1
|
Mc Veigh M, Bellan LM. Microfluidic synthesis of radiotracers: recent developments and commercialization prospects. LAB ON A CHIP 2024; 24:1226-1243. [PMID: 38165824 DOI: 10.1039/d3lc00779k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Positron emission tomography (PET) is a powerful diagnostic tool that holds incredible potential for clinicians to track a wide variety of biological processes using specialized radiotracers. Currently, however, a single radiotracer accounts for over 95% of procedures, largely due to the cost of radiotracer synthesis. Microfluidic platforms provide a solution to this problem by enabling a dose-on-demand pipeline in which a single benchtop platform would synthesize a wide array of radiotracers. In this review, we will explore the field of microfluidic production of radiotracers from early research to current development. Furthermore, the benefits and drawbacks of different microfluidic reactor designs will be analyzed. Lastly, we will discuss the various engineering considerations that must be addressed to create a fully developed, commercially effective platform that can usher the field from research and development to commercialization.
Collapse
Affiliation(s)
- Mark Mc Veigh
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Pascali G, Panetta D, De Simone M, Burchielli S, Lucchesi V, Sanguinetti E, Zanoni S, Iozzo P, Saccomanni G, Manera C, Salvadori PA. Preliminary Investigation of a Novel 18F Radiopharmaceutical for Imaging CB2 Receptors in a SOD Mouse Model. Aust J Chem 2021. [DOI: 10.1071/ch20247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We successfully radiolabelled a novel prospective cannabinoid type 2 receptor ligand with 18F and tested its biodistribution in animal models by positron emission tomography (PET)/computed tomography (CT) imaging. The radiolabelling process was conducted on an alkyl mesylate fragment of the main naphthyridine core, using highly efficient microfluidic technology. No preliminary protection was needed, and the product was purified by semi-prep HPLC and SPE formulation, allowing the desired diastereomeric mixture to be obtained in 29% radiochemical yield and>95% radiochemically pure. SOD1G93A mice were used as model of overexpression of CB2 receptors; PET imaging revealed a significant increase of the tracer distribution volume in the brain of symptomatic subjects compared with the asymptomatic ones.
Collapse
|
3
|
Iwata R, Terasaki K, Ishikawa Y, Harada R, Furumoto S, Yanai K, Pascali C. A concentration-based microscale method for 18F-nucleophilic substitutions and its testing on the one-pot radiosynthesis of [ 18F]FET and [ 18F]fallypride. Appl Radiat Isot 2020; 166:109361. [PMID: 32877862 DOI: 10.1016/j.apradiso.2020.109361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
When applied to a radiosynthesis, a microscale approach can help to save precursor and improve yields. Thus, a 5-10 μL microscale method based on a concentration procedure was developed and applied to the radiosynthesis of [18F]FET and [18F]fallypride. In spite of using an amount of precursor ca. 100 times smaller, radiochemical yields were comparable or even higher than those reported in literature. Because of the very low reaction volumes, the possible effects of concentrated dose of activity and carrier fluoride were also investigated.
Collapse
Affiliation(s)
- Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | | | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Ryuichi Harada
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Claudio Pascali
- Fondazione IRCCS Istituto Nazionale dei Tumori, V. Venezian, 1, Milan, 20133, Italy.
| |
Collapse
|
4
|
Patinglag L, Esfahani MMN, Ragunathan K, He P, Brown NJ, Archibald SJ, Pamme N, Tarn MD. On-chip electrochemical detection of glucose towards the miniaturised quality control of carbohydrate-based radiotracers. Analyst 2020; 145:4920-4930. [DOI: 10.1039/c9an01881f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have developed two microfluidic platforms for the electrochemical detection of glucose, using either a screen-printed electrode or wire electrodes, towards the quality control testing of carbohydrate-based radiotracers used in medical imaging.
Collapse
Affiliation(s)
- Laila Patinglag
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | | | | | - Ping He
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
- Positron Emission Tomography Research Centre
| | | | - Stephen J. Archibald
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
- Positron Emission Tomography Research Centre
| | - Nicole Pamme
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | - Mark D. Tarn
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
- Positron Emission Tomography Research Centre
| |
Collapse
|
5
|
Wang J, Chao PH, Slavik R, van Dam RM. Multi-GBq production of the radiotracer [18F]fallypride in a droplet microreactor. RSC Adv 2020; 10:7828-7838. [PMID: 35492189 PMCID: PMC9049805 DOI: 10.1039/d0ra01212b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Microfluidics offers numerous advantages for the synthesis of short-lived radiolabeled imaging tracers: performing 18F-radiosyntheses in microliter-scale droplets has exhibited high efficiency, speed, and molar activity as well as low reagent consumption. However, most reports have been at the preclinical scale. In this study we integrate a [18F]fluoride concentrator and a microdroplet synthesizer to explore the possibility of synthesizing patient doses and multi-patient batches of clinically-acceptable tracers. In the integrated system, [18F]fluoride (up to 41 GBq [1.1 Ci]) in [18O]H2O (1 mL) was first concentrated ∼80-fold and then efficiently transferred to the 8 μL reaction chip as a series of small (∼0.5 μL) droplets. Each droplet rapidly dried at the reaction site of the pre-heated chip, resulting in localized accumulation of large amounts of radioactivity in the form of dried [18F]TBAF complex. The PET tracer [18F]fallypride was synthesized from this concentrated activity in an overall synthesis time of ∼50 min (including radioisotope concentration and transfer, droplet radiosynthesis, purification, and formulation), in amounts up to 7.2 GBq [0.19 Ci], sufficient for multiple clinical PET scans. The resulting batches of [18F]fallypride passed all QC tests needed to ensure safety for clinical injection. This integrated technology enabled for the first time the impact of a wide range of activity levels on droplet radiosynthesis to be studied. Furthermore, this substantial increase in scale expands the applications of droplet radiosynthesis to the production of clinically-relevant amounts of radiopharmaceuticals, and potentially even centralized production of clinical tracers in radiopharmacies. The overall system could be applied to fundamental studies of droplet-based radiochemical reactions, or to the production of radiopharmaceuticals labeled with a variety of isotopes used for imaging and/or targeted radiotherapeutics. Using a micro-cartridge based radionuclide concentrator enables the production of multiple (10 s) of clinical doses of the PET tracer [18F]fallypride with a droplet micro-reactor platform (8 μL).![]()
Collapse
Affiliation(s)
- Jia Wang
- Department of Bioengineering
- Henry Samueli School of Engineering
- UCLA
- Los Angeles
- USA
| | - Philip H. Chao
- Department of Bioengineering
- Henry Samueli School of Engineering
- UCLA
- Los Angeles
- USA
| | - Roger Slavik
- Ahmanson Translational Imaging Division
- David Geffen School of Medicine
- University of California
- Los Angeles
- USA
| | - R. Michael van Dam
- Department of Bioengineering
- Henry Samueli School of Engineering
- UCLA
- Los Angeles
- USA
| |
Collapse
|
6
|
Frank C, Winter G, Rensei F, Samper V, Brooks AF, Hockley BG, Henderson BD, Rensch C, Scott PJH. Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production. EJNMMI Radiopharm Chem 2019; 4:24. [PMID: 31659546 PMCID: PMC6751239 DOI: 10.1186/s41181-019-0077-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND PET radiopharmaceutical development and the implementation of a production method on a synthesis module is a complex and time-intensive task since new synthesis methods must be adapted to the confines of the synthesis platform in use. Commonly utilized single fluid bus architectures put multiple constraints on synthesis planning and execution, while conventional microfluidic solutions are limited by compatibility at the macro-to-micro interface. In this work we introduce the ISAR synthesis platform and custom-tailored fluid paths leveraging up to 70 individually addressable valves on a chip-based consumable. The ISAR synthesis platform replaces traditional stopcock valve manifolds with a fluidic chip that integrates all fluid paths (tubing) and valves into one consumable and enables channel routing without the single fluid bus constraint. ISAR can scale between the macro- (10 mL), meso- (0.5 mL) and micro- (≤0.05 mL) domain seamlessly, addressing the macro-to-micro interface challenge and enabling custom tailored fluid circuits for a given application. In this paper we demonstrate proof-of-concept by validating a single chip design to address the challenge of synthesizing multiple batches of [13N]NH3 for clinical use throughout the workday. RESULTS ISAR was installed at an academic PET Center and used to manufacture [13N]NH3 in > 96% radiochemical yield. Up to 9 batches were manufactured with a single consumable chip having parallel paths without the need to open the hot-cell. Quality control testing confirmed the ISAR-based [13N]NH3 met existing clinical release specifications, and utility was demonstrated by imaging a rodent with [13N]NH3 produced on ISAR. CONCLUSIONS ISAR represents a new paradigm in radiopharmaceutical production. Through a new system architecture, ISAR integrates the principles of microfluidics with the standard volumes and consumables established in PET Centers all over the world. Proof-of-concept has been demonstrated through validation of a chip design for the synthesis of [13N]NH3 suitable for clinical use.
Collapse
Affiliation(s)
| | - Georg Winter
- GE Healthcare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany
| | | | | | - Allen F. Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Brian G. Hockley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Bradford D. Henderson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | | | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| |
Collapse
|
7
|
Knapp KA, Nickels ML, Manning HC. The Current Role of Microfluidics in Radiofluorination Chemistry. Mol Imaging Biol 2019; 22:463-475. [DOI: 10.1007/s11307-019-01414-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
|
9
|
Zhang X, Liu F, Knapp KA, Nickels ML, Manning HC, Bellan LM. A simple microfluidic platform for rapid and efficient production of the radiotracer [ 18F]fallypride. LAB ON A CHIP 2018; 18:1369-1377. [PMID: 29658049 DOI: 10.1039/c8lc00167g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we report the development of a simple, high-throughput and efficient microfluidic system for synthesizing radioactive [18F]fallypride, a PET imaging radiotracer widely used in medical research. The microfluidic chip contains all essential modules required for the synthesis and purification of radioactive fallypride. The radiochemical yield of the tracer is sufficient for multiple animal injections for preclinical imaging studies. To produce the on-chip concentration and purification columns, we employ a simple "trapping" mechanism by inserting rows of square pillars with predefined gaps near the outlet of microchannel. Microspheres with appropriate functionality are suspended in solution and loaded into the microchannels to form columns for radioactivity concentration and product purification. Instead of relying on complicated flow control elements (e.g., micromechanical valves requiring complex external pneumatic actuation), external valves are utilized to control transfer of the reagents between different modules. The on-chip ion exchange column can efficiently capture [18F]fluoride with negligible loss (∼98% trapping efficiency), and subsequently release a burst of concentrated [18F]fluoride to the reaction cavity. A thin layer of PDMS with a small hole in the center facilitates rapid and reliable water evaporation (with the aid of azeotropic distillation and nitrogen flow) while reducing fluoride loss. During the solvent exchange and fluorination reaction, the entire chip is uniformly heated to the desired temperature using a hot plate. All aspects of the [18F]fallypride synthesis were monitored by high-performance liquid chromatography (HPLC) analysis, resulting in labelling efficiency in fluorination reaction ranging from 67-87% (n = 5). Moreover, after isolating unreacted [18F]fluoride, remaining fallypride precursor, and various by-products via an on-chip purification column, the eluted [18F]fallypride is radiochemically pure and of a sufficient quantity to allow for PET imaging (∼5 mCi). Finally, a positron emission tomography (PET) image of a rat brain injected with ∼300 μCi [18F]fallypride produced by our microfluidic chip is provided, demonstrating the utility of the product produced by the microfluidic reactor. With a short synthesis time (∼60 min) and a highly integrated on-chip modular configuration that allows for concentration, reaction, and product purification, our microfluidic chip offers numerous exciting advantages with the potential for applications in radiochemical research and clinical production. Moreover, due to its simplicity and potential for automation, we anticipate it may be easily integrated into a clinical environment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
10
|
Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K. Practical microscale one-pot radiosynthesis of 18 F-labeled probes. J Labelled Comp Radiopharm 2018. [PMID: 29520821 DOI: 10.1002/jlcr.3618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High specific activity is often a significant requirement for radiopharmaceuticals. To achieve that with fluorine-18 (18 F)-labeled probes, it is mandatory to start from no-carrier-added fluoride and to reduce to a minimum the amount of precursor in order to decrease the presence of any pseudocarrier. In the present study, a feasible and efficient method for microscale one-pot radiosynthesis of 18 F-labeled probes is described. It allows a substantial reduction in precursor, solvent, and reagents, thus reducing also possible side reaction in the case of base-sensitive precursors. The method is based on the use of a small amount of Kryptofix 2.2.2/potassium [18 F]fluoride in MeOH (K.222/K[18 F]F-MeOH) obtained using Oasis MAX and MCX cartridges. Five methods, differing in terms of MeOH evaporation and precursor addition, for the radiosynthesis of [18 F]fallypride and [18 F]FET in ≤50-μL scale, were examined and evaluated. The method using the addition of DMSO to the K.222/K[18 F]F-MeOH solution prior to MeOH evaporation is proposed as a versatile procedure for feasible one-pot 10- to 20-μL scale radiosyntheses. This method was successfully applied also to the radiosynthesis of [18 F]FES, [18 F]FLT, and [18 F]FMISO, with radiochemical yields comparable with those reported in the literature. Purification of a crude product by an analytical HPLC column was also demonstrated.
Collapse
Affiliation(s)
- Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Claudio Pascali
- S.C. Medicina Nucleare, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Pfaff S, Philippe C, Pichler V, Hacker M, Mitterhauser M, Wadsak W. Microfluidic 68Ga-labeling: a proof of principle study. Dalton Trans 2018; 47:5997-6004. [DOI: 10.1039/c8dt00158h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 68Ga-labeling of three representative precursors (DOTA-NOC, NODAGA-RGD(yk) and PSMA-11) was performed applying a microfluidic continuous flow device.
Collapse
Affiliation(s)
- Sarah Pfaff
- Division of Nuclear Medicine
- Department of Biomedical Imaging and Image-guided Therapy
- Medical University of Vienna
- Vienna
- Austria
| | - Cecile Philippe
- Division of Nuclear Medicine
- Department of Biomedical Imaging and Image-guided Therapy
- Medical University of Vienna
- Vienna
- Austria
| | - Verena Pichler
- Division of Nuclear Medicine
- Department of Biomedical Imaging and Image-guided Therapy
- Medical University of Vienna
- Vienna
- Austria
| | - Marcus Hacker
- Division of Nuclear Medicine
- Department of Biomedical Imaging and Image-guided Therapy
- Medical University of Vienna
- Vienna
- Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine
- Department of Biomedical Imaging and Image-guided Therapy
- Medical University of Vienna
- Vienna
- Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine
- Department of Biomedical Imaging and Image-guided Therapy
- Medical University of Vienna
- Vienna
- Austria
| |
Collapse
|
12
|
Collier TL, Liang SH, Mann JJ, Vasdev N, Kumar JSD. Microfluidic radiosynthesis of [ 18F]FEMPT, a high affinity PET radiotracer for imaging serotonin receptors. Beilstein J Org Chem 2017; 13:2922-2927. [PMID: 29564020 PMCID: PMC5753126 DOI: 10.3762/bjoc.13.285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/18/2017] [Indexed: 01/04/2023] Open
Abstract
Continuous-flow microfluidics has shown increased applications in radiochemistry over the last decade, particularly for both pre-clinical and clinical production of fluorine-18 labeled radiotracers. The main advantages of microfluidics are the reduction in reaction times and consumption of reagents that often result in increased radiochemical yields and rapid optimization of reaction parameters for 18F-labeling. In this paper, we report on the two-step microfluidic radiosynthesis of the high affinity partial agonist of the serotonin 1A receptor, [18F]FEMPT (pKi = 9. 79; Ki = 0.16 nM) by microfluidic radiochemistry. [18F]FEMPT was obtained in ≈7% isolated radiochemical yield and in >98% radiochemical and chemical purity. The molar activity of the final product was determined to be >148 GBq/µmol (>4 Ci/µmol).
Collapse
Affiliation(s)
- Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
- Advion, Inc., Ithaca, NY, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| | | | - J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
13
|
Matesic L, Kallinen A, Greguric I, Pascali G. Dose-on-demand production of diverse 18 F-radiotracers for preclinical applications using a continuous flow microfluidic system. Nucl Med Biol 2017; 52:24-31. [DOI: 10.1016/j.nucmedbio.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022]
|
14
|
Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K. Minimization of the amount of Kryptofix 222 - KHCO 3 for applications to microscale 18 F-radiolabeling. Appl Radiat Isot 2017; 125:113-118. [DOI: 10.1016/j.apradiso.2017.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
|
15
|
Kawashima H, Kimura H, Nakaya Y, Tomatsu K, Arimitsu K, Nakanishi H, Ozeki E, Kuge Y, Saji H. Application of Microreactor to the Preparation of C-11-Labeled Compounds via O-[11C]Methylation with [11C]CH3I: Rapid Synthesis of [11C]Raclopride. Chem Pharm Bull (Tokyo) 2016; 63:737-40. [PMID: 26329868 DOI: 10.1248/cpb.c15-00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new radiolabeling method using a microreactor was developed for the rapid synthesis of [(11)C]raclopride. A chip bearing a Y-shaped mixing junction with a 200 µm (width)×20 µm (depth)×250 mm (length) flow channel was designed, and the efficiency of O-[11C]methylation was evaluated. Dimethyl sulfoxide solutions containing the O-desmethyl precursor or [11C]CH3I were introduced into separate injection ports by infusion syringes, and the radiochemical yields were measured under various conditions. The decay-corrected radiochemical yield of microreactor-derived [11C]raclopride reached 12% in 20 s at 25 °C, which was observed to increase with increasing temperature. In contrast, batch synthesis at 25 °C produced a yield of 5%: this indicates that this device could effectively achieve O-[11C]methylation in a shorter period of time. The microreactor technique may facilitate simple and efficient routine production of 11C-labeled compounds via O-[11C]methylation with [11C]CH3I.
Collapse
|
16
|
Taggart MP, Tarn MD, Esfahani MMN, Schofield DM, Brown NJ, Archibald SJ, Deakin T, Pamme N, Thompson LF. Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals. LAB ON A CHIP 2016; 16:1605-1616. [PMID: 27044712 DOI: 10.1039/c6lc00099a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to detect radiation in microfluidic devices is important for the on-chip analysis of radiopharmaceuticals, but previously reported systems have largely suffered from various limitations including cost, complexity of fabrication, and insufficient sensitivity and/or speed. Here, we present the use of sensitive, low cost, small-sized, commercially available silicon photomultipliers (SiPMs) for the detection of radioactivity inside microfluidic channels fabricated from a range of conventional microfluidic chip substrates. We demonstrate the effects of chip material and thickness on the detection of the positron-emitting isotope, [(18)F]fluoride, and find that, while the SiPMs are light sensors, they are able to detect radiation even through opaque chip materials via direct positron and gamma (γ) ray interaction. Finally, we employed the SiPM platform for analysis of the PET (positron emission tomography) radiotracers 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) and [(68)Ga]gallium-citrate, and highlight the ability to detect the γ ray emitting SPECT (single photon emission computed tomography) radiotracer, [(99m)Tc]pertechnetate.
Collapse
Affiliation(s)
- Matthew P Taggart
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.
| | - Mark D Tarn
- Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | - Daniel M Schofield
- LabLogic Systems Ltd., Paradigm House, 3 Melbourne Avenue, Broomhill, Sheffield, S10 2QJ, UK
| | - Nathaniel J Brown
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Stephen J Archibald
- Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Tom Deakin
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK. and LabLogic Systems Ltd., Paradigm House, 3 Melbourne Avenue, Broomhill, Sheffield, S10 2QJ, UK
| | - Nicole Pamme
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Lee F Thompson
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.
| |
Collapse
|
17
|
Tarn MD, Maneuski D, Alexander R, Brown NJ, O’Shea V, Pimlott SL, Pamme N, Archibald SJ. Positron detection in silica monoliths for miniaturised quality control of PET radiotracers. Chem Commun (Camb) 2016; 52:7221-4. [DOI: 10.1039/c6cc00660d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time, high S/N radiodetection of the PET radiotracer, 68Ga-citrate, was achieved on a monolithic column using a miniaturised positron sensor.
Collapse
Affiliation(s)
- Mark D. Tarn
- Positron Emission Tomography Research Centre
- University of Hull
- Hull
- UK
- Department of Chemistry
| | | | | | | | - Val O’Shea
- School of Physics and Astronomy
- University of Glasgow
- Glasgow
- UK
| | | | | | - Stephen J. Archibald
- Positron Emission Tomography Research Centre
- University of Hull
- Hull
- UK
- Department of Chemistry
| |
Collapse
|
18
|
Liang SH, Yokell DL, Normandin MD, Rice PA, Jackson RN, Shoup TM, Brady TJ, El Fakhri G, Collier TL, Vasdev N. First human use of a radiopharmaceutical prepared by continuous-flow microfluidic radiofluorination: proof of concept with the tau imaging agent [18F]T807. Mol Imaging 2015; 13. [PMID: 25248283 DOI: 10.2310/7290.2014.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET) radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([18F]T807) and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [18F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FXFN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [18F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [18F]T807 (≈ 500 mCi, radiochemical purity 95%) were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% (n = 3), relative to starting [18F]fluoride (end of bombardment), with high radiochemical purity (≥ 99%) and high specific activities (6 Ci/μmol) in 100 minutes. A clinical research study was carried out with [18F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology.
Collapse
|
19
|
Zheng MQ, Collier L, Bois F, Kelada OJ, Hammond K, Ropchan J, Akula MR, Carlson DJ, Kabalka GW, Huang Y. Synthesis of [(18)F]FMISO in a flow-through microfluidic reactor: Development and clinical application. Nucl Med Biol 2015; 42:578-84. [PMID: 25779036 DOI: 10.1016/j.nucmedbio.2015.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The PET radiotracer [(18)F]FMISO has been used in the clinic to image hypoxia in tumors. The aim of the present study was to optimize the radiochemical parameters for the preparation of [(18)F]FMISO using a microfluidic reaction system. The main parameters evaluated were (1) precursor concentration, (2) reaction temperature, and (3) flow rate through the microfluidic reactor. Optimized conditions were then applied to the batch production of [(18)F]FMISO for clinical research use. METHODS For the determination of optimal reaction conditions within a flow-through microreactor synthesizer, 5-400 μL the precursor and dried [(18)F]fluoride solutions in acetonitrile were simultaneously pushed through the temperature-controlled reactor (60-180 °C) with defined flow rates (20-120 μL/min). Radiochemical incorporation yields to form the intermediate species were determined using radio-TLC. Hydrolysis to remove the protecting group was performed following standard vial chemistry to afford [(18)F]FMISO. RESULTS Optimum reaction parameters for the microfluidic set-up were determined as follows: 4 mg/mL of precursor, 170 °C, and 100 μL/min pump rate per reactant (200 μL/min reaction overall flow rate) to prepare the radiolabeled intermediate. The optimum hydrolysis condition was determined to be 2N HCl for 5 min at 100 °C. Large-scale batch production using the optimized conditions gave the final, ready for human injection [(18)F]FMISO product in 28.4 ± 3.0% radiochemical yield, specific activity of 119 ± 26 GBq/μmol, and >99% radiochemical and chemical purity at the end of synthesis (n = 4). CONCLUSION By using the NanoTek microfluidic synthesis system, [(18)F]FMISO was successfully prepared with good specific activity and high radiochemical purity for human use. The product generated from large-scale batch production using flow chemistry is currently being used in clinical research.
Collapse
Affiliation(s)
- Ming-Qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, United States.
| | - Lee Collier
- Advion, Ithaca, NY, United States; Department of Radiology, University of Tennessee, Knoxville, TN, United States.
| | - Frederic Bois
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, United States
| | - Olivia J Kelada
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Jim Ropchan
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, United States
| | - Murthy R Akula
- Department of Radiology, University of Tennessee, Knoxville, TN, United States
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| | - George W Kabalka
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States; Department of Radiology, University of Tennessee, Knoxville, TN, United States
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Kniess T, Laube M, Brust P, Steinbach J. 2-[18F]Fluoroethyl tosylate – a versatile tool for building18F-based radiotracers for positron emission tomography. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00303b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review highlights the role of 2-[18F]fluoroethyltosylate ([18F]FETs) in PET radiotracer design since it is a preferred labeling reagent according to its high reactivity to phenolic, amine, thiophenolic and carboxylic functions.
Collapse
Affiliation(s)
- Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| |
Collapse
|
21
|
Matesic L, Kallinen A, Wyatt NA, Pham TQ, Greguric I, Pascali G. [18F]Fluorination Optimisation and the Fully Automated Production of [18F]MEL050 Using a Microfluidic System. Aust J Chem 2015. [DOI: 10.1071/ch14130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The [18F]radiolabelling of the melanin-targeting positron-emission tomography radiotracer [18F]MEL050 was rapidly optimised using a commercial continuous-flow microfluidic system. The optimal [18F]fluorination incorporation conditions were then translated to production-scale experiments (35–150 GBq) suitable for preclinical imaging, complete with automated HPLC–solid phase extraction purification and formulation. [18F]MEL050 was obtained in 43 ± 10 % radiochemical yield in ~50 min.
Collapse
|
22
|
He P, Haswell SJ, Pamme N, Archibald SJ. Advances in processes for PET radiotracer synthesis: Separation of [18F]fluoride from enriched [18O]water. Appl Radiat Isot 2014; 91:64-70. [DOI: 10.1016/j.apradiso.2014.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
|
23
|
Identification of chemical byproducts in the radiofluorination of structurally complex aryliodonium salts. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3407-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Pascali G, Matesic L, Collier TL, Wyatt N, Fraser BH, Pham TQ, Salvadori PA, Greguric I. Optimization of nucleophilic ¹⁸F radiofluorinations using a microfluidic reaction approach. Nat Protoc 2014; 9:2017-29. [PMID: 25079426 DOI: 10.1038/nprot.2014.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic techniques are increasingly being used to synthesize positron-emitting radiopharmaceuticals. Several reports demonstrate higher incorporation yields, with shorter reaction times and reduced amounts of reagents compared with traditional vessel-based techniques. Microfluidic techniques, therefore, have tremendous potential for allowing rapid and cost-effective optimization of new radiotracers. This protocol describes the implementation of a suitable microfluidic process to optimize classical (18)F radiofluorination reactions by rationalizing the time and reagents used. Reaction optimization varies depending on the systems used, and it typically involves 5-10 experimental days of up to 4 h of sample collection and analysis. In particular, the protocol allows optimization of the key fluidic parameters in the first tier of experiments: reaction temperature, residence time and reagent ratio. Other parameters, such as solvent, activating agent and precursor concentration need to be stated before the experimental runs. Once the optimal set of parameters is found, repeatability and scalability are also tested in the second tier of experiments. This protocol allows the standardization of a microfluidic methodology that could be applied in any radiochemistry laboratory, in order to enable rapid and efficient radiosynthesis of new and existing [(18)F]-radiotracers. Here we show how this method can be applied to the radiofluorination optimization of [(18)F]-MEL050, a melanoma tumor imaging agent. This approach, if integrated into a good manufacturing practice (GMP) framework, could result in the reduction of materials and the time required to bring new radiotracers toward preclinical and clinical applications.
Collapse
Affiliation(s)
- Giancarlo Pascali
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Lidia Matesic
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Thomas L Collier
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Naomi Wyatt
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Benjamin H Fraser
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Tien Q Pham
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Piero A Salvadori
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Ivan Greguric
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| |
Collapse
|
25
|
Rensch C, Lindner S, Salvamoser R, Leidner S, Böld C, Samper V, Taylor D, Baller M, Riese S, Bartenstein P, Wängler C, Wängler B. A solvent resistant lab-on-chip platform for radiochemistry applications. LAB ON A CHIP 2014; 14:2556-2564. [PMID: 24879121 DOI: 10.1039/c4lc00076e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The application of microfluidics to the synthesis of Positron Emission Tomography (PET) tracers has been explored for more than a decade. Microfluidic benefits such as superior temperature control have been successfully applied to PET tracer synthesis. However, the design of a compact microfluidic platform capable of executing a complete PET tracer synthesis workflow while maintaining prospects for commercialization remains a significant challenge. This study uses an integral system design approach to tackle commercialization challenges such as the material to process compatibility with a path towards cost effective lab-on-chip mass manufacturing from the start. It integrates all functional elements required for a simple PET tracer synthesis into one compact radiochemistry platform. For the lab-on-chip this includes the integration of on-chip valves, on-chip solid phase extraction (SPE), on-chip reactors and a reversible fluid interface while maintaining compatibility with all process chemicals, temperatures and chip mass manufacturing techniques. For the radiochemistry device it includes an automated chip-machine interface enabling one-move connection of all valve actuators and fluid connectors. A vial-based reagent supply as well as methods to transfer reagents efficiently from the vials to the chip has been integrated. After validation of all those functional elements, the microfluidic platform was exemplarily employed for the automated synthesis of a Gastrin-releasing peptide receptor (GRP-R) binding the PEGylated Bombesin BN(7-14)-derivative ([(18)F]PESIN) based PET tracer.
Collapse
Affiliation(s)
- Christian Rensch
- GE Global Research, Freisinger Landstrasse 50, 85748 Garching bei Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pascali G, De Simone M, Matesic L, Greguric I, Salvadori PA. Tolerance of Water in Microfluidic Radiofluorinations: A Potential Methodological Shift? J Flow Chem 2014. [DOI: 10.1556/jfc-d-13-00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Pascali G, Berton A, DeSimone M, Wyatt N, Matesic L, Greguric I, Salvadori PA. Hardware and software modifications on the Advion NanoTek microfluidic platform to extend flexibility for radiochemical synthesis. Appl Radiat Isot 2014; 84:40-7. [DOI: 10.1016/j.apradiso.2013.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
|
28
|
Gómez-Vallejo V, Gaja V, Gona KB, Llop J. Nitrogen-13: historical review and future perspectives. J Labelled Comp Radiopharm 2014; 57:244-54. [DOI: 10.1002/jlcr.3163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/29/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa Gómez-Vallejo
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián 20009 Guipúzcoa Spain
| | - Vijay Gaja
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián 20009 Guipúzcoa Spain
| | - Kiran B. Gona
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián 20009 Guipúzcoa Spain
| | - Jordi Llop
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián 20009 Guipúzcoa Spain
| |
Collapse
|
29
|
Amii H, Nagaki A, Yoshida JI. Flow microreactor synthesis in organo-fluorine chemistry. Beilstein J Org Chem 2013; 9:2793-802. [PMID: 24367443 PMCID: PMC3869211 DOI: 10.3762/bjoc.9.314] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/05/2013] [Indexed: 11/23/2022] Open
Abstract
Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry.
Collapse
Affiliation(s)
- Hideki Amii
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jun-Ichi Yoshida
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
30
|
Matesic L, Wyatt NA, Fraser BH, Roberts MP, Pham TQ, Greguric I. Ascertaining the suitability of aryl sulfonyl fluorides for [18F]radiochemistry applications: a systematic investigation using microfluidics. J Org Chem 2013; 78:11262-70. [PMID: 24134549 DOI: 10.1021/jo401759z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Optimization of [(18)F]radiolabeling conditions and subsequent stability analysis in mobile phase, PBS buffer, and rat serum of 12 aryl sulfonyl chloride precursors with various substituents (electron-withdrawing groups, electron-donating groups, increased steric bulk, heterocyclic) were performed using an Advion NanoTek Microfluidic Synthesis System. A comparison of radiochemical yields and reaction times for a microfluidics device versus a conventional reaction vessel is reported. [(18)F]Radiolabeling of sulfonyl chlorides in the presence of competing nucleophiles, H-bond donors, and water was also assessed and demonstrated the versatility and potential utility of [(18)F]sulfonyl fluorides as synthons for indirect radiolabeling.
Collapse
Affiliation(s)
- Lidia Matesic
- LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO) , Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Pascali G, Watts P, Salvadori PA. Microfluidics in radiopharmaceutical chemistry. Nucl Med Biol 2013; 40:776-87. [DOI: 10.1016/j.nucmedbio.2013.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/28/2022]
|
32
|
Rensch C, Jackson A, Lindner S, Salvamoser R, Samper V, Riese S, Bartenstein P, Wängler C, Wängler B. Microfluidics: a groundbreaking technology for PET tracer production? Molecules 2013; 18:7930-56. [PMID: 23884128 PMCID: PMC6270045 DOI: 10.3390/molecules18077930] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/21/2013] [Accepted: 07/03/2013] [Indexed: 11/16/2022] Open
Abstract
Application of microfluidics to Positron Emission Tomography (PET) tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed.
Collapse
Affiliation(s)
- Christian Rensch
- GE Global Research, Freisinger Landstrasse 50, Garching bei Munich 85748, Germany; E-Mails: (R.S.); (V.S.)
| | - Alexander Jackson
- GE Healthcare, Life Sciences, The Grove Centre, White Lion Rd., Amersham HP7 9LL, UK; E-Mails: (A.J.); (S.R.)
| | - Simon Lindner
- University Hospital Munich, Department of Nuclear Medicine, Ludwig Maximilians-University, Munich 81377, Germany; E-Mails: (S.L.); (P.B.); (C.W.)
| | - Ruben Salvamoser
- GE Global Research, Freisinger Landstrasse 50, Garching bei Munich 85748, Germany; E-Mails: (R.S.); (V.S.)
| | - Victor Samper
- GE Global Research, Freisinger Landstrasse 50, Garching bei Munich 85748, Germany; E-Mails: (R.S.); (V.S.)
| | - Stefan Riese
- GE Healthcare, Life Sciences, The Grove Centre, White Lion Rd., Amersham HP7 9LL, UK; E-Mails: (A.J.); (S.R.)
| | - Peter Bartenstein
- University Hospital Munich, Department of Nuclear Medicine, Ludwig Maximilians-University, Munich 81377, Germany; E-Mails: (S.L.); (P.B.); (C.W.)
| | - Carmen Wängler
- University Hospital Munich, Department of Nuclear Medicine, Ludwig Maximilians-University, Munich 81377, Germany; E-Mails: (S.L.); (P.B.); (C.W.)
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim 68167, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim 68167, Germany
| |
Collapse
|
33
|
Arima V, Pascali G, Lade O, Kretschmer HR, Bernsdorf I, Hammond V, Watts P, De Leonardis F, Tarn MD, Pamme N, Cvetkovic BZ, Dittrich PS, Vasovic N, Duane R, Jaksic A, Zacheo A, Zizzari A, Marra L, Perrone E, Salvadori PA, Rinaldi R. Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. LAB ON A CHIP 2013; 13:2328-2336. [PMID: 23639996 DOI: 10.1039/c3lc00055a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have developed an integrated microfluidic platform for producing 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) in continuous flow from a single bolus of radioactive isotope solution, with constant product yields achieved throughout the operation that were comparable to those reported for commercially available vessel-based synthesisers (40-80%). The system would allow researchers to obtain radiopharmaceuticals in a dose-on-demand setting within a few minutes. The flexible architecture of the platform, based on a modular design, can potentially be applied to the synthesis of other radiotracers that require a two-step synthetic approach, and may be adaptable to more complex synthetic routes by implementing additional modules. It can therefore be employed for standard synthesis protocols as well as for research and development of new radiopharmaceuticals.
Collapse
Affiliation(s)
- Valentina Arima
- National Nanotechnology Laboratory (NNL)-Institute of Nanoscience (NANO), CNR, Lecce, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Amaraesekera B, Marchis PD, Bobinski KP, Radu CG, Czernin J, Barrio JR, Michael van Dam R. High-pressure, compact, modular radiosynthesizer for production of positron emitting biomarkers. Appl Radiat Isot 2013; 78:88-101. [PMID: 23702794 DOI: 10.1016/j.apradiso.2013.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 03/10/2013] [Accepted: 04/13/2013] [Indexed: 11/17/2022]
Abstract
A robust, modular, semi-automated synthesis unit useful for conducting radiochemical reactions under pressurized conditions (up to ∼200psi [1.4MPa]) for the production of PET biomarkers has been developed. This compact unit (7.6cm×33.0cm×58.4cm) is capable of performing any single step reaction that is generally encountered in radiochemical syntheses, and multiple units can be combined for more complex syntheses. The versatility of a 3-unit system is exemplified by reliably conducting the multi-step syntheses of 2'-deoxy-2'-[(18)F]fluoro-1-β-arabinofuranosyl-uracil and -cytosine derivatives, which involve corrosive and moisture sensitive reagents under pressurized conditions.
Collapse
Affiliation(s)
- Bernard Amaraesekera
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Haroun S, Sanei Z, Jivan S, Schaffer P, Ruth TJ, Li PC. Continuous-flow synthesis of [11C]raclopride, a positron emission tomography radiotracer, on a microfluidic chip. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
11C-labelled radiotracers such as [11C]raclopride are produced in a process that can take between 45 and 60 min to complete. These conventional approaches can consume upwards of 75% of the 11C (t1/2 = 20 min) due to radioactive decay alone, even more if synthesis losses are considered. To compensate, a large starting quantity of radioactive precursors such as [11C]methyl iodide is required to produce an adequate amount of the tracer for injection. In this investigation, a continuous-flow microchip is explored for the purpose of synthesizing 11C radiotracers in a shorter time by exploiting the favorable reaction kinetics of using smaller reaction volumes. To enhance the mixing of reagents within the microchannel, a micromixer “loop” design was used in fabricating various polydimethylsiloxane chip styles. With a loop design implemented in an abacus-style chip for the production of nonradioactive raclopride, shorter reaction times, reduced precursor use, and improved yields were possible when compared with the use of a simple serpentine design (no loop-style chip). However, when performing the equivalent radiochemical reaction, the results were not as favorable. Using the loop design in a full loop-style chip, parameters such as premixing the reagents, reducing flow rate, and varying reagent concentrations were explored to improve the yields of [11C]raclopride (in terms of relative radioactivity) formed. The full loop chip design produced the best results, and future work will see the polydimethylsiloxane prototype chip design translated into a glass chip for further optimization.
Collapse
Affiliation(s)
- Samar Haroun
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Zahra Sanei
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Salma Jivan
- Nuclear Medicine Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Nuclear Medicine Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Thomas J. Ruth
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Nuclear Medicine Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Paul C.H. Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
36
|
Tarn MD, Pascali G, De Leonardis F, Watts P, Salvadori PA, Pamme N. Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction. J Chromatogr A 2013; 1280:117-21. [DOI: 10.1016/j.chroma.2013.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
37
|
Dewkar GK, Sundaresan G, Lamichhane N, Hirsch J, Thadigiri C, Collier T, Hartman MCT, Vaidyanthan G, Zweit J. Microfluidic radiosynthesis and biodistribution of [18F] 2-(5-fluoro-pentyl)-2-methyl malonic acid. J Labelled Comp Radiopharm 2013; 56:289-94. [DOI: 10.1002/jlcr.3016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Gajanan K. Dewkar
- Center for Molecular Imaging, Department of Radiology; Virginia Commonwealth University; Richmond; VA; 23298; USA
| | - Gobalakrishnan Sundaresan
- Center for Molecular Imaging, Department of Radiology; Virginia Commonwealth University; Richmond; VA; 23298; USA
| | - Narottam Lamichhane
- Center for Molecular Imaging, Department of Radiology; Virginia Commonwealth University; Richmond; VA; 23298; USA
| | - Jerry Hirsch
- Center for Molecular Imaging, Department of Radiology; Virginia Commonwealth University; Richmond; VA; 23298; USA
| | - Celina Thadigiri
- Center for Molecular Imaging, Department of Radiology; Virginia Commonwealth University; Richmond; VA; 23298; USA
| | | | | | - Ganesan Vaidyanthan
- Department of Radiology; Duke University School of Medicine; Durham; NC; 27710; USA
| | | |
Collapse
|
38
|
Lebedev A, Miraghaie R, Kotta K, Ball CE, Zhang J, Buchsbaum MS, Kolb HC, Elizarov A. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer. LAB ON A CHIP 2013; 13:136-45. [PMID: 23135409 PMCID: PMC3743669 DOI: 10.1039/c2lc40853h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The very first microfluidic device used for the production of (18)F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [(18)F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on "split-box architecture", with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [(18)F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880.
Collapse
Affiliation(s)
- Artem Lebedev
- Molecular Imaging Biomarker Research, Siemens Healthcare, 6100 Bristol Pkw, Culver City, California, USA. Fax: +1-310-568-9491; Tel: +1-310-864-1684
| | - Reza Miraghaie
- Molecular Imaging Biomarker Research, Siemens Healthcare, 6100 Bristol Pkw, Culver City, California, USA. Fax: +1-310-568-9491; Tel: +1-310-864-1684
| | - Kishore Kotta
- Department of Radiology, University of California, San Diego, 11388 Sorrento Valley Road, Suit #100, San Diego, California, USA
| | - Carroll E. Ball
- Molecular Imaging Biomarker Research, Siemens Healthcare, 6100 Bristol Pkw, Culver City, California, USA. Fax: +1-310-568-9491; Tel: +1-310-864-1684
| | - Jianzhong Zhang
- Molecular Imaging Biomarker Research, Siemens Healthcare, 6100 Bristol Pkw, Culver City, California, USA. Fax: +1-310-568-9491; Tel: +1-310-864-1684
| | - Monte S. Buchsbaum
- Department of Radiology, University of California, San Diego, 11388 Sorrento Valley Road, Suit #100, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, USA
| | - Hartmuth C. Kolb
- Molecular Imaging Biomarker Research, Siemens Healthcare, 6100 Bristol Pkw, Culver City, California, USA. Fax: +1-310-568-9491; Tel: +1-310-864-1684
| | - Arkadij Elizarov
- Molecular Imaging Biomarker Research, Siemens Healthcare, 6100 Bristol Pkw, Culver City, California, USA. Fax: +1-310-568-9491; Tel: +1-310-864-1684
| |
Collapse
|
39
|
|
40
|
Evaluation of tetraethylammonium bicarbonate as a phase-transfer agent in the formation of [18F]fluoroarenes. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2012.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Richter S, Bouvet V, Wuest M, Bergmann R, Steinbach J, Pietzsch J, Neundorf I, Wuest F. 18F-Labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells. Nucl Med Biol 2012; 39:1202-12. [DOI: 10.1016/j.nucmedbio.2012.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/14/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
42
|
Dahl K, Schou M, Halldin C. Radiofluorination and reductive amination using a microfluidic device. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kenneth Dahl
- Karolinska Institutet; Department of Clinical Neuroscience; Center for Psychiatric Research; Karolinska Hospital; S-171 76; Stockholm; Sweden
| | | | - Christer Halldin
- Karolinska Institutet; Department of Clinical Neuroscience; Center for Psychiatric Research; Karolinska Hospital; S-171 76; Stockholm; Sweden
| |
Collapse
|
43
|
Philippe C, Ungersboeck J, Schirmer E, Zdravkovic M, Nics L, Zeilinger M, Shanab K, Lanzenberger R, Karanikas G, Spreitzer H, Viernstein H, Mitterhauser M, Wadsak W. [¹⁸F]FE@SNAP-A new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): microfluidic and vessel-based approaches. Bioorg Med Chem 2012; 20:5936-40. [PMID: 22921745 PMCID: PMC3460236 DOI: 10.1016/j.bmc.2012.07.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Abstract
Changes in the expression of the melanin concentrating hormone receptor 1 (MCHR1) are involved in a variety of pathologies, especially obesity and anxiety disorders. To monitor these pathologies in-vivo positron emission tomography (PET) is a suitable method. After the successful radiosynthesis of [(11)C]SNAP-7941-the first PET-Tracer for the MCHR1, we aimed to synthesize its [(18)F]fluoroethylated analogue: [(18)F]FE@SNAP. Therefore, microfluidic and vessel-based approaches were tested. [(18)F]fluoroethylation was conducted via various [(18)F]fluoroalkylated synthons and direct [(18)F]fluorination. Only the direct [(18)F]fluorination of a tosylated precursor using a flow-through microreactor was successful, affording [(18)F]FE@SNAP in 44.3 ± 2.6%.
Collapse
Affiliation(s)
- Cécile Philippe
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Johanna Ungersboeck
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Eva Schirmer
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Milica Zdravkovic
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Lukas Nics
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Nutritional Sciences, University of Vienna, Vienna 1090, Austria
| | - Markus Zeilinger
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Karem Shanab
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Georgios Karanikas
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Helmut Spreitzer
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Markus Mitterhauser
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
- Hospital Pharmacy of the General Hospital of Vienna, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
44
|
Gaja V, Gómez-Vallejo V, Cuadrado-Tejedor M, Borrell JI, Llop J. Synthesis of 13N-labelled radiotracers by using microfluidic technology. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vijay Gaja
- Radiochemistry Department; CIC biomaGUNE; Paseo Miramón 182; San Sebastián; 20009; Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry Department; CIC biomaGUNE; Paseo Miramón 182; San Sebastián; 20009; Spain
| | | | - José I. Borrell
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390; 08017; Barcelona; Spain
| | - Jordi Llop
- Radiochemistry Department; CIC biomaGUNE; Paseo Miramón 182; San Sebastián; 20009; Spain
| |
Collapse
|
45
|
Ungersboeck J, Richter S, Collier L, Mitterhauser M, Karanikas G, Lanzenberger R, Dudczak R, Wadsak W. Radiolabeling of [18F]altanserin - a microfluidic approach. Nucl Med Biol 2012; 39:1087-92. [PMID: 22633218 DOI: 10.1016/j.nucmedbio.2012.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/23/2012] [Accepted: 04/08/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Our aim was the optimization of radiochemical parameters for the microfluidic preparation of [(18)F]altanserin. The four main parameters evaluated were (1) precursor concentration, (2) reaction temperature, (3) bolus flow rate through the microreactor and (4) bolus volume. METHODS For the determination of optimal reaction conditions within a flow-through microreactor synthesizer, 5-400 μL of precursor and dried [(18)F]fluoride solution were simultaneously pushed through the temperature-controlled reactor (180-220°C) with defined bolus flow rates of 10-60 μL/min. Radiochemical incorporation yields (RCIYs) were examined using a thin layer chromatography (TLC) set-up and radio- high-performance liquid chromatography (HPLC). RESULTS Optimum reaction parameters for the microfluidic set-up were determined as following: 220°C, 5-10 μL/min pump rate per reactant (10-20 μL/min reaction overall flow rate) and 2mg/mL precursor concentration in the reaction mixture. Applying these optimized conditions, RCIYs of 53.7 ± 7.9 were observed for scaled-up preparations. A positive "bolus effect" was observed: applying higher reaction volume resulted in increased RCIYs. CONCLUSION This study proved that the reaction bolus volume is an essential parameter influencing the RCIY of [(18)F]altanserin. A possible explanation is the inhomogeneous distribution within the reaction volume probably caused by diffusion at the bolus interface. This important finding should be considered an important variable for the evaluation of all novel radiotracers labeled using a flow-through reactor device.
Collapse
Affiliation(s)
- Johanna Ungersboeck
- Department of Nuclear Medicine, Radiochemistry and Biomarker Development Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wong R, Iwata R, Saiki H, Furumoto S, Ishikawa Y, Ozeki E. Reactivity of electrochemically concentrated anhydrous [18F]fluoride for microfluidic radiosynthesis of 18F-labeled compounds. Appl Radiat Isot 2012; 70:193-9. [DOI: 10.1016/j.apradiso.2011.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/13/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
|
47
|
D'Souza CA, McBride WJ, Sharkey RM, Todaro LJ, Goldenberg DM. High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjug Chem 2011; 22:1793-803. [PMID: 21805975 DOI: 10.1021/bc200175c] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coordination chemistry of a new pentadentate bifunctional chelator (BFC), NODA-MPAA 1, containing the 1,4,7-triazacyclononane-1,4-diacetate (NODA) motif with a methylphenylacetic acid (MPAA) backbone, and its ability to form stable Al(18)F chelates were investigated. The organofluoroaluminates were easily accessible from the reaction of 1 and AlF(3). X-ray diffraction studies revealed aluminum at the center of a slightly distorted octahedron, with fluorine occupying one of the axial positions. The tert-butyl protected prochelator 7, which can be synthesized in one step, is useful for coupling to biomolecules on solid phase or in solution. High yield (55-89%) aqueous (18)F-labeling was achieved in 10-15 min with a tumor-targeting peptide 4 covalently linked to 1. Defluorination was not observed for at least 4 h in human serum at 37 °C. These results demonstrate the facile application of Al(18)F chelation using BFC 1 as a versatile labeling method for radiofluorinating other heat-stable peptides for positron emission imaging.
Collapse
|
48
|
Pascali G, Nannavecchia G, Pitzianti S, Salvadori PA. Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach. Nucl Med Biol 2011; 38:637-44. [DOI: 10.1016/j.nucmedbio.2011.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/22/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
|
49
|
De Leonardis F, Pascali G, Salvadori PA, Watts P, Pamme N. On-chip pre-concentration and complexation of [¹⁸F]fluoride ions via regenerable anion exchange particles for radiochemical synthesis of Positron Emission Tomography tracers. J Chromatogr A 2011; 1218:4714-9. [PMID: 21683956 DOI: 10.1016/j.chroma.2011.05.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Microfluidic approaches have demonstrated a relevant impact on radiochemical reactions involving Positron Emission Tomography (PET) nuclides, due to shorter reaction times and smaller precursor quantities. However, little attention has been given to the integration of the initial pre-concentration and drying of radioactive [(18)F]fluoride ions, required for the labeling of radiotracer compounds. In this work we report the design, fabrication and implementation of a glass microfluidic device filled with recyclable anion exchange particles for the repeated recovery of [(18)F] and [(19)F]fluoride ions. The device was first tested with non radioactive [(19)F]fluoride ions and it was shown to repeatedly trap and elute >95% fluoride over 40 successive experimental runs with no decrease in efficiency. The same device was then tested for the trapping and release of [(18)F]fluoride ions over 20 experiments with no measurable decrease in performance. Finally, the [(18)F]fluoride ions were eluted as a K(18)F/K2.2.2 complex, dried by repeated dissolution in acetonitrile and evaporation of residual water, and reacted with ethyl ditosylate (EtDT) leading to the desired product ([(18)F]fluoroethyltosylate) with 96 ± 3% yield (RCY). The overall time needed for conditioning, trapping, elution and regeneration was less than 6 min. This approach will be of great benefit towards an integrated platform able to perform faster and safer radiochemical synthesis on the micro-scale.
Collapse
|
50
|
Microfluidic preparation of [18F]FE@SUPPY and [18F]FE@SUPPY:2--comparison with conventional radiosyntheses. Nucl Med Biol 2010; 38:427-34. [PMID: 21492791 DOI: 10.1016/j.nucmedbio.2010.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/07/2010] [Accepted: 09/20/2010] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Recently, first applications of microfluidic principles for radiosyntheses of positron emission tomography compounds were presented, but direct comparisons with conventional methods were still missing. Therefore, our aims were (1) the set-up of a microfluidic procedure for the preparation of the recently developed adenosine A(3)-receptor tracers [(18)F]FE@SUPPY [5-(2-[(18)F]fluoroethyl)2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate] and [(18)F]FE@SUPPY:2 [5-ethyl-2,4-diethyl-3-((2-[(18)F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine-5-carboxylate] and (2) the direct comparison of reaction conditions and radiochemical yields of the no-carrier-added nucleophilic substitution with [(18)F]fluoride between microfluidic and conventional methods. METHODS For the determination of optimal reaction conditions within an Advion NanoTek synthesizer, 5-50 μl of precursor and dried [(18)F]fluoride solution were simultaneously pushed through the temperature-controlled reactor (26 °C-180 °C) with defined reactant bolus flow rates (10-50 μl/min). Radiochemical incorporation yields (RCIYs) and overall radiochemical yields for large-scale preparations were compared with data from conventional batch-mode syntheses. RESULTS Optimal reaction parameters for the microfluidic set-up were determined as follows: 170 °C, 30-μl/min pump rate per reactant (reaction overall flow rate of 60 μl/min) and 5-mg/ml precursor concentration in the reaction mixture. Applying these optimized conditions, we observed a significant increase in RCIY from 88.2% to 94.1% (P < .0001, n ≥ 11) for [(18)F]FE@SUPPY and that from 42.5% to 95.5% (P<.0001, n ≥ 5) for [(18)F]FE@SUPPY:2 using microfluidic instead of conventional heating. Precursor consumption was decreased from 7.5 and 10 mg to 1 mg per large-scale synthesis for both title compounds, respectively. CONCLUSION The direct comparison of radiosyntheses data applying a conventional method and a microfluidic approach revealed a significant increase of RCIY using the microfluidic approach.
Collapse
|