1
|
Gao S, He Q. Opioids and the kidney: two sides of the same coin. Front Pharmacol 2024; 15:1421248. [PMID: 39135801 PMCID: PMC11317763 DOI: 10.3389/fphar.2024.1421248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Renal dysfunction, including acute renal failure (ARF) and chronic kidney disease (CKD), continues to present significant health challenges, with renal ischemia-reperfusion injury (IRI) being a pivotal factor in their development and progression. This condition, notably impacting kidney transplantation outcomes, underscores the urgent need for innovative therapeutic interventions. The role of opioid agonists in this context, however, remains a subject of considerable debate. Current reviews tend to offer limited perspectives, focusing predominantly on either the protective or detrimental effects of opioids in isolation. Our review addresses this gap through a thorough and comprehensive evaluation of the existing literature, providing a balanced examination of the dualistic nature of opioids' influence on renal health. We delve into both the nephroprotective and nephrotoxic aspects of opioids, dissecting the complex interactions and paradoxical effects that embody the "two sides of the same coin" phenomenon. This comprehensive analysis is vital for understanding the intricate roles of opioids in renal pathophysiology, potentially informing the development of novel therapeutic strategies for preventing or treating hypoxic kidney injury.
Collapse
Affiliation(s)
- Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
2
|
Abstract
The endogenous opioid peptide system, comprised of enkephalins, endorphins, dynorphins, and nociceptin, is a highly complex neurobiological system. Opioid peptides are derived from four precursor molecules and undergo several processing events yielding over 20 unique opioid peptides. This diversity together with low in vivo concentration and complex processing and release dynamics has challenged research into each peptide's unique function. Despite the subsequent challenges in detecting and quantifying opioid peptides in vivo, researchers have pioneered several techniques to directly or indirectly assay the roles of opioid peptides during behavioral manipulations. In this review, we describe the limitations of the traditional techniques used to study the role of endogenous opioid peptides in food and drug reward and bring focus to the wealth of new techniques to measure endogenous opioid peptides in reward processing.
Collapse
|
3
|
Fillesoye F, Ibazizène M, Marie N, Noble F, Perrio C. Evaluation of Specific Binding of [ 11C]RTI-97 to Kappa Opioid Receptor by Autoradiography and PET Imaging in Rat. ACS Med Chem Lett 2021; 12:1739-1744. [PMID: 34795862 DOI: 10.1021/acsmedchemlett.1c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022] Open
Abstract
Kappa opioid receptor (KOR) PET imaging remains attractive to understand the role of KOR in health and diseases and to help the development of drugs especially for psychiatric disorders such as depression, anxiety, and addiction. The potent and selective KOR antagonist RTI-97 labeled with carbon-11 was previously demonstrated to display specific KOR binding in mouse brain by ex vivo autoradiography studies. Herein, we evaluated [11C]RTI-97 in rat by in vitro autoradiography and by in vivo PET imaging. The radiosynthesis of [11C]RTI-97 was optimized to obtain high molar activities. Despite a low cerebral uptake, the overall results showed a heterogeneous repartition and specific KOR binding of [11C]RTI-97 in brain and a high and specific accumulation of [11C]RTI-97 in pituitary in accordance with KOR expression.
Collapse
Affiliation(s)
- Fabien Fillesoye
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| | - Nicolas Marie
- Université de Paris, CNRS, ERL 3649, Inserm, UMR-S 1124, Pharmacologie et thérapies des addictions, 75006 Paris, France
| | - Florence Noble
- Université de Paris, CNRS, ERL 3649, Inserm, UMR-S 1124, Pharmacologie et thérapies des addictions, 75006 Paris, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| |
Collapse
|
4
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
5
|
Tangherlini G, Börgel F, Schepmann D, Slocum S, Che T, Wagner S, Schwegmann K, Hermann S, Mykicki N, Loser K, Wünsch B. Synthesis and Pharmacological Evaluation of Fluorinated Quinoxaline-Based κ-Opioid Receptor (KOR) Agonists Designed for PET Studies. ChemMedChem 2020; 15:1834-1853. [PMID: 33448685 PMCID: PMC7589326 DOI: 10.1002/cmdc.202000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/19/2022]
Abstract
κ-Opioid receptors (KORs) play a predominant role in pain alleviation, itching skin diseases, depression and neurodegenerative disorders such as multiple sclerosis. Therefore, imaging of KOR by a fluorinated PET tracer was envisaged. Two strategies were followed to introduce a F atom into the very potent class of cis,trans-configured perhydroquinoxalines. Whereas the synthesis of fluoroethyltriazole 2 has already been reported, fluoropyrrolidines 14 (1-[2-(3,4-dichlorophenyl)acetyl]-8-[(R)-3-fluoropyrrolidin-1-yl]-perhydroquinoxalines) were prepared by SN2 substitution of a cyclic sulfuric acid derivative with hydroxypyrrolidine and subsequent transformation of the OH moiety into a F substituent. Fluoropyrrolidines 14 showed similar low-nanomolar KOR affinity and selectivity to the corresponding pyrrolidines, but the corresponding alcohols were slightly less active. In the cAMP and β-arrestin assay, 14b (proton at the 4-position) exhibited similar KOR agonistic activity as U-50,488. The fluoro derivatives 14b and 14c (CO2CH3 at the 4-position) revealed KOR-mediated anti-inflammatory activity as CD11c and the IFN-γ production were reduced significantly in mouse and human dendritic cells. Compounds 14b and 14-c also displayed anti-inflammatory and immunomodulatory activity in mouse and human T cells. The PET tracer [18F]-2 was prepared by 1,3-dipolar cycloaddition. In vivo, [18F]-2 did not label KOR due to very fast elimination kinetics. Nucleophilic substitution of a mesylate precursor provided [18F]-14c. Unfortunately, defluorination of [18F]-14c occurred in vivo, which was analyzed in detail by in vitro studies.
Collapse
Affiliation(s)
- Giovanni Tangherlini
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| | - Frederik Börgel
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
| | - Samuel Slocum
- Department of PharmacologyUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNC 27599USA
| | - Tao Che
- Department of AnesthesiologyWashington University School of Medicine660 S. Euclid Ave.St. LouisMO 63110USA
| | - Stefan Wagner
- Department of Nuclear MedicineUniversity Hospital MünsterAlbert-Schweitzer-Campus 1, Building A148149MünsterGermany
| | - Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI)University of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Nadine Mykicki
- Department of DermatologyUniversity of Münstervon-Esmarch-Str. 5848149MünsterGermany
| | - Karin Loser
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
- Department of DermatologyUniversity of Münstervon-Esmarch-Str. 5848149MünsterGermany
- CRC1009 Breaking Barriers and CRC-TR 128 Multiple SclerosisUniversity of Münstervon-Esmarch-Str. 5848149MünsterGermany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| |
Collapse
|
6
|
Sandulenko IV, Ambartsumyan AA, Moiseev SK. Fluorinated and [ 18F]fluorinated morphinan based opioid ligands. Org Biomol Chem 2020; 18:5533-5557. [PMID: 32672314 DOI: 10.1039/d0ob00619j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is well documented in the literature that opioid receptors modulate a large number of physiological functions (pain perception, breathing, mood, gastrointestinal motility, etc.). Natural opiates and 4,5α-epoxymorphinan derivatives obtained by their chemical modifications, which are frequently referred to as semi-synthetic opioids, are among the most important types of opioid ligands. On the other hand, fluorinated compounds have a remarkable record in medicinal chemistry providing developmental candidates for therapeutic applications. The reasons are very similar steric impacts of hydrogen and fluorine along with the influence of substituting fluorine for hydrogen in the molecules of exogenous compounds on their lipophilicity, metabolism, conformation and other properties. This review focuses on the functionalization of 4,5α-epoxymorphinans and their derivatives via substitutions with fluorine or fluorine-containing groups in the search for improved pharmacological profile opioid ligands and 18F-containing opioid receptor radioligands for PET. These functionalizations are typically associated with substituents either at the C(3)-O, C(6)-O, and N(17) positions of the 4,5α-epoxymorphinan core or at C(7) in the thebaine based Diels-Alder type adducts. The syntheses resulted in the preparation of both single fluorinated derivatives or short sets of fluorinated derivatives and the families of fluorine-containing opioids allowing, in principle, the structure-activity relationship studies.
Collapse
Affiliation(s)
- Irina V Sandulenko
- Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, V-334, Moscow 119991, Russia.
| | - Asmik A Ambartsumyan
- Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, V-334, Moscow 119991, Russia.
| | - Sergey K Moiseev
- Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, V-334, Moscow 119991, Russia.
| |
Collapse
|
7
|
Fricker LD, Margolis EB, Gomes I, Devi LA. Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions. Mol Pharmacol 2020; 98:96-108. [PMID: 32487735 DOI: 10.1124/mol.120.119388] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
In the mid-1970s, an intense race to identify endogenous substances that activated the same receptors as opiates resulted in the identification of the first endogenous opioid peptides. Since then, >20 peptides with opioid receptor activity have been discovered, all of which are generated from three precursors, proenkephalin, prodynorphin, and proopiomelanocortin, by sequential proteolytic processing by prohormone convertases and carboxypeptidase E. Each of these peptides binds to all three of the opioid receptor types (μ, δ, or κ), albeit with differing affinities. Peptides derived from proenkephalin and prodynorphin are broadly distributed in the brain, and mRNA encoding all three precursors are highly expressed in some peripheral tissues. Various approaches have been used to explore the functions of the opioid peptides in specific behaviors and brain circuits. These methods include directly administering the peptides ex vivo (i.e., to excised tissue) or in vivo (in animals), using antagonists of opioid receptors to infer endogenous peptide activity, and genetic knockout of opioid peptide precursors. Collectively, these studies add to our current understanding of the function of endogenous opioids, especially when similar results are found using different approaches. We briefly review the history of identification of opioid peptides, highlight the major findings, address several myths that are widely accepted but not supported by recent data, and discuss unanswered questions and future directions for research. SIGNIFICANCE STATEMENT: Activation of the opioid receptors by opiates and synthetic drugs leads to central and peripheral biological effects, including analgesia and respiratory depression, but these may not be the primary functions of the endogenous opioid peptides. Instead, the opioid peptides play complex and overlapping roles in a variety of systems, including reward pathways, and an important direction for research is the delineation of the role of individual peptides.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Elyssa B Margolis
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Ivone Gomes
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Lakshmi A Devi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| |
Collapse
|
8
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
A Survey of Molecular Imaging of Opioid Receptors. Molecules 2019; 24:molecules24224190. [PMID: 31752279 PMCID: PMC6891617 DOI: 10.3390/molecules24224190] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of endogenous peptide ligands for morphine binding sites occurred in parallel with the identification of three subclasses of opioid receptor (OR), traditionally designated as μ, δ, and κ, along with the more recently defined opioid-receptor-like (ORL1) receptor. Early efforts in opioid receptor radiochemistry focused on the structure of the prototype agonist ligand, morphine, although N-[methyl-11C]morphine, -codeine and -heroin did not show significant binding in vivo. [11C]Diprenorphine ([11C]DPN), an orvinol type, non-selective OR antagonist ligand, was among the first successful PET tracers for molecular brain imaging, but has been largely supplanted in research studies by the μ-preferring agonist [11C]carfentanil ([11C]Caf). These two tracers have the property of being displaceable by endogenous opioid peptides in living brain, thus potentially serving in a competition-binding model. Indeed, many clinical PET studies with [11C]DPN or [11C]Caf affirm the release of endogenous opioids in response to painful stimuli. Numerous other PET studies implicate μ-OR signaling in aspects of human personality and vulnerability to drug dependence, but there have been very few clinical PET studies of μORs in neurological disorders. Tracers based on naltrindole, a non-peptide antagonist of the δ-preferring endogenous opioid enkephalin, have been used in PET studies of δORs, and [11C]GR103545 is validated for studies of κORs. Structures such as [11C]NOP-1A show selective binding at ORL-1 receptors in living brain. However, there is scant documentation of δ-, κ-, or ORL1 receptors in healthy human brain or in neurological and psychiatric disorders; here, clinical PET research must catch up with recent progress in radiopharmaceutical chemistry.
Collapse
|
10
|
Yang L, Brooks AF, Makaravage KJ, Zhang H, Sanford MS, Scott PJH, Shao X. Radiosynthesis of [ 11C]LY2795050 for Preclinical and Clinical PET Imaging Using Cu(II)-Mediated Cyanation. ACS Med Chem Lett 2018; 9:1274-1279. [PMID: 30613339 DOI: 10.1021/acsmedchemlett.8b00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023] Open
Abstract
Copper-mediated 11C-cyanation reactions have enabled the synthesis of PET radiotracers from a range of readily available precursors and avoid the need to use more toxic Pd catalysts. In this work we adapt our recently developed 11C-cyanation of arylpinacolboronate (BPin) esters for the cGMP synthesis of [11C]LY2795050, a selective antagonist radiotracer for the kappa opioid receptor (KOR). [11C]LY2795050 was synthesized in 6 ± 1% noncorrected radiochemical yield (based on [11C]HCN, n = 3) using an automated synthesis module. Quality control testing confirmed the suitability of doses for preclinical and clinical PET imaging (radiochemical purity >99%; specific activity >900 mCi/μmol; residual Cu < 0.1 μg/mL). PET imaging was conducted in rodent and nonhuman primates, showing good brain uptake of [11C]LY2795050 and the expected distribution of KOR. Analogous imaging with [11C]carfentanil (a selective mu opioid receptor (MOR) radiotracer) revealed the anticipated regional differences in MOR and KOR distribution in the primate brain.
Collapse
Affiliation(s)
- Lingyun Yang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katarina J. Makaravage
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|