1
|
Zhu Y, Yao L, Gallo-Ferraz AL, Bombassaro B, Simões MR, Abe I, Chen J, Sarker G, Ciccarelli A, Zhou L, Lee C, Sidarta-Oliveira D, Martínez-Sánchez N, Dustin ML, Zhan C, Horvath TL, Velloso LA, Kajimura S, Domingos AI. Sympathetic neuropeptide Y protects from obesity by sustaining thermogenic fat. Nature 2024; 634:243-250. [PMID: 39198648 PMCID: PMC11446830 DOI: 10.1038/s41586-024-07863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Human mutations in neuropeptide Y (NPY) have been linked to high body mass index but not altered dietary patterns1. Here we uncover the mechanism by which NPY in sympathetic neurons2,3 protects from obesity. Imaging of cleared mouse brown and white adipose tissue (BAT and WAT, respectively) established that NPY+ sympathetic axons are a smaller subset that mostly maps to the perivasculature; analysis of single-cell RNA sequencing datasets identified mural cells as the main NPY-responsive cells in adipose tissues. We show that NPY sustains the proliferation of mural cells, which are a source of thermogenic adipocytes in both BAT and WAT4-6. We found that diet-induced obesity leads to neuropathy of NPY+ axons and concomitant depletion of mural cells. This defect was replicated in mice with NPY abrogated from sympathetic neurons. The loss of NPY in sympathetic neurons whitened interscapular BAT, reducing its thermogenic ability and decreasing energy expenditure before the onset of obesity. It also caused adult-onset obesity of mice fed on a regular chow diet and rendered them more susceptible to diet-induced obesity without increasing food consumption. Our results indicate that, relative to central NPY, peripheral NPY produced by sympathetic nerves has the opposite effect on body weight by sustaining energy expenditure independently of food intake.
Collapse
Affiliation(s)
- Yitao Zhu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lu Yao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ana L Gallo-Ferraz
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcela R Simões
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Ichitaro Abe
- Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes & Metabolism, Harvard Medical School, Boston, MA, USA
- Department of Cardiology and Clinical Examination, Oita University, Faculty of Medicine, Oita, Japan
| | - Jing Chen
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Gitalee Sarker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Linna Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Carl Lee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Noelia Martínez-Sánchez
- Oxford Centre for Diabetes, Endocrinology and Metabolism Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Cheng Zhan
- Department of Haematology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tamas L Horvath
- Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes & Metabolism, Harvard Medical School, Boston, MA, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne) 2024; 11:1386683. [PMID: 38690172 PMCID: PMC11059066 DOI: 10.3389/fmed.2024.1386683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Neuro bone tissue engineering is a multidisciplinary field that combines both principles of neurobiology and bone tissue engineering to develop innovative strategies for repairing and regenerating injured bone tissues. Despite the fact that regeneration and development are considered two distinct biological processes, yet regeneration can be considered the reactivation of development in later life stages to restore missing tissues. It is noteworthy that the regeneration capabilities are distinct and vary from one organism to another (teleost fishes, hydra, humans), or even in the same organism can vary dependent on the injured tissue itself (Human central nervous system vs. peripheral nervous system). The skeletal tissue is highly innervated, peripheral nervous system plays a role in conveying the signals and connecting the central nervous system with the peripheral organs, moreover it has been shown that they play an important role in tissue regeneration. Their regeneration role is conveyed by the different cells' resident in it and in its endoneurium (fibroblasts, microphages, vasculature associated cells, and Schwann cells) these cells secrete various growth factors (NGF, BDNF, GDNF, NT-3, and bFGF) that contribute to the regenerative phenotype. The peripheral nervous system and central nervous system synchronize together in regulating bone homeostasis and regeneration through neurogenic factors and neural circuits. Receptors of important central nervous system peptides such as Serotonin, Leptin, Semaphorins, and BDNF are expressed in bone tissue playing a role in bone homeostasis, metabolism and regeneration. This review will highlight the crosstalk between peripheral nerves and bone in the developmental stages as well as in regeneration and different neuro-bone tissue engineering strategies for repairing severe bone injuries.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
3
|
Kumari R, Pascalau R, Wang H, Bajpayi S, Yurgel M, Quansah K, Hattar S, Tampakakis E, Kuruvilla R. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. Cell Rep 2024; 43:113674. [PMID: 38236776 PMCID: PMC10951981 DOI: 10.1016/j.celrep.2024.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/17/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024] Open
Abstract
Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific NPY deletion elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, and pupil size and elevated heart rate, while notably, however, basal blood pressure was unchanged. These findings provide insight into target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Raniki Kumari
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raluca Pascalau
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Wang
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheetal Bajpayi
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwaku Quansah
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Kumari R, Pascalau R, Wang H, Bajpayi S, Yurgel M, Quansah K, Hattar S, Tampakakis E, Kuruvilla R. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550381. [PMID: 37546870 PMCID: PMC10402010 DOI: 10.1101/2023.07.24.550381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with Norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific deletion of NPY elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, pupil size, and an elevation in heart rate, while notably, however, basal blood pressure was unchanged. These findings provide new knowledge about target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Raniki Kumari
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Raluca Pascalau
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Hui Wang
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sheetal Bajpayi
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Kwaku Quansah
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
5
|
Wee NKY, Novak S, Ghosh D, Root SH, Dickerson IM, Kalajzic I. Inhibition of CGRP signaling impairs fracture healing in mice. J Orthop Res 2023; 41:1228-1239. [PMID: 36281531 PMCID: PMC10123175 DOI: 10.1002/jor.25474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by sensory nerves and functions as a pain sensor. It acts by binding to the calcitonin-like receptor (CLR, protein; Calcrl, gene). CGRP inhibition has been recently introduced as therapeutic treatment of migraine-associated pain. Previous studies have shown that CGRP stimulates bone formation. The aim of our study is to determine whether the inhibition of CGRP signaling negatively impacted fracture healing. Using α-smooth muscle actin (αSMA) Cre animals crossed with Ai9 reporter mice, we showed that CGRP-expressing nerves are near αSMA + cells in the periosteum. In vitro experiments revealed that periosteal cells express Calcrl and receptor activity modifying protein 1; and CGRP stimulation increased periosteal cell proliferation. Using a tamoxifen-inducible model αSMACre/CLRfl/fl , we targeted the deletion of CLR to periosteal progenitor cells and examined fracture healing. Microcomputed tomography of fractured femurs showed a reduction in bone mass in αSMACre+/CLRfl/fl female mice relative to controls and callus volume in males. Pharmacological CGRP-CLR inhibition was achieved by subcutaneous delivery of customized pellets with small molecule inhibitor olcegepant (BIBN-4096) at a dose of 10 μg/day. BIBN-4096-treated C57BL/6J mice had a higher latency toward thermal nociception than placebo-treated mice, indicating impaired sensory function through CGRP inhibition. CGRP inhibition also resulted in reduced callus volume, bone mass, and bone strength compared to placebo controls. These results indicate that inhibiting CGRP by deleting CLR or by using BIBN-4096, contributes to delayed bone healing.
Collapse
Affiliation(s)
- Natalie KY Wee
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Bone Cell Biology and Disease Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Sanja Novak
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sierra H Root
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ian M Dickerson
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
6
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
7
|
Cassidy A, Onal M, Pelletier S. Novel methods for the generation of genetically engineered animal models. Bone 2023; 167:116612. [PMID: 36379415 PMCID: PMC9936561 DOI: 10.1016/j.bone.2022.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Genetically modified mouse models have shaped our understanding of biological systems in both physiological and pathological conditions. For decades, mouse genome engineering has relied on transgenesis and spontaneous gene replacement in embryonic stem (ES) cells. While these technologies provided a wealth of knowledge, they remain imprecise and expensive to use. Recent advances in genome editing technologies such as the development of targetable nucleases, the improvement of delivery systems, and the simplification of targeting strategies now allow for the rapid, precise manipulation of the mouse genome. In this review article, we discuss novel methods and targeting strategies for the generation of mouse models for the study of bone and skeletal muscle biology.
Collapse
Affiliation(s)
- Annelise Cassidy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Melda Onal
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Mei H, Wu Y, Feng Q, Li X, Zhou J, Jiang F, Huang S, Li J. The interplay between the nerves and skeleton: a 30-year bibliometric analysis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:9. [PMID: 36760256 PMCID: PMC9906194 DOI: 10.21037/atm-22-3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 01/15/2023]
Abstract
Background The mechanisms and effects of the interplay between the nerves and skeleton remain a popular research topic. This study aimed to analyze and evaluate publications on nerve-bone interactions using bibliometrics and to identify the state of the art of current research, hotspots, and future directions. Methods This study included 1989 articles and reviews from the Web of Science Core Collection (WoSCC) published from January 1, 1991, to June 22, 2022. The Bibliometrix package of R 4.2.0 (The R Foundation for Statistical Computing, Vienna, Austria) was used to analyze basic information about the publications, including the annual number of publications, institution analysis, author influence analysis, journal analysis, and the national cooperation network. We also used CiteSpace 5.8.R3 for bibliometric analysis, including co-occurrence, co-citation, and cluster analysis. Results We discovered a significant increase in the number of articles on nerve-bone interactions published over the last 10 years. The most active country and institution were the United States and the University of Minnesota, respectively. In terms of journals and cocited journals, Bone was ranked highest with respect to the number of publications, while Journal of Bone and Mineral Research was ranked highest among cited journals. Wang Lei was the author with the most publications, and Bjurholm A was the most cited author. The analysis of references and keywords revealed that the impact of nerve- and neuromodulation-related factors on stem cell differentiation was a persistently hot topic. Osteoarthritis, neuropeptide Y, and osteoclastogenic process are likely to be the next era of research hotspots. The neurovascular crosstalk within bone has received great attention, especially in skeletal diseases, which may provide potential targets for future treatments. Conclusions We used a bibliometric method to provide an efficient, objective, and comprehensive assessment of existing research about the interplay between the skeletal and nervous systems and to accurately identify hotspots and research frontiers, providing valuable information for future research.
Collapse
Affiliation(s)
- Hongxiang Mei
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumeng Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingchen Feng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingjian Li
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Jiang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Feng H, Jiang B, Xing W, Sun J, Greenblatt MB, Zou W. Skeletal stem cells: origins, definitions, and functions in bone development and disease. LIFE MEDICINE 2022; 1:276-293. [PMID: 36811112 PMCID: PMC9938638 DOI: 10.1093/lifemedi/lnac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Skeletal stem cells (SSCs) are tissue-specific stem cells that can self-renew and sit at the apex of their differentiation hierarchy, giving rise to mature skeletal cell types required for bone growth, maintenance, and repair. Dysfunction in SSCs is caused by stress conditions like ageing and inflammation and is emerging as a contributor to skeletal pathology, such as the pathogenesis of fracture nonunion. Recent lineage tracing experiments have shown that SSCs exist in the bone marrow, periosteum, and resting zone of the growth plate. Unraveling their regulatory networks is crucial for understanding skeletal diseases and developing therapeutic strategies. In this review, we systematically introduce the definition, location, stem cell niches, regulatory signaling pathways, and clinical applications of SSCs.
Collapse
Affiliation(s)
- Heng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
10
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
11
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
12
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
13
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
14
|
Wee NKY, Nguyen AD, Enriquez RF, Zhang L, Herzog H, Baldock PA. Neuropeptide Y Regulation of Energy Partitioning and Bone Mass During Cold Exposure. Calcif Tissue Int 2020; 107:510-523. [PMID: 32804252 DOI: 10.1007/s00223-020-00745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
The maintenance of whole body energy homeostasis is critical to survival and mechanisms exist whereby an organism can adapt to its environment and the stresses placed upon it. Environmental temperature and thermogenesis are key components known to affect energy balance. However, little is known about how these processes are balanced against the overall energy balance. We show that even mild cold exposure has a significant effect on energy expenditure and UCP-1 levels which increase by 43% and 400%, respectively, when wild-type (WT) mice at thermoneutral (29 °C) were compared to mice at room temperature (22 °C) conditions. Interestingly, bone mass was lower in cold-stressed WT mice with significant reductions in femoral bone mineral content (- 19%) and bone volume (- 13%). Importantly, these cold-induced skeletal changes were absent in mice lacking NPY, one of the main controllers of energy homeostasis, highlighting the critical role of NPY in this process. However, energy expenditure was significantly greater in cold-exposed NPY null mice, indicating that suppression of non-thermogenic tissues, like bone, contributes to the adaptive responses to cold exposure. Altogether, this work identifies NPY as being crucial in coordinating energy and bone homeostasis where it suppresses energy expenditure, UCP-1 levels and lowers bone mass under conditions of cold exposure.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Amy D Nguyen
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Ronaldo F Enriquez
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
- School of Medical Sciences, University of NSW, Sydney, NSW, Australia
| | - Paul A Baldock
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
- School of Medical Sciences, University of NSW, Sydney, NSW, Australia.
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, Australia.
| |
Collapse
|
15
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
16
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
17
|
ÇEVİK MÖ, KORKUSUZ P, KORKUSUZ F. Neuropeptide Y1 receptor antagonist but not neuropeptide Y itself increased bone mineral density when locally injected with hyaluronic acid in male Wistar rats. Turk J Med Sci 2020; 50:1454-1460. [PMID: 32490636 PMCID: PMC7491288 DOI: 10.3906/sag-2001-268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 11/27/2022] Open
Abstract
Background/aim The nervous system controls bone mass via both the central (CNS) and the peripheral (PNS) nervous systems. Intriguingly, neuropeptide Y (NPY) signaling occurs in both. Less is known on how the PNS stimulated NPY signaling controls bone metabolism. The objective of this study was to evaluate whether NPY or NPY1 receptor antagonist changes local bone mineral density (BMD) when injected into a Wistar rat tibia. Materials and methods Tibial intramedullary area of 24 wild type male Wistar rats (average weight = 350 ± 50 g, average age = 4 ± 0.5 months) were injected with NPY (1 × 10-5 M and 1 × 10-6 M) and NPY1 receptor antagonist (1 × 10-4 M) dissolved in hyaluronic acid (HA) separately. Tibiae were collected after one and two weeks. BMD was measured with dual-energy X-ray absorptiometry (DXA) and micro quantitative computer tomography (QCT). Histological changes were analyzed with light microscopy, Goldner's Masson trichrome (MT), and hematoxylin-eosin staining. Results According to DXA, the mean BMD of NPY dose 1 (1 × 10-5 M) was significantly lower than that of the control (HA applied) group and not significantly but still lower than that of the NPY dose 2 and NPY1 antagonist applied groups. QCT results indicated the same pattern statistically insignificantly in the trabecular area but not in the cortex of the bones. Histologically, only NPY1 antagonist applied tibiae revealed young spongiosis bone trabeculae formed in the borderline of the cortical bones. HA was remarkably biocompatible and late degrading in the tissues. Conclusion Local administration of NPY and NPY1 antagonists may hold regulating potential of BMD and bone formation. NPY1 antagonist caused new bone formation in trabecular bone when applied locally. NPY dissolved in HA however can be used to suppress bone formation.
Collapse
Affiliation(s)
- Muhammer Özgür ÇEVİK
- Department of Medical Genetics, Faculty of Medicine, Adıyaman University, AdıyamanTurkey
| | - Petek KORKUSUZ
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Feza KORKUSUZ
- Department of Sports Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| |
Collapse
|
18
|
Abstract
The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice. Cite this article: Bone Joint Res 2020;9(7):351–359.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Bone and Joint Center, Henry Ford Hospital, Integrative Biosciences Center, Detroit, Michigan, USA
| |
Collapse
|
19
|
Kang X, Qian Z, Liu J, Feng D, Li H, Zhang Z, Jin X, Ma Z, Xu M, Li F, Zhang Y, Gao X, Sun H, Wu S. Neuropeptide Y Acts Directly on Cartilage Homeostasis and Exacerbates Progression of Osteoarthritis Through NPY2R. J Bone Miner Res 2020; 35:1375-1384. [PMID: 32101625 DOI: 10.1002/jbmr.3991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
Abstract
Neuropeptide Y (NPY) is known to regulate bone homeostasis; however, its functional role as a risk factor during osteoarthritis (OA) remains elusive. In this study, we aim to investigate the direct effect of NPY on degradation of cartilage and progression of OA and explore the molecular events involved. NPY was overexpressed in human OA cartilage accompanied with increased expression of NPY1 receptor (NPY1R) and NPY2 receptor (NPY2R). Stressors such as cold exposure resulted in the peripheral release of NPY from sympathetic nerves, which in turn promoted upregulation of NPY and NPY2R in articular cartilage in vivo. Intra-articular administration of NPY significantly promoted chondrocyte hypertrophy and cartilage matrix degradation, with a higher OARSI score than that of control mice, whereas inhibition of NPY2R but not NPY1R with its specific antagonist remarkably ameliorated NPY-mediated effects. Moreover, NPY activated mTORC1 pathway in articular chondrocytes, whereas the administration of rapamycin (an mTORC1 inhibitor) in vitro abrogated NPY-mediated effects. Mechanistically, mTORC1 downstream kinase S6K1 interacted with and phosphorylated SMAD1/5/8 and promoted SMAD4 nuclear translocation, resulting in upregulation of Runx2 expression to promote chondrocyte hypertrophy and cartilage degradation. In conclusion, our findings provided the direct evidence and the crucial role of NPY in cartilage homeostasis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaomin Kang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | - Zhuang Qian
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | - Jiali Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | - Dongxu Feng
- Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Zhuanmin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Xinxin Jin
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | - Zhengmin Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Mao Xu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | - Fang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Ying Zhang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Hongzhi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Shufang Wu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| |
Collapse
|
20
|
Ulum B, Mammadova A, Özyüncü Ö, Uçkan-Çetinkaya D, Yanık T, Aerts-Kaya F. Neuropeptide Y is involved in the regulation of quiescence of hematopoietic stem cells. Neuropeptides 2020; 80:102029. [PMID: 32127176 DOI: 10.1016/j.npep.2020.102029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022]
Abstract
Differentiation, self-renewal and quiescence of Hematopoietic stem cells (HSCs) is tightly regulated in order to protect the HSCs from the strain of constant cell division and depletion of the stem cell pool. The neurotransmitter Neuropeptide Y (NPY) is released from sympathetic nerves in the bone marrow and has been shown to indirectly affect HSC function through effects on bone marrow (BM) multipotent Mesenchymal Stromal Cells (MSCs), osteoblasts (OBs) and macrophages. Although the absence of NPY has been shown to be accompanied by severe BM impairment and delayed engraftment of HSCs, the direct effects of NPY on HSCs have never been assessed. Here, we aimed to explore the effect of NPY on the regulation of HSCs. All NPY receptors Y1, Y2, Y4 and Y5 were found to be highly expressed on most HSCs and mature hematopoietic cell subsets. In culture, in particularly expression of the Y1 receptor was shown to decrease in time. Doses of 300 nM NPY suppressed HSC proliferation in cell cultures, as confirmed by an increase of HSCs in G0 phase and an increase in the gene expression levels of FOXO3, DICER1, SMARCA2 and PDK1, which all have been shown to play an important role in the regulation of cell quiescence. These data support the idea that NPY may have a direct effect on the regulation of HSC fate by modulating cell quiescence.
Collapse
Affiliation(s)
- Baris Ulum
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Aynura Mammadova
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| | - Özgür Özyüncü
- Hacettepe University Medical Faculty, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| | - Tülin Yanık
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey.
| |
Collapse
|
21
|
Aerts-Kaya F, Ulum B, Mammadova A, Köse S, Aydin G, Korkusuz P, Uçkan-Çetinkaya D. Neurological Regulation of the Bone Marrow Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1212:127-153. [PMID: 31342461 DOI: 10.1007/5584_2019_398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bone marrow (BM) hematopoietic niche is the microenvironment where in the adult hematopoietic stem and progenitor cells (HSPCs) are maintained and regulated. This regulation is tightly controlled through direct cell-cell interactions with mesenchymal stromal stem (MSCs) and reticular cells, adipocytes, osteoblasts and endothelial cells, through binding to extracellular matrix molecules and through signaling by cytokines and hematopoietic growth factors. These interactions provide a healthy environment and secure the maintenance of the HSPC pool, their proliferation, differentiation and migration. Recent studies have shown that innervation of the BM and interactions with the peripheral sympathetic neural system are important for maintenance of the hematopoietic niche, through direct interactions with HSCPs or via interactions with other cells of the HSPC microenvironment. Signaling through adrenergic receptors (ARs), opioid receptors (ORs), endocannabinoid receptors (CRs) on HSPCs and MSCs has been shown to play an important role in HSPC homeostasis and mobilization. In addition, a wide range of neuropeptides and neurotransmitters, such as Neuropeptide Y (NPY), Substance P (SP) and Tachykinins, as well as neurotrophins and neuropoietic growth factors have been shown to be involved in regulation of the hematopoietic niche. Here, a comprehensive overview is given of their role and interactions with important cells in the hematopoietic niche, including HSPCs and MSCs, and their effect on HSPC maintenance, regulation and mobilization.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey. .,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| | - Baris Ulum
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.,Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Aynura Mammadova
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Sevil Köse
- Faculty of Health Sciences, Department of Medical Biology, Atilim University, Ankara, Turkey
| | - Gözde Aydin
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Wee NK, Madunic IV, Ivanisevic T, Sinder BP, Kalajzic I. Divergent effects of peripheral and global neuropeptide Y deletion. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:579-590. [PMID: 33265087 PMCID: PMC7716695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Neuropeptide Y (NPY) is involved in the coordination of bone mass and adiposity. However, multiple NPY sources exist and their individual contribution to the skeleton and adiposity not known. The objectives of our study were to evaluate the effects of peripheral mesenchymal derived NPY to the skeleton and adiposity and to compare them to the global NPYKO model. METHODS To study the role of mesenchymal-derived NPY, we crossed conditional NPY (NPYfl/fl) mice with Prx1cre to generate PrxNPYKO mice. The bone phenotype was assessed using micro-CT. The skeletal phenotype of PrxNPYKO mice was subsequently compared to global NPYKO model. We evaluated body weight, adiposity and functionally assessed the feeding response of NPY neurons to determine whether central NPY signaling was altered by Prx1cre. RESULTS We identified the increase in cortical parameters in PrxNPYKO mice with no changes to cancellous bone. This was the opposite phenotype to global NPYKO mice generated from the same conditional allele. Male NPYKOmice have increased adiposity, while PrxNPYKO mice showed no difference, demonstrating that local mesenchymal-derived NPY does not influence adiposity. CONCLUSION NPY mediates both positive and negative effects on bone mass via separate regulatory pathways. Deletion of mesenchymal-derived NPY had a positive effect on bone mass.
Collapse
Affiliation(s)
- Natalie K.Y. Wee
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA
| | - Ivana Vrhovac Madunic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA,Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Tonci Ivanisevic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA,Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin P Sinder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA,Corresponding author: Ivo Kalajzic, Department of Reconstructive Sciences, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA E-mail:
| |
Collapse
|
23
|
Sinder BP, Novak S, Wee NKY, Basile M, Maye P, Matthews BG, Kalajzic I. Engraftment of skeletal progenitor cells by bone-directed transplantation improves osteogenesis imperfecta murine bone phenotype. Stem Cells 2019; 38:530-541. [PMID: 31859429 DOI: 10.1002/stem.3133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder most commonly caused by mutations associated with type I collagen, resulting in a defective collagen bone matrix. Current treatments for OI focus on pharmaceutical strategies to increase the amount of defective bone matrix, but do not address the underlying collagen defect. Introducing healthy donor stem cells that differentiate into osteoblasts producing normal collagen in OI patients has the potential to increase bone mass and correct the mutant collagen matrix. In this study, donor bone marrow stromal cells (BMSCs, also known as bone marrow mesenchymal stem cells) expressing both αSMACreERT2/Ai9 progenitor reporter and osteoblast reporter Col2.3GFP were locally transplanted into the femur of OI murine (OIM) mice. One month post-transplantation, 18% of the endosteal surface was lined by donor Col2.3GFP expressing osteoblasts indicating robust engraftment. Long-term engraftment in the marrow was observed 3 and 6 months post-transplantation. The presence of Col1a2-expressing donor cell-derived cortical bone matrix was detected in transplanted OIM femurs. Local transplantation of BMSCs increased cortical thickness (+12%), the polar moment of inertia (+14%), bone strength (+30%), and stiffness (+30%) 3 months post-transplantation. Engrafted cells expressed progenitor markers CD51 and Sca-1 up to 3 months post-transplantation. Most importantly, 3 months post-transplantation donor cells maintained the ability to differentiate into Col2.3GFP+ osteoblasts in vitro, and in vivo following secondary transplantation into OIM animals. Locally transplanted BMSCs can improve cortical structure and strength, and persist as continued source of osteoblast progenitors in the OIM mouse for at least 6 months.
Collapse
Affiliation(s)
- Benjamin P Sinder
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Natalie K Y Wee
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Mariangela Basile
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Peter Maye
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Brya G Matthews
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| |
Collapse
|
24
|
Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res 2019; 34:1393-1406. [PMID: 31247122 PMCID: PMC6697229 DOI: 10.1002/jbmr.3822] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022]
Abstract
The innervation of bone has been described for centuries, and our understanding of its function has rapidly evolved over the past several decades to encompass roles of subtype-specific neurons in skeletal homeostasis. Current research has been largely focused on the distribution and function of specific neuronal populations within bone, as well as their cellular and molecular relationships with target cells in the bone microenvironment. This review provides a historical perspective of the field of skeletal neurobiology that highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain. We explore what is known regarding the neuronal subtypes found in the skeleton, their distribution within bone compartments, and their central projection pathways. This neuroskeletal map then serves as a foundation for a comprehensive discussion of the neural control of skeletal development, homeostasis, repair, and bone pain. Active synthesis of this research recently led to the first biotherapeutic success story in the field. Specifically, the ongoing clinical trials of anti-nerve growth factor therapeutics have been optimized to titrated doses that effectively alleviate pain while maintaining bone and joint health. Continued collaborations between neuroscientists and bone biologists are needed to build on this progress, leading to a more complete understanding of neural regulation of the skeleton and development of novel therapeutics. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA
| | - Alec T Beeve
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L Scheller
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| |
Collapse
|