and serotonergic neurotransmission in the VH.
Collapse
Affiliation(s)
- Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ming Sun
- Emergency Department, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Qinqin Liu
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Yu Yue
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
18
|
Nemoto W, Yamagata R, Nakagawasai O, Nakagawa K, Hung WY, Fujita M, Tadano T, Tan-No K. Effect of spinal angiotensin-converting enzyme 2 activation on the formalin-induced nociceptive response in mice. Eur J Pharmacol 2020; 872:172950. [PMID: 31987711 DOI: 10.1016/j.ejphar.2020.172950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
We have previously demonstrated that the phosphorylation of p38 MAPK, through spinal AT1 receptor activation, is involved in formalin-induced nociception and follows accompanied by the increase in spinal angiotensin (Ang) II levels. We have also found that Ang (1-7), an N-terminal fragment of Ang II generated by ACE2, prevents the Ang II-induced nociceptive behavior via spinal MAS1 and the inhibition of p38 MAPK phosphorylation. Here, we examined whether the ACE2 activator diminazene aceturate (DIZE) can prevent the formalin-induced nociception in mice. The i.t. administration of DIZE attenuated the second, but not the first phase of formalin-induced nociceptive response. An increase in the activity of spinal ACE2 was measured following DIZE administration. The inhibitory effect of DIZE on nociception was abolished by the i.t. co-administration of the MAS1 antagonist A779. The i.t. administration of Ang (1-7) showed a similar effect on the second phase of the response which was also attenuated by A779. Furthermore, DIZE and Ang (1-7) each inhibited the formalin-induced phosphorylation of p38 MAPK on the dorsal lumbar spinal cord. This inhibition was again prevented by A779. ACE2 was expressed in neurons and microglia but absent from astrocytes in the superficial dorsal horn. Our data show that the i.t.-administered DIZE attenuates the second phase of the formalin-induced nociception which is accompanied by the inhibition of p38 MAPK phosphorylation. They also suggest the involvement of MAS1 activation on spinal neurons and microglia in response to the increase in Ang (1-7) following ACE2 activation.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Koharu Nakagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wan-Yi Hung
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Maho Fujita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
19
|
Angiotensin II Type 2 Receptor-Expressing Neurons in the Central Amygdala Influence Fear-Related Behavior. Biol Psychiatry 2019; 86:899-909. [PMID: 31420088 DOI: 10.1016/j.biopsych.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The renin-angiotensin system has been implicated in posttraumatic stress disorder; however, the mechanisms responsible for this connection and the therapeutic potential of targeting the renin-angiotensin system in posttraumatic stress disorder remain unknown. Using an angiotensin receptor bacterial artificial chromosome (BAC) and enhanced green fluorescent protein (eGFP) reporter mouse, combined with neuroanatomical, pharmacological, and behavioral approaches, we examined the role of angiotensin II type 2 receptor (AT2R) in fear-related behavior. METHODS Dual immunohistochemistry with retrograde labeling was used to characterize AT2R-eGFP+ cells in the amygdala of the AT2R-eGFP-BAC reporter mouse. Pavlovian fear conditioning and behavioral pharmacological analyses were used to demonstrate the effects of AT2R activation on fear memory in male C57BL/6 mice. RESULTS AT2R-eGFP+ neurons in the amygdala were predominantly expressed in the medial amygdala and the medial division of the central amygdala (CeM), with little AT2R-eGFP expression in the basolateral amygdala or lateral division of the central amygdala. Characterization of AT2R-eGFP+ neurons in the CeM demonstrated distinct localization to gamma-aminobutyric acidergic projection neurons. Mice receiving acute intra-central amygdala injections of the selective AT2R agonist compound 21 prior to tests for cued or contextual fear expression displayed less freezing. Retrograde labeling of AT2R-eGFP+ neurons projecting to the periaqueductal gray revealed AT2R-eGFP+ neuronal projections from the CeM to the periaqueductal gray, a key brain structure mediating fear-related freezing. CONCLUSIONS These findings suggest that CeM AT2R-expressing neurons can modulate central amygdala outputs that play a role in fear expression, providing new evidence for a novel angiotensinergic circuit in the regulation of fear.
Collapse
|
20
|
Effects of Angiotensin-(1-7) and Angiotensin II on Acetylcholine-Induced Vascular Relaxation in Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6512485. [PMID: 31827689 PMCID: PMC6886389 DOI: 10.1155/2019/6512485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023]
Abstract
Endothelial dysfunction of small arteries occurs in patients with hypertension and in various hypertensive models. Endothelial function is usually evaluated by the degree of acetylcholine- (ACh-) induced vascular relaxation. Our previous study has found that compared to Wistar-Kyoto rats (WKY), ACh-induced vasodilatation was attenuated significantly in the mesenteric artery (MA), coronary artery (CA), and pulmonary artery (PA) of spontaneously hypertensive rats (SHR). This study investigated the influence of angiotensin- (Ang-) (1-7) and Ang II on blood pressure and ACh-induced vascular relaxation, as well as their interactive roles and downstream signal pathways in SHR and WKY. Intravenous injection of Ang II significantly increased, while Ang-(1-7) decreased the mean arterial pressure (MAP) in SHR. Ang-(1-7) improved ACh-induced relaxation in the MA, CA, and PA of SHR, while Ang II further attenuated it, which were inhibited by pretreatment with Mas receptor antagonist A-779 or AT1 receptor antagonist losartan, respectively. Ang-(1-7) decreased the basal arterial tension, and Ang II induced great vasoconstriction in SHR. Pretreatment with Ang-(1-7) inhibited the Ang II-induced pressor response, vasoconstriction, and the effects on ACh-induced relaxation in SHR. AT1 receptor expression was higher, while nitric oxide (NO), cGMP, and protein kinase G (PKG) levels of arteries were lower in SHR than in WKY. Ang II decreased, while Ang-(1-7) increased, the levels of NO, cGMP, and PKG of arteries. In addition, pretreatment with Ang-(1-7) inhibited the Ang II-induced reduction of NO, cGMP, and PKG in SHR. These results indicate that the activation of the Mas receptor by Ang-(1-7) can improve endothelial function and decrease MAP in SHR and inhibit the deteriorative effect of Ang II on endothelial function through the NO-cGMP-PKG pathway.
Collapse
|
21
|
Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. AT2 and MAS (but not AT1) angiotensinergic receptors in the medial amygdaloid nucleus modulate the baroreflex activity in rats. Pflugers Arch 2019; 471:1173-1182. [DOI: 10.1007/s00424-019-02301-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/27/2023]
|
22
|
Costa-Ferreira W, Morais-Silva G, Gomes-de-Souza L, Marin MT, Crestani CC. The AT1 Receptor Antagonist Losartan Does Not Affect Depressive-Like State and Memory Impairment Evoked by Chronic Stressors in Rats. Front Pharmacol 2019; 10:705. [PMID: 31293424 PMCID: PMC6598205 DOI: 10.3389/fphar.2019.00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the effect of the treatment with the angiotensin II type 1 receptor (AT1) antagonist losartan in the depressive-like state and memory impairment evoked by exposure to either homotypic (i.e., repeated exposure to the same type of stressor) or heterotypic (i.e., exposure to different aversive stimuli) chronic stressors in rats. For this, male Wistar rats were subjected to a 10 days regimen of repeated restraint stress (RRS, homotypic stressor) or chronic variable stress (CVS, heterotypic stressor) while being concurrently treated daily with losartan (30 mg/kg/day, p.o.). Depressive-like state was evaluated by analysis of the alterations considered as markers of depression (decreased sucrose preference and body weight and coat state deterioration), whereas cognitive non-emotional performance was tested using the novel object recognition (NOR) test. Locomotor activity was also evaluated in the open field test. Both RRS and CVS impaired sucrose preference and caused coat state deterioration, whereas only CVS impaired body weight gain. Besides, RRS impaired short-term memory (but not long-term memory) in the NOR test. Neither depressive-like state nor memory impairment evoked by the chronic stressors was affected by the treatment with losartan. Nevertheless, CVS increased the locomotion, which was inhibited by losartan. Taken together, these results provide evidence that the chronic treatment with losartan does not affect the depressive-like state and memory impairment evoked by either homotypic or heterotypic chronic stress regimens in rats.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Gessynger Morais-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Marcelo T Marin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
23
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 733] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
24
|
Nemoto W, Yamagata R, Ogata Y, Nakagawasai O, Tadano T, Tan-No K. Inhibitory effect of angiotensin (1-7) on angiotensin III-induced nociceptive behaviour in mice. Neuropeptides 2017; 65:71-76. [PMID: 28559062 DOI: 10.1016/j.npep.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that the intrathecal (i.t.) administration of angiotensin (Ang) II into mice produces a nociceptive behaviour consisting of scratching, biting and licking accompanied by the phosphorylation of p38 MAPK in the spinal cord, which was mediated through AT1 receptors. Both the p38 MAPK phosphorylation and subsequent nociceptive behaviour were attenuated by the i.t. co-administration of Ang (1-7), an N-terminal fragment of Ang II, that acted via Mas receptors. On the other hand, a C-terminal fragment of Ang II, namely Ang III, was also shown to induce a nociceptive behaviour by acting upon AT1 receptors on spinal astrocytes and neurons, and was found to be more potent than Ang II. However, the inhibitory effect of Ang (1-7) on the Ang III-induced nociceptive behaviour remains unclear. Thus, here we examined whether Ang (1-7) can attenuate the Ang III-induced nociceptive behaviour and activation of spinal p38 MAPK. The i.t. administration of Ang (1-7) (1-100fmol) dose-dependently attenuated the Ang III (1pmol)-induced nociceptive behaviour in mice. Moreover, the inhibitory effect of Ang (1-7) at a dose of 100fmol was prevented by A779 (30fmol), a Mas receptor antagonist. Western blot analysis showed that the phosphorylation of p38 MAPK induced by the i.t. administration of Ang III (1pmol) was also attenuated by Ang (1-7) (100fmol), and this inhibition was prevented by A779 (30fmol). Furthermore, we showed that in the lumbar superficial dorsal horn, Mas receptors are expressed in neurons and microglia but absent from astrocytes. Together, these results suggest that the i.t. administration of Ang (1-7) attenuates the nociceptive behaviour and accompanying p38 MAPK phosphorylation induced by Ang III, and that this effect is likely mediated through Mas receptors on spinal neurons.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yoshiki Ogata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takeshi Tadano
- Department of Health Care Medical Research, Venture Business Laboratory, Kanazawa University, Kanazawa 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
25
|
Prieto I, Segarra AB, Martinez-Canamero M, De Gasparo M, Zorad S, Ramirez-Sanchez M. Bidirectional asymmetry in the neurovisceral communication for the cardiovascular control: New insights. Endocr Regul 2017; 51:157-167. [DOI: 10.1515/enr-2017-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The cardiovascular control involves a bidirectional functional connection between the brain and heart. We hypothesize that this connection could be extended to other organs using endocrine and autonomic nervous systems (ANS) as communication pathways. This implies a neuroendocrine interaction controlling particularly the cardiovascular function where the enzymatic cascade of the renin-angiotensin system (RAS) plays an essential role. It acts not only through its classic endocrine connection but also the ANS. In addition, the brain is functionally, anatomically, and neurochemically asymmetric. Moreover, this asymmetry goes even beyond the brain and it includes both sides of the peripheral nervous and neuroendocrine systems. We revised the available information and analyze the asymmetrical neuroendocrine bidirectional interaction for the cardiovascular control. Negative and positive correlations involving the RAS have been observed between brain, heart, kidney, gut, and plasma in physiologic and pathologic conditions. The central role of the peptides and enzymes of the RAS within this neurovisceral communication, as well as the importance of the asymmetrical distribution of the various RAS components in the pathologies involving this connection, are particularly discussed. In conclusion, there are numerous evidences supporting the existence of a neurovisceral connection with multiorgan involvement that controls, among others, the cardiovascular function. This connection is asymmetrically organized.
Collapse
Affiliation(s)
- I Prieto
- Unit of Physiology , University of Jaen , Jaen , Spain
| | - AB Segarra
- Unit of Physiology , University of Jaen , Jaen , Spain
| | | | - M De Gasparo
- Cardiovascular & Metabolic Syndrome Adviser , Rossemaison, Switzerland
| | - S Zorad
- Institute of Experimental Endocrinology , Biomedical Research Centre of the Slovak Academy of Sciences , Bratislava , Slovakia
| | | |
Collapse
|
26
|
Ren X, Zhang F, Zhao M, Zhao Z, Sun S, Fraidenburg DR, Tang H, Han Y. Angiotensin-(1-7) in Paraventricular Nucleus Contributes to the Enhanced Cardiac Sympathetic Afferent Reflex and Sympathetic Activity in Chronic Heart Failure Rats. Cell Physiol Biochem 2017; 42:2523-2539. [PMID: 28848201 PMCID: PMC6022399 DOI: 10.1159/000480214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background/Aims Cardiac sympathetic afferent reflex (CSAR) enhancement contributes to exaggerated sympathetic activation in chronic heart failure (CHF). The current study aimed to investigate the roles of angiotensin (Ang)-(1-7) in CSAR modulation and sympathetic activation and Ang-(1-7) signaling pathway in paraventricular nucleus of CHF rats. Methods CHF was induced by coronary artery ligation. Responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin were used to evaluate CSAR in rats with anesthesia. Results Ang-(1-7) increased RSNA, MAP, CSAR activity, cAMP level, NAD(P)H oxidase activity and superoxide anion level more significantly in CHF than in sham-operated rats, while Mas receptor antagonist A-779 had the opposite effects. Moreover, Ang-(1-7) augmented effects of Ang II in CHF rats. The effects of Ang-(1-7) were blocked by A-779, adenylyl cyclase inhibitor SQ22536, protein kinase A inhibitor Rp-cAMP, superoxide anion scavenger tempol and NAD(P)H oxidase inhibitor apocynin. Mas and AT1 receptor protein expressions, Ang-(1-7) and Ang II levels in CHF increased. Conclusions These results indicate that Ang-(1-7) in paraventricular nucleus enhances CSAR and sympathetic output not only by exerting its own effects but also by augmenting the effects of Ang II through Mas receptor in CHF. Endogenous Ang-(1-7)/Mas receptor activity contributes to CSAR enhancement and sympathetic activation in CHF, and NAD(P)H oxidase-derived superoxide anions and the cAMP-PKA signaling pathway are involved in mediating the effects of Ang-(1-7) in CHF.
Collapse
Affiliation(s)
- Xingsheng Ren
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Mingxia Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhenzhen Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China.,The first clinical medical college, Nanjing Medical University, Nanjing, China
| | - Shuo Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dustin R Fraidenburg
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA.,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Lin S, Pan H, Wu H, Ren D, Lu J. Role of the ACE2‑Ang‑(1‑7)‑Mas axis in blood pressure regulation and its potential as an antihypertensive in functional foods (Review). Mol Med Rep 2017; 16:4403-4412. [PMID: 28791402 DOI: 10.3892/mmr.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
The renin‑angiotensin system (RAS) serves a critical role in blood pressure regulation and prevention of cardiovascular diseases. Efforts to develop functional foods that enhance the RAS have focused on inhibition of angiotensin‑converting enzyme (ACE) activity in the ACE‑angiotensin II (Ang II)‑Ang II type 1 receptor axis. ACE2 and the Mas receptor are important components of this axis. ACE2 catalyzes Ang II into Ang‑(1‑7), which then binds to the G‑protein‑coupled receptor Mas. In addition, it induces nitric oxide release from endothelial cells and exerts antiproliferative, vasodilatory and antihypertensive effects. The present review examined recent findings regarding the physiological and biological roles of the ACE2‑Ang‑(1‑7)‑Mas axis in the cardiovascular system, discussed potential food‑derived ACE2‑activating agents, and highlighted initiatives, based on this axis, that aim to develop functional foods for the treatment of hypertension.
Collapse
Affiliation(s)
- Shiqi Lin
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanglei Pan
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hongli Wu
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, P.R. China
| |
Collapse
|
28
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
29
|
Kangussu LM, Almeida-Santos AF, Moreira FA, Fontes MA, Santos RA, Aguiar DC, Campagnole-Santos MJ. Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1–7): Role of the Mas receptor. Behav Brain Res 2017; 331:193-198. [DOI: 10.1016/j.bbr.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/05/2023]
|
30
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|
31
|
Moura Santos D, Ribeiro Marins F, Limborço-Filho M, de Oliveira ML, Hamamoto D, Xavier CH, Moreira FA, Santos RAS, Campagnole-Santos MJ, Peliky Fontes MA. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior. Stress 2017; 20:189-196. [PMID: 28288545 DOI: 10.1080/10253890.2017.1296949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can reduce some of the effects of stress. We found that angiotensin-(1-7), acting in the brain, can reduce anxiety and reduce the increase in heart rate associated with emotional stress. These findings may provide a lead for design of new drugs to reduce stress.
Collapse
Affiliation(s)
- Danielle Moura Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Fernanda Ribeiro Marins
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marcelo Limborço-Filho
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marilene Luzia de Oliveira
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | | | - Carlos Henrique Xavier
- c Department of Physiology , Institute of Biological Sciences, Federal University of Goiás , Goiás , Brazil Goiânia
| | - Fabrício Araújo Moreira
- d Department of Pharmacology , Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Robson Augusto Souza Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
- b Alamantec/LABFAR , Minas Gerais , Brazil
- e Institute of Cardiology , University Foundation of Cardiology , Rio Grande do Sul , Brazil
| | - Maria José Campagnole-Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marco Antonio Peliky Fontes
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| |
Collapse
|
32
|
Żera T, Nowiński A, Kwiatkowski P. Centrally administered TNF increases arterial blood pressure independently of nitric oxide synthase. Neuropeptides 2016; 58:67-72. [PMID: 27241175 DOI: 10.1016/j.npep.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/15/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Emerging evidence indicates that increased levels of TNF in the brain are associated with hypertension. Nitric oxide synthase (NOS) is involved in the central control of the cardiovascular system, exerting both pro- and antihypertensive effects. TNF induces hypothalamic synthesis of nitric oxide. AIM We checked if acutely administered TNF into the cerebral ventricles affects arterial blood pressure, heart rate and baroreflex sensitivity, and whether TNF actions are dependent on NOS in normotensive rats. METHODS We carried out hemodynamic measurements in 6 groups of freely moving, adult Sprague-Dawley male rats, intracerebroventricularly (ICV) infused with either: 1) saline (5μl/h); 2) TNF (200ng/5μl/h); 3) non-selective NO synthase inhibitor - l-NG-Nitroarginine Methyl Ester (l-NAME) (1mg/5μl/h); 4) TNF together with l-NAME (200ng and 1mg/5μl/h, respectively); 5) neuronal NO synthase inhibitor - 7-nitroindazole sodium salt (7-NI) (20μg/10μl/h); 6) or TNF together with 7-NI (200ng and 20μg/10μl/h, respectively). Mean arterial blood pressure (MABP), heart rate (HR) and spontaneous baroreflex sensitivity (sBRS) evaluated by the sequence method were analysed. RESULTS ICV infusion of TNF caused a significant increase in MABP accompanied by a transient increase in HR, and a decrease in sBRS. ICV infusion of l-NAME increased MABP, but it did not change HR, nor sBRS. ICV infusion of 7-NI did not affect MABP, nor HR, nor sBRS. TNF administered together with l-NAME increased MABP with a transient increase in HR without changes of sBRS. Similarly, ICV infusion of TNF with 7-NI increased MABP without changes in HR and sBRS. CONCLUSIONS Centrally administered TNF increases MABP and HR and blunts sBRS. The pressor effect of TNF appears to be independent of NOS activity in the brain. Inhibition of nNOS restores sBRS in TNF treated rats.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Artur Nowiński
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Piotr Kwiatkowski
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|