1
|
Bahrami P, Aromolaran KA, Aromolaran AS. Proarrhythmic Lipid Inflammatory Mediators: Mechanisms in Obesity Arrhythmias. J Cell Physiol 2025; 240:e70012. [PMID: 39943721 PMCID: PMC11822244 DOI: 10.1002/jcp.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
The prevalence of obesity and associated metabolic disorders such as diabetes is rapidly increasing; therefore, concerns regarding their cardiovascular consequences, including cardiac arrhythmias, are rising. As obesity progresses, the excessively produced lipids accumulate in unconventional areas such as the epicardial adipose tissue (EAT) around the myocardium. Metabolic alterations in obesity contribute to the transformation of these ectopic fat deposits into arrhythmogenic substrates. However, despite advances in therapeutic approaches, particularly in lowering EAT volume and thickness through sodium-glucose co-transporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists, obese and diabetic patients still suffer from fatal arrhythmias that may lead to sudden cardiac death. Therefore, an investigation into how unappreciated underlying pathways such as lipid mediators contribute to the transformation of adipose tissues into proinflammatory and arrhythmogenic substrates is of significance. Leukotriene B4 (LTB4) is an eicosanoid derived from arachidonic acid and acts as a lipid mediator. LTB4 has recently been identified to be associated with cardiac ion channel modulations and arrhythmogenic conditions in diabetes. LTB4 increases circulatory free fatty acids (FFAs) and has been associated with adipocyte hypertrophy. LTB4 also interferes with insulin signaling pathways, instigating insulin resistance (IR). In addition, LTB4, as a potent chemoattractant, contributes to the mobilization of circulatory immune cells such as monocytes and promotes inflammatory macrophage polarization and macrophage dysfunction. Thus, this review provides a comprehensive overview of LTB4's underlying pathways in obesity; illustrates how these pathways might lead to alterations in cardiac ion channels, currents, and cardiac arrhythmias; and shows how they might pose a therapeutic target for metabolic-associated arrhythmias.
Collapse
Affiliation(s)
- Pegah Bahrami
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine ProgramUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Rives J, Gil-Millan P, Viladés D, García-Osuna Á, Genua I, Miñambres I, Grau-Agramunt M, Gich I, Puig N, Benitez S, Julve J, Pérez A, Sánchez-Quesada JL. Low-Density Lipoprotein Subfraction Phenotype Is Associated with Epicardial Adipose Tissue Volume in Type 2 Diabetes. J Clin Med 2025; 14:862. [PMID: 39941533 PMCID: PMC11818426 DOI: 10.3390/jcm14030862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Increased epicardial adipose tissue (EAT) volume is a common feature in type 2 diabetes (T2DM) which is directly associated with heart failure and advanced atherosclerosis. We aimed to evaluate lipoprotein-related biomarkers of EAT volume in T2DM patients before and after glycemic control. Methods: This study included 36 T2DM patients before and after optimization of glycemic control and on 14 healthy controls (HCs). EAT volume was measured using computed tomography imaging indexed to the body surface area (iEAT). Biochemical and lipid profiles were determined using commercial methods. Lipoproteins were isolated by ultracentrifugation, and variables of lipoprotein function were assessed. Multivariable regression analysis was used to find variables independently associated with iEAT. Results: iEAT was higher in T2DM than in controls and decreased with glycemic optimization. HDLs from T2DM had less apoA-I and cholesterol and more apoC-III and triglycerides. LDLs from T2DM had more triglycerides and apoB and smaller sizes than those from HCs. Significant correlations were found between iEAT and age, BMI, HbA1c, GGT, VLDLc, triglycerides, LDL size, apoA-I in HDL, and apoC-III in HDL. In the multivariable regression analysis, age, LDL size, and GGT associations remained statistically significant, and predicted 50% of the variability in EAT volume. ROC analysis using these variables showed an AUC of 0.835. Conclusions: Qualitative characteristics of lipoproteins were altered in T2DM. Multivariable analysis showed that LDL size and GGT plasma levels were independently associated with iEAT volume, suggesting that these variables might be useful biomarkers for stratifying T2DM patients with increased EAT volume.
Collapse
Affiliation(s)
- José Rives
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), 08041 Barcelona, Spain; (J.R.); (Á.G.-O.); (M.G.-A.); (N.P.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Pedro Gil-Millan
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (P.G.-M.); (I.G.); (I.M.); (J.J.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - David Viladés
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Álvaro García-Osuna
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), 08041 Barcelona, Spain; (J.R.); (Á.G.-O.); (M.G.-A.); (N.P.); (S.B.)
| | - Idoia Genua
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (P.G.-M.); (I.G.); (I.M.); (J.J.)
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (P.G.-M.); (I.G.); (I.M.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Margarida Grau-Agramunt
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), 08041 Barcelona, Spain; (J.R.); (Á.G.-O.); (M.G.-A.); (N.P.); (S.B.)
| | - Ignasi Gich
- Epidemiology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nuria Puig
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), 08041 Barcelona, Spain; (J.R.); (Á.G.-O.); (M.G.-A.); (N.P.); (S.B.)
| | - Sonia Benitez
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), 08041 Barcelona, Spain; (J.R.); (Á.G.-O.); (M.G.-A.); (N.P.); (S.B.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Josep Julve
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (P.G.-M.); (I.G.); (I.M.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Antonio Pérez
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (P.G.-M.); (I.G.); (I.M.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), 08041 Barcelona, Spain; (J.R.); (Á.G.-O.); (M.G.-A.); (N.P.); (S.B.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
3
|
Zhang SJ, Wang SW, Liu SY, Li P, Huang DL, Zeng XX, Lan T, Ruan YP, Shi HJ, Zhang X. Epicardial adipose tissue: a new link between type 2 diabetes and heart failure-a comprehensive review. Heart Fail Rev 2024:10.1007/s10741-024-10478-8. [PMID: 39730926 DOI: 10.1007/s10741-024-10478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Diabetic cardiomyopathy is a unique cardiomyopathy that is common in diabetic patients, and it is also a diabetic complication for which no effective treatment is currently available. Moreover, relevant studies have revealed that a link exists between type 2 diabetes and heart failure and that abnormal thickening of EAT is inextricably linked to the development of diabetic heart failure. Numerous clinical studies have demonstrated that EAT is implicated in the pathophysiologic process of diabetic myocardial disease. In this overview, we will introduce the physiology, pathophysiology of the disease and potential therapeutic strategies, knowledge gaps, and future directions of the role of epicardial adipose tissue in type 2 diabetes mellitus and heart failure to promote the development of novel therapeutic approaches to improve the prognosis of patients with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Si-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - De-Lian Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Jiao Shi
- The Third Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Puig N, Rives J, Gil-Millan P, Miñambres I, Ginel A, Tauron M, Bonaterra-Pastra A, Hernández-Guillamon M, Pérez A, Sánchez-Quesada JL, Benitez S. Apolipoprotein J protects cardiomyocytes from lipid-mediated inflammation and cytotoxicity induced by the epicardial adipose tissue of diabetic patients. Biomed Pharmacother 2024; 175:116779. [PMID: 38776681 DOI: 10.1016/j.biopha.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic patients present increased volume and functional alterations in epicardial adipose tissue (EAT). We aimed to analyze EAT from type 2 diabetic patients and the inflammatory and cytotoxic effects induced on cardiomyocytes. Furthermore, we analyzed the cardioprotective role of apolipoprotein J (apoJ). EAT explants were obtained from nondiabetic patients (ND), diabetic patients without coronary disease (DM), and DM patients with coronary disease (DM-C) after heart surgery. Morphological characteristics and gene expression were evaluated. Explants were cultured for 24 h and the content of nonesterified fatty acids (NEFA) and sphingolipid species in secretomes was evaluated by lipidomic analysis. Afterwards, secretomes were added to AC16 human cardiomyocytes for 24 h in the presence or absence of cardioprotective molecules (apoJ and HDL). Cytokine release and apoptosis/necrosis were assessed by ELISA and flow cytometry. The EAT from the diabetic samples showed altered expression of genes related to lipid accumulation, insulin resistance, and inflammation. The secretomes from the DM samples presented an increased ratio of pro/antiatherogenic ceramide (Cer) species, while those from DM-C contained the highest concentration of saturated NEFA. DM and DM-C secretomes promoted inflammation and cytotoxicity on AC16 cardiomyocytes. Exogenous Cer16:0, Cer24:1, and palmitic acid reproduced deleterious effects in AC16 cells. These effects were attenuated by exogenous apoJ. Diabetic secretomes promoted inflammation and cytotoxicity in cardiomyocytes. This effect was exacerbated in the secretomes of the DM-C samples. The increased content of specific NEFA and ceramide species seems to play a key role in inducing such deleterious effects, which are attenuated by apoJ.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - José Rives
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Pedro Gil-Millan
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Antonino Ginel
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Manel Tauron
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pérez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luís Sánchez-Quesada
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Sonia Benitez
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
5
|
Rizzuto AS, Gelpi G, Mangini A, Carugo S, Ruscica M, Macchi C. Exploring the role of epicardial adipose-tissue-derived extracellular vesicles in cardiovascular diseases. iScience 2024; 27:109359. [PMID: 38510143 PMCID: PMC10951984 DOI: 10.1016/j.isci.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat depot located between the myocardium and the visceral layer of the epicardium, which, owing to its location, can influence surrounding tissues and can act as a local transducer of systemic inflammation. The mechanisms upon which such influence depends on are however unclear. Given the role EAT undoubtedly has in the scheme of cardiovascular diseases (CVDs), understanding the impact of its cellular components is of upmost importance. Extracellular vesicles (EVs) constitute promising candidates to fill the gap in the knowledge concerning the unexplored mechanisms through which EAT promotes onset and progression of CVDs. Owing to their ability of transporting active biomolecules, EAT-derived EVs have been reported to be actively involved in the pathogenesis of ischemia/reperfusion injury, coronary atherosclerosis, heart failure, and atrial fibrillation. Exploring the precise functions EVs exert in this context may aid in connecting the dots between EAT and CVDs.
Collapse
Affiliation(s)
| | - Guido Gelpi
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Mangini
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Jung JI, Lee HS, Lee J, Kim EJ. Peanut sprout tea extract inhibits lung metastasis of 4T1 murine mammary carcinoma cells by suppressing the crosstalk between cancer cells and macrophages in BALB/c mice. Nutr Res Pract 2023; 17:917-933. [PMID: 37780222 PMCID: PMC10522819 DOI: 10.4162/nrp.2023.17.5.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES As peanuts germinate, the content of the components beneficial to health, such as resveratrol, increases within the peanut sprout. This study examined whether the ethanol extract of peanut sprout tea (PSTE) inhibits breast cancer growth and metastasis. MATERIALS/METHODS After orthotopically injecting 4T1 cells into BALB/c mice to induce breast cancer, 0, 30, or 60 mg/kg body weight/day of PSTE was administered orally. Angiogenesis-related protein expression in the tumors and the degree of metastasis were analyzed. 4T1 and RAW 264.7 cells were co-cultured, and reverse transcription polymerase chain reaction was performed to measure the crosstalk between breast cancer cells and macrophages. RESULTS PSTE reduced tumor growth and lung metastasis. In particular, PSTE decreased matrix metalloproteinase-9, platelet endothelial cell adhesion molecule-1, vascular endothelial growth factor-A, F4/80, CD11c, macrophage mannose receptor, macrophage colony-stimulating factor, and monocyte chemoattractant protein 1 expression in the tumors. Moreover, PSTE prevented 4T1 cell migration, invasion, and macrophage activity in RAW 264.7 cells. PSTE inhibited the crosstalk between 4T1 cells and RAW 264.7 cells and promoted the macrophage M1 subtype while inhibiting the M2 subtype. CONCLUSIONS These results suggest that PSTE blocks breast cancer growth and metastasis to the lungs. This may be because the PSTE treatment inhibits the crosstalk between mammary cancer cells and macrophages and inhibits the differentiation of macrophages into the M2 subtype.
Collapse
Affiliation(s)
- Jae In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| | - Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jaehak Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
7
|
Masuda Y, Nakayama Y, Shimizu R, Naito K, Miyamoto E, Tanaka A, Konishi M. Maitake α-glucan promotes differentiation of monocytic myeloid-derived suppressor cells into M1 macrophages. Life Sci 2023; 317:121453. [PMID: 36709912 DOI: 10.1016/j.lfs.2023.121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
AIMS Myeloid-derived suppressor cells (MDSCs) are major components of the tumor microenvironment and systemically accumulate in tumor-bearing hosts and patients with cancer, facilitating cancer progression. Maitake macromolecular α-glucan YM-2A, isolated from Grifola frondosa, inhibits tumor growth by enhancing immune responses. The present study investigated the effects of YM-2A on the immunosuppressive potential of MDSCs. MAIN METHODS YM-2A was orally administered to CT26 tumor-bearing mice, and the number of immune cells in the spleen and tumor was measured. Splenic MDSCs isolated from the CT26 tumor-bearing mice were treated with YM-2A and co-cultured with T cells to measure their inhibitory effect on T cell proliferation. For adoptive transfer of monocytic MDSCs (M-MDSCs), YM-2A-treated M-MDSCs mixed with CT26 cells were implanted subcutaneously in the mice to measure the tumor growth rate. KEY FINDINGS YM-2A selectively reduced the accumulation of M-MDSCs but not that of polymorphonuclear MDSCs (PMN-MDSCs) in CT26 tumor-bearing mice. In tumor tissues, YM-2A treatment induced the polarity of immunostimulatory M1-phenotype; furthermore, it increased the infiltration of dendritic, natural killer, and CD4+ and CD8+ T cells. YM-2A treatment of purified M-MDSCs from CT-26 tumor-bearing mice induced dectin-1-dependent differentiation into M1 macrophages. YM-2A-treated M-MDSCs lost their inhibitory activity against proliferation and activation of CD8+ T cells. Furthermore, adoptive transfer of M-MDSCs treated with YM-2A inhibited CT26 tumor growth. SIGNIFICANCE YM-2A promotes the differentiation of M-MDSCs into immunostimulatory M1 macrophages, thereby enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Masuda
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Ryohei Shimizu
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kenta Naito
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Eri Miyamoto
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Akihiro Tanaka
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
8
|
Khan I, Siraj M. An updated review on cell signaling pathways regulated by candidate miRNAs in coronary artery disease. Noncoding RNA Res 2023; 8:326-334. [PMID: 37077752 PMCID: PMC10106733 DOI: 10.1016/j.ncrna.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNA, size range from 17 to 25 nucleotides that regulate gene expression at the post-transcriptional level. More than 2000 different types of miRNAs have been identified in humans which regulate about 60% of gene expression, since the discovery of the first miRNA in 1993. MicroRNA performs many functions such as being involved in the regulation of various biological pathways for example cell migration, cell proliferation, cell differentiation, disease progression, and initiation. miRNAs also play an important role in the development of atherosclerosis lesions, cardiac fibroblast, cardiac hypertrophy, cancer, and neurological disorders. Abnormal activation of many cell signaling pathways has been observed in the development of coronary artery disease. Abnormal expression of these candidate miRNA genes leads to up or downregulation of specific genes, these specific genes play an important role in the regulation of cell signaling pathways involved in coronary artery disease. Many studies have found that miRNAs play a key role in the regulation of crucial signaling pathways that are involved in the pathophysiology of coronary artery disease. This review is designed to investigate the role of cell signaling pathways regulated by candidate miRNAs in Coronary artery disease.
Collapse
|
9
|
Fan W, Si Y, Xing E, Feng Z, Ding Z, Liu Y, Wei C, Tian Y, Zhang Y, Liu J, Sun L. Human epicardial adipose tissue inflammation correlates with coronary artery disease. Cytokine 2023; 162:156119. [PMID: 36603481 DOI: 10.1016/j.cyto.2022.156119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/09/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS This study investigates the expression of novel adipocytokines and inflammatory cells infiltration in epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) between 27 coronary artery disease (CAD) and 21 non-CAD (NCAD) patients enrolled from September 2020 to September 2021. METHODS AND RESULTS Serum, gene, and protein expression levels of the novel adipocytokines were determined using ELISA, RT-qPCR, and western blot analyses. The number of blood vessels and adipocytes morphology were measured via hematoxylin-eosin staining, and inflammatory cells infiltration was examined via immunohistochemistry. Serum ANGPTL8, CTRP5, and Wnt5a levels were higher in the CAD than in the NCAD group, while serum CTRP3, Sfrp5, and ZAG levels were lower in the CAD than in the NCAD group. Compared to the EAT of NCAD and SAT of CAD patients, the EAT of CAD patients had higher mRNA levels of ANGPTL8, CTRP5, and Wnt5a while lower levels of CTRP3, Sfrp5, and ZAG; higher protein expression levels of ANGPTL8 and CTRP5 but lower levels of CTRP3; more blood vessels; and higher infiltration rates of macrophages (CD68 + ), pro-inflammatory M1 macrophages (CD11c + ), mast cells (Tryptase + ), T lymphocytes (CD3 + ), and B lymphocytes (CD20 + ) but lower infiltration rates of anti-inflammatory M2 macrophages (CD206 + ). CONCLUSION Novel adipocytokines and inflammatory cells infiltration are dysregulated in human EAT, and could be important pathophysiological mechanisms and novelly promising medicating targets of CAD.
Collapse
Affiliation(s)
- Wenjun Fan
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Yueqiao Si
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Enhong Xing
- Central Laboratory of Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Zengbin Feng
- Department of Cardiac Surgery, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Zhenjiang Ding
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Yixiang Liu
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Chen Wei
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Yanan Tian
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Ying Zhang
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Jingyi Liu
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| | - Lixian Sun
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, Hebei, China.
| |
Collapse
|
10
|
Kologrivova IV, Naryzhnaya NV, Koshelskaya OA, Suslova TE, Kravchenko ES, Kharitonova OA, Evtushenko VV, Boshchenko AA. Association of Epicardial Adipose Tissue Adipocytes Hypertrophy with Biomarkers of Low-Grade Inflammation and Extracellular Matrix Remodeling in Patients with Coronary Artery Disease. Biomedicines 2023; 11:biomedicines11020241. [PMID: 36830779 PMCID: PMC9953115 DOI: 10.3390/biomedicines11020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of the study was to compare the morphological features of epicardial adipose tissue (EAT) adipocyte with the circulating inflammatory biomarkers and parameters of extracellular matrix remodeling in patients with coronary artery disease (CAD). We recruited 42 patients with CAD (m/f 28/14) who were scheduled for coronary artery bypass graft surgery (CABG). EAT adipocytes were obtained by the enzymatic method from intraoperative adipose tissue samples. Concentrations of secreted and lipoprotein-associated phospholipase A2 (sPLA2 and LpPLA2), TNF-α, IL-1β, IL-6, IL-10, high-sensitive C-reactive protein (hsCRP), metalloproteinase-9 (MMP-9), MMP-2, C-terminal cross-linking telopeptide of type I collagen (CTX-I), and tissue inhibitor of metalloproteinase 1 (TIMP-1) were measured in blood serum. Patients were divided into two groups: group 1-with mean EAT adipocytes' size ≤ 87.32 μm; group 2-with mean EAT adipocytes' size > 87.32 μm. Patients of group 2 had higher concentrations of triglycerides, hsCRP, TNF-α, and sPLA2 and a lower concentration of CTX-I. A multiple logistic regression model was created (RN2 = 0.43, p = 0.0013). Concentrations of TNF-α, sPLA2 and CTX-I appeared to be independent determinants of the EAT adipocyte hypertrophy. ROC analysis revealed the 78% accuracy, 71% sensitivity, and 85% specificity of the model, AUC = 0.82. According to our results, chronic low-grade inflammation and extracellular matrix remodeling are closely associated with the development of hypertrophy of EAT adipocytes, with serum concentrations of TNF-α, sPLA2 and CTX-I being the key predictors, describing the variability of epicardial adipocytes' size.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | - Natalia V. Naryzhnaya
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Diabetes is a long-term chronic disease, and cardiovascular disease is the leading cause of death. Diabetic cardiomyopathy (DCM), one of the cardiovascular complications of diabetes, has many uncertain factors. Epicardial fat, as the heart fat bank, functions as fatty tissue and is the heart's endocrine organ. The existence of diabetes affects the distribution of heart fat and promotes the secretion of adipokine. In different pathological conditions, it can promote the secretion of pro-inflammatory adipokine, reactive oxygen species, oxidative stress, and even autophagy, thus affecting cardiac function. In this paper, we will elaborate on the mechanism of epicardial fat in the pathogenesis of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xueyuan Yang
- Chest Clinical College, Tianjin Medical University, Tianjin, China
| | - Chao Feng
- Tianjin Chest Hospital, Tianjin, China
| | | |
Collapse
|
12
|
Waddell HMM, Moore MK, Herbert-Olsen MA, Stiles MK, Tse RD, Coffey S, Lamberts RR, Aitken-Buck HM. Identifying sex differences in predictors of epicardial fat cell morphology. Adipocyte 2022; 11:325-334. [PMID: 35531882 PMCID: PMC9122305 DOI: 10.1080/21623945.2022.2073854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/12/2022] Open
Abstract
Predictors of overall epicardial adipose tissue deposition have been found to vary between males and females. Whether similar sex differences exist in epicardial fat cell morphology is currently unknown. This study aimed to determine whether epicardial fat cell size is associated with different clinical measurements in males and females. Fat cell sizes were measured from epicardial, paracardial, and appendix adipose tissues of post-mortem cases (N= 118 total, 37 females). Epicardial, extra-pericardial, and visceral fat volumes were measured by computed tomography from a subset of cases (N= 70, 22 females). Correlation analyses and stepwise linear regression were performed to identify predictors of fat cell size in males and females. Median fat cell sizes in all depots did not differ between males and females. Body mass index (BMI) and age were independently predictive of epicardial, paracardial, and appendix fat cell sizes in males, but not in females. Epicardial and appendix fat cell sizes were associated with epicardial and visceral fat volumes, respectively, in males only. In females, paracardial fat cell size was associated with extra-pericardial fat volume, while appendix fat cell size was associated with BMI only. No predictors were associated with epicardial fat cell size in females at the univariable or multivariable levels. To conclude, no clinical measurements were useful surrogates of epicardial fat cell size in females, while BMI, age, and epicardial fat volume were independent, albeit weak, predictors in males only.
Collapse
Affiliation(s)
- Helen M. M. Waddell
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Matthew K. Moore
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Morgan A. Herbert-Olsen
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Martin K. Stiles
- Department of Cardiology, Waikato District Health Board, Hamilton, New Zealand
- Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Rexson D. Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Sean Coffey
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Department of Cardiology, Dunedin Hospital, Southern District Health Board, Dunedin, New Zealand
| | - Regis R. Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hamish M. Aitken-Buck
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Wu JG, Yang WK, Huang HZ, Tang K, Zheng GD. MiRNA-6870-3p Regulates Lipopolysaccharide Induced Epicardial Adipose Tissue Inflammatory Genes via Targeting Tollip-Mediated JNK and NF-κB Signaling in Coronary Artery Disease. Int Heart J 2022; 63:915-927. [DOI: 10.1536/ihj.22-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jian-Guo Wu
- Department of Cardiac and Macrovascular Surgery, Central People's Hospital of Zhanjiang
| | - Wen-kai Yang
- Department of Cardiac and Macrovascular Surgery, Central People's Hospital of Zhanjiang
| | - Hao-Zong Huang
- Department of Cardiac and Macrovascular Surgery, Central People's Hospital of Zhanjiang
| | - Kai Tang
- Department of Cardiac and Macrovascular Surgery, Central People's Hospital of Zhanjiang
| | - Guang-Di Zheng
- Department of Cardiac and Macrovascular Surgery, Central People's Hospital of Zhanjiang
| |
Collapse
|
14
|
Li H, Qiu D, Yuan Y, Wang X, Wu F, Yang H, Wang S, Ma M, Qian Y, Zhan B, Yang X. Trichinella spiralis cystatin alleviates polymicrobial sepsis through activating regulatory macrophages. Int Immunopharmacol 2022; 109:108907. [PMID: 35691271 DOI: 10.1016/j.intimp.2022.108907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sepsis is a life-threateningorgandysfunction caused by the cytokine storm induced by the severe bacterial infection. Excessive inflammatory responses are responsible for the lethal organ damage during the early stage of sepsis. Helminth infection and helminth-derived proteins have been identified to have the ability to immunomodulate the host immune system by reducing inflammation against inflammatory diseases. Trichinella spiralis cystatin (Ts-Cys) is a cysteine protease inhibitor with strong immunomodulatory functions on host immune system. Our previous studies have shown that excretory-secretory proteins of T. spiralis reduced sepsis-induced inflammation and Ts-Cys was able to inhibit macrophages to produce inflammatory cytokines. Whether Ts-Cys has a therapeutic effect on polymicrobial sepsis and related immunological mechanism are not yet known. METHODS Sepsis was induced in BALB/c mice using cecal ligation and puncture (CLP), followed by intraperitoneal injection of 15 µg recombinant Ts-Cys (rTs-Cys). The therapeutic effect of rTs-Cys on sepsis was evaluated by observing the 72-hour survival rates of CLP-induced septic mice and the acute injury of lung and kidney through measuring the wet/dry weight ratio of lung, the levels of blood urea nitrogen (BUN) and creatinine (Cr) in sera and the tissue section pathology. The potential underlying mechanism was investigated using mouse bone marrow-derived macrophages (BMDMs) by observing the effect of rTs-Cys on LPS-stimulated macrophage polarization. The expression of genes associated with macrophage polarization in BMDMs and tissues of septic mice was measured by Western Blotting and qPCR. RESULTS In this study, we demonstrated the treatment with rTs-Cys alleviated CLP-induced sepsis in mice with significantly reduced pathological injury in vital organs of lung and kidney and reduced mortality of septic mice. The further study identified that treatment with rTs-Cys promoted macrophage polarization from classically activated macrophage (M1) to alternatively activated macrophage (M2) phenotype via inhibiting TLR2/MyD88 signal pathway and increasing expression of mannose receptor (MR), inhibited pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and increased regulatory anti-inflammatory cytokines (IL-10 and TGF-β) in sera and tissues (lung and kidney) of mice with polymicrobial sepsis. CONCLUSIONS Our results demonstrated that rTs-Cys had a therapeutic effect on sepsis through activating regulatory macrophages possibly via suppressing TLR2/MyD88 signal pathway. We also identified that rTs-Cys-induced M2 macrophage differentiation was associated with increased expression of MR on the surface of macrophages. Our results underscored the importance of MR in regulating macrophages during the treatment with rTs-Cys, providing another immunological mechanism in which helminths and their derived proteins modulate the host immune system. The findings in this study suggest that rTs-Cys is a potential therapeutic agent for the prevention and treatment of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Huihui Li
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Dapeng Qiu
- Department of Orthopedics, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huijuan Yang
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Mengxi Ma
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Yayun Qian
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodi Yang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
15
|
Chen J, Wang W, Ni Q, Zhang L, Guo X. Interleukin 6-regulated macrophage polarization controls atherosclerosis-associated vascular intimal hyperplasia. Front Immunol 2022; 13:952164. [PMID: 35967343 PMCID: PMC9363591 DOI: 10.3389/fimmu.2022.952164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular intimal hyperplasia (VIH) is an important stage of atherosclerosis (AS), in which macrophages not only play a critical role in local inflammation, but also transform into foam cells to participate into plaque formation, where they appear to be heterogeneous. Recently, it was shown that CD11c+ macrophages were more associated with active plaque progression. However, the molecular regulation of phenotypic changes of plaque macrophages during VIH has not been clarified and thus addressed in the current study. Since CD11c- cells were M2a-polarized anti-inflammatory macrophages, while CD11c+ cells were M1/M2b-polarized pro-inflammatory macrophages, we used bioinformatics tools to analyze the CD11c+ versus CD11c- plaque macrophages, aiming to detect the differential genes associated with M1/M2 macrophage polarization. We obtained 122 differential genes that were significantly altered in CD11c+ versus CD11c- plaque macrophages, regardless of CD11b expression. Next, hub genes were predicted in these 122 genes, from which we detected 3 candidates, interleukin 6 (Il6), Decorin (Dcn) and Tissue inhibitor matrix metalloproteinase 1 (Timp1). The effects of these 3 genes on CD11c expression as well as on the macrophage polarization were assessed in vitro, showing that only expression of Il6, but not expression of Dcn or Timp1, induced M1/M2b-like polarization in M2a macrophages. Moreover, only suppression of Il6, but not suppression of either of Dcn or Timp1, induced M2a-like polarization in M1/M2b macrophages. Furthermore, pharmaceutical suppression of Il6 attenuated VIH formation and progression of AS in a mouse model that co-applied apolipoprotein E-knockout and high-fat diet. Together, our data suggest that formation of VIH can be controlled through modulating macrophage polarization, as a promising therapeutic approach for prevent AS.
Collapse
|
16
|
Doukbi E, Soghomonian A, Sengenès C, Ahmed S, Ancel P, Dutour A, Gaborit B. Browning Epicardial Adipose Tissue: Friend or Foe? Cells 2022; 11:991. [PMID: 35326442 PMCID: PMC8947372 DOI: 10.3390/cells11060991] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The epicardial adipose tissue (EAT) is the visceral fat depot of the heart which is highly plastic and in direct contact with myocardium and coronary arteries. Because of its singular proximity with the myocardium, the adipokines and pro-inflammatory molecules secreted by this tissue may directly affect the metabolism of the heart and coronary arteries. Its accumulation, measured by recent new non-invasive imaging modalities, has been prospectively associated with the onset and progression of coronary artery disease (CAD) and atrial fibrillation in humans. Recent studies have shown that EAT exhibits beige fat-like features, and express uncoupling protein 1 (UCP-1) at both mRNA and protein levels. However, this thermogenic potential could be lost with age, obesity and CAD. Here we provide an overview of the physiological and pathophysiological relevance of EAT and further discuss whether its thermogenic properties may serve as a target for obesity therapeutic management with a specific focus on the role of immune cells in this beiging phenomenon.
Collapse
Affiliation(s)
- Elisa Doukbi
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Astrid Soghomonian
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Coralie Sengenès
- Stromalab, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, University of Toulouse, F-31100 Toulouse, France;
- Institut National de la Santé et de la Recherche Médicale, University Paul Sabatier, F-31100 Toulouse, France
| | - Shaista Ahmed
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Patricia Ancel
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Anne Dutour
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Bénédicte Gaborit
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| |
Collapse
|
17
|
Ye RZ, Richard G, Gévry N, Tchernof A, Carpentier AC. Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships With Metabolic Dysregulations. Endocr Rev 2022; 43:35-60. [PMID: 34100954 PMCID: PMC8755996 DOI: 10.1210/endrev/bnab018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/19/2022]
Abstract
The obesity pandemic increasingly causes morbidity and mortality from type 2 diabetes, cardiovascular diseases and many other chronic diseases. Fat cell size (FCS) predicts numerous obesity-related complications such as lipid dysmetabolism, ectopic fat accumulation, insulin resistance, and cardiovascular disorders. Nevertheless, the scarcity of systematic literature reviews on this subject is compounded by the use of different methods by which FCS measurements are determined and reported. In this paper, we provide a systematic review of the current literature on the relationship between adipocyte hypertrophy and obesity-related glucose and lipid dysmetabolism, ectopic fat accumulation, and cardiovascular disorders. We also review the numerous mechanistic origins of adipocyte hypertrophy and its relationship with metabolic dysregulation, including changes in adipogenesis, cell senescence, collagen deposition, systemic inflammation, adipokine secretion, and energy balance. To quantify the effect of different FCS measurement methods, we performed statistical analyses across published data while controlling for body mass index, age, and sex.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Richard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
18
|
Pincu Y, Yoel U, Haim Y, Makarenkov N, Maixner N, Shaco-Levy R, Bashan N, Dicker D, Rudich A. Assessing Obesity-Related Adipose Tissue Disease (OrAD) to Improve Precision Medicine for Patients Living With Obesity. Front Endocrinol (Lausanne) 2022; 13:860799. [PMID: 35574032 PMCID: PMC9098964 DOI: 10.3389/fendo.2022.860799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Obesity is a heterogenous condition that affects the life and health of patients to different degrees and in different ways. Yet, most approaches to treat obesity are not currently prescribed, at least in a systematic manner, based on individual obesity sub-phenotypes or specifically-predicted health risks. Adipose tissue is one of the most evidently affected tissues in obesity. The degree of adipose tissue changes - "adiposopathy", or as we propose to relate to herein as Obesity-related Adipose tissue Disease (OrAD), correspond, at least cross-sectionally, to the extent of obesity-related complications inflicted on an individual patient. This potentially provides an opportunity to better personalize anti-obesity management by utilizing the information that can be retrieved by assessing OrAD. This review article will summarize current knowledge on histopathological OrAD features which, beyond cross-sectional analyses, had been shown to predict future obesity-related endpoints and/or the response to specific anti-obesity interventions. In particular, the review explores adipocyte cell size, adipose tissue inflammation, and fibrosis. Rather than highly-specialized methods, we emphasize standard pathology laboratory approaches to assess OrAD, which are readily-available in most clinical settings. We then discuss how OrAD assessment can be streamlined in the obesity/weight-management clinic. We propose that current studies provide sufficient evidence to inspire concerted efforts to better explore the possibility of predicting obesity related clinical endpoints and response to interventions by histological OrAD assessment, in the quest to improve precision medicine in obesity.
Collapse
Affiliation(s)
- Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The Endocrinology Service, Soroka University Medical Center, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Nitzan Maixner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ruthy Shaco-Levy
- Institute of Pathology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nava Bashan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Dror Dicker
- Department of Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- *Correspondence: Assaf Rudich, ; Dror Dicker,
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Assaf Rudich, ; Dror Dicker,
| |
Collapse
|
19
|
Duraisamy K, Singh K, Kumar M, Lefranc B, Bonnafé E, Treilhou M, Leprince J, Chow BKC. P17 induces chemotaxis and differentiation of monocytes via MRGPRX2-mediated mast cell-line activation. J Allergy Clin Immunol 2022; 149:275-291. [PMID: 34111449 DOI: 10.1016/j.jaci.2021.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND P17, a peptide isolated from Tetramorium bicarinatum ant venom, is known to induce an alternative phenotype of human monocyte-derived macrophages via activation of an unknown G protein-coupled receptor (GPCR). OBJECTIVE We sought to investigate the mechanism of action and the immunomodulatory effects of P17 mediated through MRGPRX2 (Mas-related G protein-coupled receptor X2). METHODS To identify the GPCR for P17, we screened 314 GPCRs. Upon identification of MRGPRX2, a battery of in silico, in vitro, ex vivo, and in vivo assays along with the receptor mutation studies were performed. In particular, to investigate the immunomodulatory actions, we used β-hexosaminidase release assay, cytokine releases, quantification of mRNA expression, cell migration and differentiation assays, immunohistochemical labeling, hematoxylin and eosin, and immunofluorescence staining. RESULTS P17 activated MRGPRX2 in a dose-dependent manner in β-arrestin recruitment assay. In LAD2 cells, P17 induced calcium and β-hexosaminidase release. Quercetin- and short hairpin RNA-mediated knockdown of MRGPRX2 reduced P17-evoked β-hexosaminidase release. In silico and in vitro mutagenesis studies showed that residue Lys8 of P17 formed a cation-π interaction with the Phe172 of MRGPRX2 and [Ala8]P17 lost its activity partially. P17 activated LAD2 cells to recruit THP-1 and human monocytes in Transwell migration assay, whereas MRGPRX2-impaired LAD2 cells cannot. In addition, P17-treated LAD2 cells stimulated differentiation of THP-1 and human monocytes, as indicated by the enhanced expression of macrophage markers cluster of differentiation 11b and TNF-α by quantitative RT-PCR. Immunohistochemical and immunofluorescent staining suggested monocyte recruitment in mice ears injected with P17. CONCLUSIONS Our data provide novel structural information regarding the interaction of P17 with MRGPRX2 and intracellular pathways for its immunomodulatory action.
Collapse
Affiliation(s)
- Karthi Duraisamy
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Benjamin Lefranc
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Jérôme Leprince
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Driving regeneration, instead of healing, in adult mammals: the decisive role of resident macrophages through efferocytosis. NPJ Regen Med 2021; 6:41. [PMID: 34344890 PMCID: PMC8333253 DOI: 10.1038/s41536-021-00151-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
Tissue repair after lesion usually leads to scar healing and thus loss of function in adult mammals. In contrast, other adult vertebrates such as amphibians have the ability to regenerate and restore tissue homeostasis after lesion. Understanding the control of the repair outcome is thus a concerning challenge for regenerative medicine. We recently developed a model of induced tissue regeneration in adult mice allowing the comparison of the early steps of regenerative and scar healing processes. By using studies of gain and loss of function, specific cell depletion approaches, and hematopoietic chimeras we demonstrate here that tissue regeneration in adult mammals depends on an early and transient peak of granulocyte producing reactive oxygen species and an efficient efferocytosis specifically by tissue-resident macrophages. These findings highlight key and early cellular pathways able to drive tissue repair towards regeneration in adult mammals.
Collapse
|
21
|
Zhang F, Cheng N, Du J, Zhang H, Zhang C. MicroRNA-200b-3p promotes endothelial cell apoptosis by targeting HDAC4 in atherosclerosis. BMC Cardiovasc Disord 2021; 21:172. [PMID: 33845782 PMCID: PMC8042726 DOI: 10.1186/s12872-021-01980-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
Background Epicardial adipose tissue (EAT) shares the same microcirculation with coronary arteries through coronary arteries branches, and contributes to the development of atherosclerosis. MicroRNAs (miRNAs) are involved in the formation of atherosclerosis. However, the alteration of miRNA profile in EAT during atherosclerosis is still uncovered. Methods The miRNA expression profiles of EAT from non-coronary atherosclerosis disease (CON, n = 3) and coronary atherosclerosis disease (CAD, n = 5) patients was performed to detect the differentially expressed miRNA. Then the expression levels of miRNA in other CON (n = 5) and CAD (n = 16) samples were confirmed by realtime-PCR. miR-200b-3p mimic was used to overexpress the miRNA in HUVECs. The apoptosis of HUVECs cells was induced by H2O2 and ox-LDL, and detected by Annexin V/PI Staining, Caspase 3/7 activity and the expression of BCL-2 and BAX. Results 250 miRNAs were differentially expressed in EAT from CAD patients, which were associated with metabolism, extracellular matrix and inflammation process. Among the top 20 up-regulated miRNAs, the expression levels of miR-200 family members (hsa-miR-200b/c-3p, miR-141-3p and miR-429), which were rich in endothelial cells, were increased in EAT from CAD patients significantly. Upregulation of miR-200 family members was dependent on the oxidative stress. The overexpression of miR-200b-3p could promote endothelial cells apoptosis under oxidative stress by targeting HDAC4 inhibition. Conclusions Our study suggests that EAT derived miR-200b-3p promoted oxidative stress induced endothelial cells damage by targeting HDAC4, which may provide a new and promising therapeutic target for AS. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-01980-0.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Naixuan Cheng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Haibo Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China. .,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China. .,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
22
|
Wang QC, Wang ZY, Xu Q, Li RB, Zhang GG, Shi RZ. Exploring the Role of Epicardial Adipose Tissue in Coronary Artery Disease From the Difference of Gene Expression. Front Physiol 2021; 12:605811. [PMID: 33859569 PMCID: PMC8042318 DOI: 10.3389/fphys.2021.605811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Epicardial adipose tissue (EAT) is closely adjacent to the coronary arteries and myocardium, its role as an endocrine organ to affect the pathophysiological processes of the coronary arteries and myocardium has been increasingly recognized. However, the specific gene expression profiles of EAT in coronary artery disease (CAD) has not been well characterized. Our aim was to investigate the role of EAT in CAD at the gene level. Methods Here, we compared the histological and gene expression difference of EAT between CAD and non-CAD. We investigated the gene expression profiles in the EAT of patients with CAD through the high-throughput RNA sequencing. We performed bioinformatics analysis such as functional enrichment analysis and protein-protein interaction network construction to obtain and verify the hub differentially expressed genes (DEGs) in the EAT of CAD. Results Our results showed that the size of epicardial adipocytes in the CAD group was larger than in the control group. Our findings on the EAT gene expression profiles of CAD showed a total of 747 DEGs (fold change >2, p value <0.05). The enrichment analysis of DEGs showed that more pro-inflammatory and immunological genes and pathways were involved in CAD. Ten hub DEGs (GNG3, MCHR1, BDKRB1, MCHR2, CXCL8, CXCR5, CCR8, CCL4L1, TAS2R10, and TAS2R41) were identified. Conclusion Epicardial adipose tissue in CAD shows unique gene expression profiles and may act as key regulators in the CAD pathological process.
Collapse
Affiliation(s)
- Qian-Chen Wang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Yu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ruo-Bing Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Rui-Zheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Naryzhnaya NV, Koshelskaya OA, Kologrivova IV, Kharitonova OA, Evtushenko VV, Boshchenko AA. Hypertrophy and Insulin Resistance of Epicardial Adipose Tissue Adipocytes: Association with the Coronary Artery Disease Severity. Biomedicines 2021; 9:64. [PMID: 33440802 PMCID: PMC7827040 DOI: 10.3390/biomedicines9010064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Changes in the structural and functional characteristics of the epicardial adipose tissue (EAT) are recognized as one of the factors in the development of cardiometabolic diseases. However, the generally accepted quantitative assessment of the accumulation of EAT does not reflect the size of adipocyte and presence of adipocyte hypertrophy in this fat depot. Overall contribution of adipocyte hypertrophy to the development and progression of coronary atherosclerosis remains unexplored. Objective: To compare the morphological characteristics of EAT adipocyte and its sensitivity to insulin with the CAD severity, as well as to identify potential factors involved in the realization of this relationship. The present study involved 24 patients (m/f 16/8) aged 53-72 years with stable CAD, who underwent coronary artery bypass graft surgery. Adipocytes were isolated enzymatically from EAT explants obtained during the operation. The severity of CAD was assessed by calculating the Gensini score according to selective coronary angiography. Insulin resistance of EAT adipocytes was evaluated by reactivity to insulin. In patients with an average size of EAT adipocytes equal to or exceeding the median (87 μm) the percentage of hypertrophic adipocytes was twice as high as in patients in whom the average size of adipocytes was less than 87 μm. This group of patients was also characterized by the higher rate of the Gensini score, lower adiponectin levels, and more severe violation of carbohydrate metabolism. We have revealed direct nonparametric correlation between the size of EAT adipocytes and the Gensini score (rs = 0.56, p = 0.00047). The number of hypertrophic EAT adipocytes showed a direct nonparametric correlation with the Gensini score (rs = 0.6, p = 0.002). Inverse nonparametric correlations were found between the serum adiponectin level and size (rs = -0.60, p = 0.001), hypertrophy of adipocytes (rs = -0.67, p = 0.00), and Gensini score (rs = -0.81, p = 0.00007). An inverse nonparametric correlation was found between the Gensini score and sensitivity of EAT adipocytes to insulin, estimated by the intracellular redox response (rs = -0.90, p = 0.037) and decrease in lipolysis rate upon insulin addition (rs = -0.40, p = 0.05). The intracellular redox response of adipocytes to insulin was directly correlated with fasting insulin and inversely with postprandial insulin. Our data indicate that the size and degree of hypertrophy of the epicardial adipocytes are related to the CAD severity. According to our results, insulin resistance of adipocytes may be considered as one of the factors mediating this relationship.
Collapse
Affiliation(s)
- Natalia V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia; (O.A.K.); (I.V.K.); (O.A.K.); (V.V.E.); (A.A.B.)
| | | | | | | | | | | |
Collapse
|
24
|
Huang W, Wu X, Xue Y, Zhou Y, Xiang H, Yang W, Wei Y. MicroRNA-3614 regulates inflammatory response via targeting TRAF6-mediated MAPKs and NF-κB signaling in the epicardial adipose tissue with coronary artery disease. Int J Cardiol 2020; 324:152-164. [PMID: 32950591 DOI: 10.1016/j.ijcard.2020.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The inflammatory status of epicardial adipose tissue (EAT) is one of the factors leading to the development of related diseases such as coronary artery disease (CAD). The thickness of CAD EAT increases and is accompanied with increased macrophage infiltration and heightened inflammatory responses. However, microRNAs (miRNAs) regulating the inflammatory responses of macrophages in CAD EAT remain unclear. METHOD miRNA expression profiles of CAD EATs and non-CAD EATs were determined by miRNA microarrays. Quantitative real-time reverse transcription-polymerase chain reaction, Western blotting, immunohistochemical assay, and fluorescence in-situ hybridization were adopted to detect miR-3614 expression and function in EATs and macrophages. The interaction between miR-3614 and tumor necrosis factor receptor-associated factor 6 (TRAF6) was identified using an online website combined with a dual-luciferase reporter assay. Enzyme-linked immunosorbent assay was performed to detect the expression of inflammatory cytokines. RESULTS The decreased expression of miR-3614 was identified in CAD EAT. The level of miR-3614 was down-regulated by lipopolysaccharide (LPS) in macrophages, whereas LPS-induced inflammatory injury can be reduced by miR-3614 overexpression. TRAF6 was predicted and verified to be a target of miR-3614. The phosphorylated levels of kinases in the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways were inhibited by miR-3614 overexpression. Importantly, the knockdown of TRAF6 inhibited the LPS-induced inflammatory cytokine expressions in cells. CONCLUSION A novel negative feedback loop by miR-3614 possibly contribute to the regulation of inflammatory processes via targeting the TRAF6/MAPK/NF-κB pathway in EATs and prevents an overwhelming inflammatory response.
Collapse
Affiliation(s)
- Wenhua Huang
- Department of Thoracic and Cardiovascular Surgery, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, China
| | - Xinggang Wu
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yajun Xue
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China; Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China
| | - Yijun Zhou
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hui Xiang
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenkai Yang
- Department of Cardiovascular Surgery, Affiliated Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang 524045, China
| | - Yutao Wei
- Department of Thoracic Surgery, Jining First People's Hospital, Jining, Shandong 250000, China.
| |
Collapse
|
25
|
Pandey NN, Sharma S, Jagia P, Kumar S. Epicardial fat attenuation, not volume, predicts obstructive coronary artery disease and high risk plaque features in patients with atypical chest pain. Br J Radiol 2020; 93:20200540. [PMID: 32706985 DOI: 10.1259/bjr.20200540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE This study sought to investigate the association between volume and attenuation of epicardial fat and presence of obstructive coronary artery disease (CAD) and high-risk plaque features (HRPF) on CT angiography (CTA) in patients with atypical chest pain and whether the association, if any, is independent of conventional cardiovascular risk factors and coronary artery calcium score (CACS). METHODS Patients referred for coronary CTA with atypical chest pain and clinical suspicion of CAD were included in the study. Quantification of CACS, epicardial fat volume (EFV) and epicardial fat attenuation (EFat) was performed on non-contrast images. CTA was evaluated for presence of obstructive CAD and presence of HRPF. RESULTS 255 patients (median age [interquartile range; IQR]: 51[41-60] years, 51.8% males) were included. On CTA, CAD, obstructive CAD (≥50% stenosis) and CTA-derived HRPFs was present in 133 (52.2%), 37 (14.5%) and 82 (32.2%) patients respectively. A significantly lower EFat was seen in patients with obstructive CAD than in those without (-86HU [IQR:-88 to -82 HU] vs -84 [IQR:-87 HU to -82 HU]; p = 0.0486) and in patients with HRPF compared to those without (-86 HU [IQR:-88 to -83 HU] vs -83 HU [-86 HU to -81.750 HU]; p < 0.0001). EFat showed significant association with obstructive CAD (unadjusted Odd's ratio (OR) [95% CI]: 0.90 [0.81-0.99];p = 0.0248) and HRPF (unadjusted OR [95% CI]: 0.83 [0.76-0.90];p < 0.0001) in univariate analysis, which remained significant in multivariate analysis. However, EFV did not show any significant association with neither obstructive CAD nor HRPF in multivariate analysis. Adding EFat to conventional coronary risk factors and CACS in the pre-test probability models increased the area-under curve (AUC) for prediction of both obstructive CAD (AUC[95% CI]: 0.76 [0.70-0.81] vs 0.71 [0.65-0.77)) and HRPF (AUC [95% CI]: 0.92 [0.88-0.95] vs 0.89 [0.85-0.93]), although not reaching statistical significance. CONCLUSION EFat, but not EFV, is an independent predictor of obstructive CAD and HRPF. Addition of EFat to traditional cardiovascular risk factors and CACS improves estimation for pretest probability of obstructive CAD and HRPF. ADVANCES IN KNOWLEDGE EFat is an important attribute of epicardial fat as it reflects the "quality" of fat, taking into account the effects of brown-white fat transformation and fibrosis, as opposed to mere evaluation of "quantity" of fat by EFV. Our study shows that EFat is a better predictor of obstructive CAD and HRPF than EFV and can thus explain the inconsistent association of increased EFV alone with CAD.
Collapse
Affiliation(s)
- Niraj Nirmal Pandey
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sanjiv Sharma
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Priya Jagia
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
26
|
Chang CK, Chen PK, Lan JL, Chang SH, Hsieh TY, Liao PJ, Chen CH, Chen DY. Association of Electronegative LDL with Macrophage Foam Cell Formation and CD11c Expression in Rheumatoid Arthritis Patients. Int J Mol Sci 2020; 21:ijms21165883. [PMID: 32824307 PMCID: PMC7461586 DOI: 10.3390/ijms21165883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
L5, the most negatively charged subfraction of low-density lipoprotein (LDL), is implicated in atherogenesis, but the pathogenic association is relatively unexplored in patients with rheumatoid arthritis (RA). We examined the role of L5 LDL in macrophage foam cell formation and the association of L5 with CD11c expression in THP-1 cells and RA patients. Using quantitative real-time PCR, we determined mRNA expression levels of ITGAX, the gene for CD11c, a marker associated with vascular plaque formation and M1 macrophages in atherogenesis, in 93 RA patients. We also examined CD11c expression on THP-1 cells treated with L5 by flow cytometry analysis and the plasma levels of inflammatory mediators using a magnetic bead array. We found a dose-dependent upregulation of foam cell formation of macrophages after L5 treatment (mean ± SEM, 12.05 ± 2.35% in L5 (10 µg/mL); 50.13 ± 3.9% in L5 (25 µg/mL); 90.69 ± 1.82% in L5 (50 µg/mL), p < 0.01). Significantly higher levels of CD11c expression were observed in 30 patients with a high percentage of L5 in LDL (L5%) (0.0752 ± 0.0139-fold) compared to 63 patients with normal L5% (0.0446 ± 0.0054-fold, p < 0.05). CD11c expression levels were increased in the L5-treated group (30.00 ± 3.13% in L5 (10 µg/mL); 41.46 ± 2.77% in L5 (50 µg/mL), p < 0.05) and were positively correlated with plasma levels of interleukin (IL)-6 and IL-8. L5 augmented the expression of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) on monocytes and macrophages. Our findings suggest that L5 may promote atherogenesis by augmenting macrophage foam cell formation, upregulating CD11c expression, and enhancing the expression levels of atherosclerosis-related mediators.
Collapse
Affiliation(s)
- Ching-Kun Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
| | - Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Joung-Liang Lan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Rheumatic Diseases Research Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Hsin Chang
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsu-Yi Hsieh
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Pei-Jyuan Liao
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 6770, USA;
- Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 4628); Fax: +886-4-22073812
| |
Collapse
|
27
|
Osteopontin: The Molecular Bridge between Fat and Cardiac-Renal Disorders. Int J Mol Sci 2020; 21:ijms21155568. [PMID: 32759639 PMCID: PMC7432729 DOI: 10.3390/ijms21155568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) is a multifaceted matricellular protein, with well-recognized roles in both the physiological and pathological processes in the body. OPN is expressed in the main organs and cell types, in which it induces different biological actions. During physiological conditioning, OPN acts as both an intracellular protein and soluble excreted cytokine, regulating tissue remodeling and immune-infiltrate in adipose tissue the heart and the kidney. In contrast, the increased expression of OPN has been correlated with the severity of the cardiovascular and renal outcomes associated with obesity. Indeed, OPN expression is at the “cross roads” of visceral fat extension, cardiovascular diseases (CVDs) and renal disorders, in which OPN orchestrates the molecular interactions, leading to chronic low-grade inflammation. The common factor associated with OPN overexpression in adipose, cardiac and renal tissues seems attributable to the concomitant increase in visceral fat size and the increase in infiltrated OPN+ macrophages. This review underlines the current knowledge on the molecular interactions between obesity and the cardiac–renal disorders ruled by OPN.
Collapse
|
28
|
Rozsívalová K, Pierzynová A, Kratochvílová H, Lindner J, Lipš M, Kotulák T, Ivák P, Netuka I, Haluzík M, Kučera T. Increased Number of Mast Cells in Epicardial Adipose Tissue of Cardiac Surgery Patients With Coronary Artery Disease. Physiol Res 2020; 69:621-631. [PMID: 32584133 DOI: 10.33549/physiolres.934344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chronic inflammation of adipose tissue is associated with the pathogenesis of cardiovascular diseases. Mast cells represent an important component of the innate defense system of the organism. In our work, we quantified mast cell number in epicardial adipose tissue (EAT), subcutaneous adipose tissue (SAT), and right atrial myocardium (RA) in patients undergoing open heart surgery (n=57). Bioptic samples of EAT (n=44), SAT (n=42) and RA (n=17) were fixed by 4 % paraformaldehyde and embedded into paraffin. An anti-mast cell tryptase antibody was used for immunohistochemical detection and quantification of mast cells. We also demonstrated immunohistochemically the expression of CD117 and chymase markers. In EAT of patients with coronary artery disease (CAD), higher incidence of mast cells has been found compared to patients without CAD (3.7±2.6 vs. 2.1±1.2 cells/mm(2)). In SAT and RA, there was no difference in the number of mast cells in CAD and non-CAD patients. Mast cells in SAT, EAT and RA expressed CD117 and chymase. An increased incidence of mast cells in EAT of CAD patients may indicate the specific role of these inflammatory cells in relation to EAT and coronary arteries affected by atherosclerosis.
Collapse
Affiliation(s)
- K Rozsívalová
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dozio E, Ruscica M, Vianello E, Macchi C, Sitzia C, Schmitz G, Tacchini L, Corsi Romanelli MM. PCSK9 Expression in Epicardial Adipose Tissue: Molecular Association with Local Tissue Inflammation. Mediators Inflamm 2020; 2020:1348913. [PMID: 32565719 PMCID: PMC7292972 DOI: 10.1155/2020/1348913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Epicardial adipose tissue (EAT) has the unique property to release mediators that nourish the heart in healthy conditions, an effect that becomes detrimental when volume expands and proinflammatory cytokines start to be produced. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a proinflammatory mediator involved in atherosclerosis, is also produced by visceral fat. Due to the correlation of inflammation with PCSK9 and EAT enlargement, we evaluated whether PCSK9 was expressed in EAT and associated with EAT inflammation and volume. EAT samples were isolated during surgery. EAT thickness was measured by echocardiography. A microarray was used to explore EAT transcriptoma. The PCSK9 protein levels were measured by Western Blot in EAT and ELISA in plasma. PCSK9 was expressed at both the gene and protein levels in EAT. We found a positive association with EAT thickness and local proinflammatory mediators, in particular, chemokines for monocytes and lymphocytes. No association was found with the circulating PCSK9 level. The expression of PCSK9 in EAT argues that PCSK9 is part of the EAT secretome and EAT inflammation is associated with local PCSK9 expression, regardless of circulating PCSK9 levels. Whether reducing EAT inflammation or PCSK9 local levels may have beneficial effects on EAT metabolism and cardiovascular risk needs further investigations.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Elena Vianello
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Clementina Sitzia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93052 Regensburg, Germany
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, Piazza E. Malan 1, 20097 San Donato Milanese, Milan, Italy
| |
Collapse
|
30
|
Gormez S, Erdim R, Akan G, Caynak B, Duran C, Gunay D, Sozer V, Atalar F. Relationships between visceral/subcutaneous adipose tissue FABP4 expression and coronary atherosclerosis in patients with metabolic syndrome. Cardiovasc Pathol 2019; 46:107192. [PMID: 31927390 DOI: 10.1016/j.carpath.2019.107192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cytoplasmic fatty acid-binding proteins facilitate the transport of lipids to specific compartments in cells. Fatty acid-binding protein 4 (FABP4), also known as aP2 or A-FABP, plays a key role in the development of atherosclerosis, insulin resistance, obesity, and metabolic syndrome (MS). The FABP4 polymorphisms are associated with protein expression changes in vitro and metabolic and vascular alterations in vivo. The aim of this study was to investigate the association between FABP4 messenger ribonucleic acid (mRNA) expression levels in epicardial (EAT), pericardial (PAT), and subcutaneous adipose tissues (SAT), and the extent of coronary atherosclerosis in coronary artery disease (CAD) patients with MS. Furthermore, the relationship between the extent of coronary atherosclerosis and epicardial adipose tissue volume (EATV) and FABP4 gene variations was evaluated. PATIENTS AND METHODS A total of 37 patients undergoing coronary artery bypass grafting because of CAD (MS CAD group) and 23 non-MS patients undergoing heart valve surgery (control group) were included. Coronary angiography was performed for all patients and the extent of coronary atherosclerosis was assessed using the Sullivan's scoring system. The mRNA expression levels of FABP4 gene in EAT, PAT, and SAT, and FABP4 polymorphisms were analyzed using the quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS An increased FABP4 expression was observed in EAT and PAT of MS CAD group compared to controls. In the MS CAD group, FABP4 mRNA expression levels in EAT was 2.8-fold higher compared to PAT. The expression of FABP4 in EAT was positively correlated with the extent of atherosclerosis and EATV in MS CAD group (r = 0.588, P= 0.001, r = 0.174, P = 0.001, respectively). There were no correlations between PAT and SAT versus the extent of atherosclerosis and EATV. The FABP4 EAT mRNA expression levels were found to significantly increase in mutant allele carriers of rs1054135, whereas they significantly decreased in mutant allele carriers of rs77878271 (T-87C) in MS CAD group (P < 0.05). The extent of atherosclerosis was also found to be significantly associated with rs1054135 (P < 0.05). A cut-off point of 57.5 cm3 EATV was used indicating the presence of CAD with a significant area under the curve of 0.783%, 98% sensitivity, and 100% specificity (95% CI 0.620-0.880; P < 0.05). CONCLUSIONS Our study results suggest that FABP4 expression in EAT is strongly associated with the extent of atherosclerosis and EATV in MS CAD patients.
Collapse
Affiliation(s)
- Selcuk Gormez
- Department of Cardiology, Acibadem Mehmet Ali Aydinlar University, Faculty of Medicine, Istanbul, Turkey
| | - Refik Erdim
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Gokce Akan
- MUHAS Genetics Laboratory, MUHAS, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Barıs Caynak
- Department of Cardiovascular Surgery, Istanbul Bilim University, Istanbul, Turkey
| | - Cihan Duran
- Department of Radiology, Istanbul Bilim University, Istanbul, Turkey
| | - Demet Gunay
- Sisli Florence Nightingale Hospital, Department of Biochemistry, Istanbul, Turkey
| | - Volkan Sozer
- Department of Biochemistry, Yildiz Technical University, Istanbul, Turkey
| | - Fatmahan Atalar
- Department of Medical Genetics, Child Health Institute, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
31
|
Aitken-Buck HM, Moharram M, Babakr AA, Reijers R, Van Hout I, Fomison-Nurse IC, Sugunesegran R, Bhagwat K, Davis PJ, Bunton RW, Williams MJA, Stiles MK, Jones PP, Coffey S, Lamberts RR. Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte 2019; 8:412-420. [PMID: 31829077 PMCID: PMC6948959 DOI: 10.1080/21623945.2019.1701387] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macroscopic deposition of epicardial adipose tissue (EAT) has been strongly associated with numerous indices of obesity and cardiovascular disease risk. In contrast, the morphology of EAT adipocytes has rarely been investigated. We aimed to determine whether obesity-driven adipocyte hypertrophy, which is characteristic of other visceral fat depots, is found within EAT adipocytes. EAT samples were collected from cardiac surgery patients (n = 49), stained with haematoxylin & eosin, and analysed for mean adipocyte size and non-adipocyte area. EAT thickness was measured using echocardiography. A significant positive relationship was found between EAT thickness and body mass index (BMI). When stratified into standardized BMI categories, EAT thickness was 58.7% greater (p = 0.003) in patients from the obese (7.3 ± 1.8 mm) compared to normal (4.6 ± 0.9 mm) category. BMI as a continuous variable significantly correlated with EAT thickness (r = 0.56, p < 0.0001). Conversely, no correlation was observed between adipocyte size and either BMI or EAT thickness. No difference in the non-adipocyte area was found between BMI groups. Our results suggest that the increased macroscopic EAT deposition associated with obesity is not caused by adipocyte hypertrophy. Rather, alternative remodelling via adipocyte proliferation might be responsible for the observed EAT expansion.
Collapse
Affiliation(s)
- Hamish M. Aitken-Buck
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mohammed Moharram
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Aram A Babakr
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robin Reijers
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ingrid C. Fomison-Nurse
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ramanen Sugunesegran
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Krishna Bhagwat
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Phillip J Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Richard W. Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Michael J. A. Williams
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Martin K. Stiles
- Department of Cardiology, Waikato District Health Board, Hamilton, New Zealand
- Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Peter P. Jones
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Regis R. Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Fitzgibbons TP, Lee N, Tran KV, Nicoloro S, Kelly M, Tam SK, Czech MP. Coronary disease is not associated with robust alterations in inflammatory gene expression in human epicardial fat. JCI Insight 2019; 4:124859. [PMID: 31513547 PMCID: PMC6824304 DOI: 10.1172/jci.insight.124859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/05/2019] [Indexed: 01/14/2023] Open
Abstract
Epicardial adipose tissue (EAT) is the visceral fat depot of the heart. Inflammation of EAT is thought to contribute to coronary artery disease (CAD). Therefore, we hypothesized that the EAT of patients with CAD would have increased inflammatory gene expression compared with controls without CAD. Cardiac surgery patients with (n = 13) or without CAD (n = 13) were consented, and samples of EAT and subcutaneous adipose tissue (SAT) were obtained. Transcriptomic analysis was performed using Affymetrix Human Gene 1.0 ST arrays. Differential expression was defined as a 1.5-fold change (ANOVA P < 0.05). Six hundred ninety-three genes were differentially expressed between SAT and EAT in controls and 805 in cases. Expression of 326 genes was different between EAT of cases and controls; expression of 14 genes was increased in cases, while 312 were increased in controls. Quantitative reverse transcription PCR confirmed that there was no difference in expression of CCL2, CCR2, TNF-α, IL-6, IL-8, and PAI1 between groups. Immunohistochemistry showed more macrophages in EAT than SAT, but there was no difference in their number or activation state between groups. In contrast to prior studies, we did not find increased inflammatory gene expression in the EAT of patients with CAD. We conclude that the specific adipose tissue depot, rather than CAD status, is responsible for the majority of differential gene expression. In humans without atherosclerosis there is increased mRNA expression of the orphan nuclear hormone receptors in epicardial fat.
Collapse
Affiliation(s)
| | | | | | - Sara Nicoloro
- Program in Molecular Medicine, University of Massachusetts (UMass) Medical School, Worcester, Massachusetts, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts (UMass) Medical School, Worcester, Massachusetts, USA
| | - Stanley Kc Tam
- Department of Surgery, St. Elizabeth's Medical Center, Brighton, Massachusetts, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts (UMass) Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
33
|
Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: A target to modulate cardiovascular risk? Int J Cardiol 2019; 292:218-224. [DOI: 10.1016/j.ijcard.2019.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
|
34
|
Pierzynová A, Šrámek J, Cinkajzlová A, Kratochvílová H, Lindner J, Haluzík M, Kučera T. The number and phenotype of myocardial and adipose tissue CD68+ cells is associated with cardiovascular and metabolic disease in heart surgery patients. Nutr Metab Cardiovasc Dis 2019; 29:946-955. [PMID: 31307852 DOI: 10.1016/j.numecd.2019.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD68+ cells are a potent source of inflammatory cytokines in adipose tissue and myocardium. The development of low-grade inflammation in adipose tissue is implicated in the pathogenesis of obesity-associated disorders including type 2 diabetes mellitus (T2DM) and cardiovascular disease. The main aim of the study was to characterize and quantify myocardial and adipose tissue CD68+ cells and adipose tissue crown-like structures (CLS) in patients with obesity, coronary artery disease (CAD) and T2DM. METHODS AND RESULTS Samples were obtained from the right atrium, epicardial (EAT) and subcutaneous adipose tissue (SAT) during elective heart surgery (non-obese, n = 34 patients; obese, n = 24 patients). Immunohistochemistry was used to visualize CD68+ cells. M1-polarized macrophages were visualized by immunohistochemical detection of CD11c. The proportion of CD68+ cells was higher in EAT than in SAT (43.4 ± 25.0 versus 32.5 ± 23.1 cells per 1 mm2; p = 0.015). Myocardial CD68+ cells were more abundant in obese patients (45.6 ± 24.5 versus 27.7 ± 14.8 cells per 1 mm2; p = 0.045). In SAT, CD68+ cells were more frequent in CAD patients (37.3 ± 23.0 versus 23.1 ± 20.9 cells per 1 mm2; p = 0.012). Patients having CLS in their SAT had higher average BMI (34.1 ± 6.4 versus 29.0 ± 4.5; p = 0.024). CONCLUSIONS Regional-based increases in the frequency of CD68+ cells and changes of their phenotype in CLS were detected in obese patients and CAD patients. Therapeutic modulation of adipose tissue inflammation may represent a target for treatment of obesity.
Collapse
Affiliation(s)
- Aneta Pierzynová
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaromír Šrámek
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Cinkajzlová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Helena Kratochvílová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Lindner
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Haluzík
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
35
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
36
|
Rotter Sopasakis V, Sandstedt J, Johansson M, Lundqvist A, Bergström G, Jeppsson A, Mattsson Hultén L. Toll-like receptor-mediated inflammation markers are strongly induced in heart tissue in patients with cardiac disease under both ischemic and non-ischemic conditions. Int J Cardiol 2019; 293:238-247. [PMID: 31230935 DOI: 10.1016/j.ijcard.2019.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND A sustained low grade inflammatory state is a recognized feature of various diseases, including cardiovascular disease. This state of chronic inflammation involves activation of Toll-like receptor (TLR) signaling. However, little is known regarding the genetic profile of TLR components in cardiac tissue from patients with cardiac disease. METHODS In this study we investigated the genetic profile of 84 TLR markers in a unique set of cardiac tissue from patients that had undergone either coronary artery bypass grafting (CABG) or aortic valve replacement (AVR). In addition, we compared the gene data from the cardiac tissue with the same gene profile in blood as well as circulating cytokines to elucidate possible targets in blood that could be used to estimate the inflammatory state of the heart in cardiac disease. RESULTS We found a marked upregulation of TLR-induced inflammation in cardiac tissue from both patient groups compared to healthy controls. The inflammation appeared to be primarily mediated through TLR1, 3, 7, 8 and 10, resulting in a marked induction of mediators of the innate immune response. Furthermore, the gene expression data in combination with unbiased multivariate analysis suggested a difference in inflammatory response in ischemic cardiac tissue compared to non-ischemic cardiac tissue. Serum levels of IL-13 were significantly elevated in both CABG and AVR patients compared to controls, whereas other cytokines did not appear to coincide with cardiac TLR-induced inflammation. CONCLUSIONS We propose that cardiac disease in humans may be mediated by local cardiac TLR signaling under both ischemic and non-ischemic conditions.
Collapse
Affiliation(s)
- Victoria Rotter Sopasakis
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| | - Joakim Sandstedt
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Michaela Johansson
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Annika Lundqvist
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Göran Bergström
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Anders Jeppsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
37
|
Vianello E, Marrocco-Trischitta Massimiliano M, Dozio E, Bandera F, Tacchini L, Canciani E, Dellavia C, Schmitz G, Lorenzo M, Corsi Romanelli Massimiliano M. Correlational study on altered epicardial adipose tissue as a stratification risk factor for valve disease progression through IL-13 signaling. J Mol Cell Cardiol 2019; 132:210-218. [PMID: 31102584 DOI: 10.1016/j.yjmcc.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
AIMS Genetic and environmental factors all interact in the risk of progression of valvular dysfunctions. Previous studies reported a relation between valve diseases and epicardial adipose tissue (EAT) thickness. The aim of this study was to verify the possible relationship between the molecular pattern of EAT related to IL-13 fibrogenic cytokine expression and valve dysfunction. METHODS AND RESULTS A valvular heart disease (VHD) population was stratified according to their median EAT thickness (7 mm). The molecular expression of IL-13 in EAT is directly related to the molecular expression of genes associated with extracellular matrix (ECM) turnover, macrophage infiltration and promotion of the formation of ectopic calcific nodules involved in aorta coarctation and calcification. CONCLUSION IL-13 gene expression in altered EAT is directly related to the expression of genes involved in ECM turnover and the formation of ectopic calcific nodules, suggesting measurements of EAT as a stratification risk factor for valve instability in the VHD patients.
Collapse
Affiliation(s)
- Elena Vianello
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Canciani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Menicanti Lorenzo
- Department of Cardio-Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marco Corsi Romanelli Massimiliano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; U.O.C. SMEL-1 of Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
38
|
Dendritic Cells in Subcutaneous and Epicardial Adipose Tissue of Subjects with Type 2 Diabetes, Obesity, and Coronary Artery Disease. Mediators Inflamm 2019; 2019:5481725. [PMID: 31210749 PMCID: PMC6532274 DOI: 10.1155/2019/5481725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells contributing to regulation of lymphocyte immune response. DCs are divided into two subtypes: CD11c-positive conventional or myeloid (cDCs) and CD123-positive plasmacytoid (pDCs) DCs. The aim of the study was to assess DCs (HLA-DR+ lineage-) and their subtypes by flow cytometry in peripheral blood and subcutaneous (SAT) and epicardial (EAT) adipose tissue in subjects with (T2DM, n = 12) and without (non-T2DM, n = 17) type 2 diabetes mellitus undergoing elective cardiac surgery. Subjects with T2DM had higher fasting glycemia (8.6 ± 0.7 vs. 5.8 ± 0.2 mmol/l, p < 0.001) and glycated hemoglobin (52.0 ± 3.4 vs. 36.9 ± 1.0 mmol/mol, p < 0.001) and tended to have more pronounced inflammation (hsCRP: 9.8 ± 3.1 vs. 5.1 ± 1.9 mg/ml, p = 0.177) compared with subjects without T2DM. T2DM was associated with reduced total DCs in SAT (1.57 ± 0.65 vs. 4.45 ± 1.56% for T2DM vs. non-T2DM, p = 0.041) with a similar, albeit insignificant, trend in EAT (0.996 ± 0.33 vs. 2.46 ± 0.78% for T2DM vs. non-T2DM, p = 0.171). When analyzing DC subsets, no difference in cDCs was seen between any of the studied groups or adipose tissue pools. In contrast, pDCs were increased in both SAT (13.5 ± 2.0 vs. 4.6 ± 1.9% of DC cells, p = 0.005) and EAT (29.1 ± 8.7 vs. 8.4 ± 2.4% of DC, p = 0.045) of T2DM relative to non-T2DM subjects as well as in EAT of the T2DM group compared with corresponding SAT (29.1 ± 8.7 vs. 13.5 ± 2.0% of DC, p = 0.020). Neither obesity nor coronary artery disease (CAD) significantly influenced the number of total, cDC, or pDC in SAT or EAT according to multiple regression analysis. In summary, T2DM decreased the amount of total dendritic cells in subcutaneous adipose tissue and increased plasmacytoid dendritic cells in subcutaneous and even more in epicardial adipose tissue. These findings suggest a potential role of pDCs in the development of T2DM-associated adipose tissue low-grade inflammation.
Collapse
|
39
|
Iacobellis G, Mahabadi AA. Is epicardial fat attenuation a novel marker of coronary inflammation? Atherosclerosis 2019; 284:212-213. [DOI: 10.1016/j.atherosclerosis.2019.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 11/24/2022]
|
40
|
Le Jemtel TH, Samson R, Ayinapudi K, Singh T, Oparil S. Epicardial Adipose Tissue and Cardiovascular Disease. Curr Hypertens Rep 2019; 21:36. [PMID: 30953236 DOI: 10.1007/s11906-019-0939-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Epicardial adipose tissue has been associated with the development/progression of cardiovascular disease. We appraise the strength of the association between epicardial adipose tissue and development/progression of cardiovascular diseases like coronary artery disease, atrial fibrillation, and heart failure with preserved ejection fraction. RECENT FINDINGS Cross-sectional clinical and translational correlative studies have established an association between epicardial adipose tissue and progression of coronary artery disease. Recent studies question this association and underline the need for longitudinal studies. Epicardial adipose tissue also plays a definite role in the pathobiology of atrial fibrillation and its recurrence after ablation. In contrast to an early paradigm, epicardial adipose tissue does not appear to play a key role in the pathogenesis of heart failure with preserved ejection fraction in obese patients. The association of epicardial adipose tissue with atrial fibrillation is robust. In contrast, the association of epicardial adipose tissue with coronary artery disease and heart failure with preserved ejection fraction is tenuous. Additional research, including longitudinal studies, is needed to confirm or refute these proposed associations.
Collapse
Affiliation(s)
- Thierry H Le Jemtel
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Rohan Samson
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Karnika Ayinapudi
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Twinkle Singh
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
41
|
Soluble Receptor for Advanced Glycation End Products: A Protective Molecule against Intramyocardial Lipid Accumulation in Obese Zucker Rats? Mediators Inflamm 2019; 2019:2712376. [PMID: 30944546 PMCID: PMC6421753 DOI: 10.1155/2019/2712376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Most of the obesity-related complications are due to ectopic fat accumulation. Recently, the activation of the cell-surface receptor for advanced glycation end products (RAGE) has been associated with lipid accumulation in different organs. Nevertheless, the role of RAGE and sRAGE, the soluble form that prevents ligands to activate RAGE, in intramyocardial lipid accumulation is presently unknown. To this aim, we analyzed whether, in obesity, intramyocardial lipid accumulation and lipid metabolism-related transcriptome are related to RAGE and sRAGE. Heart and serum samples were collected from 10 lean (L) and 10 obese (OB) Zucker rats. Oil red staining was used to detect lipids on frozen heart sections. The lipid metabolism-related transcriptome (84 genes) was analyzed by a specific PCR array. Heart RAGE expression was explored by real-time RT-PCR and Western blot analyses. Serum levels of sRAGE (total and endogenous secretory form (esRAGE)) were quantified by ELISA. Genes promoting fatty acid transport, activation, and oxidation in mitochondria/peroxisomes were upregulated in OB hearts. Intramyocardial lipid content did not differ between OB and L rats, as well as RAGE expression. A slight increase in epicardial adipose tissue was observed in OB hearts. Total sRAGE and esRAGE concentrations were significantly higher in OB rats. sRAGE may protect against obesity-induced intramyocardial lipid accumulation by preventing RAGE hyperexpression, therefore allowing lipids to be metabolized. EAT also played a protective role by working as a buffering system that protects the myocardium against exposure to excessively high levels of fatty acids. These observations reinforce the potential role of RAGE pathway as an interesting therapeutic target for obesity-related complications, at least at the cardiovascular level.
Collapse
|
42
|
Coronary Artery Disease Is Associated with an Increased Amount of T Lymphocytes in Human Epicardial Adipose Tissue. Mediators Inflamm 2019; 2019:4075086. [PMID: 30881222 PMCID: PMC6383418 DOI: 10.1155/2019/4075086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Immunocompetent cells including lymphocytes play a key role in the development of adipose tissue inflammation and obesity-related cardiovascular complications. The aim of the study was to explore the relationship between epicardial adipose tissue lymphocytes and coronary artery disease (CAD). To this end, we studied the content and phenotype of lymphocytes in peripheral blood, subcutaneous adipose tissue (SAT), and epicardial adipose tissue (EAT) in subjects with and without CAD undergoing elective cardiac surgery. Eleven subjects without CAD (non-CAD group) and 22 age-, BMI-, and HbA1C-matched individuals with CAD were included into the study. Blood, SAT, and EAT samples were obtained at the beginning of surgery. Lymphocyte populations were quantified as % of CD45+ cells using flow cytometry. Subjects with CAD had a higher total lymphocyte amount in EAT compared with SAT (32.24 ± 7.45 vs. 11.22 ± 1.34%, p = 0.025) with a similar trend observed in non-CAD subjects (29.68 ± 7.61 vs. 10.13 ± 2.01%, p = 0.067). T (CD3+) cells were increased (75.33 ± 2.18 vs. 65.24 ± 4.49%, p = 0.032) and CD3- cells decreased (21.17 ± 2.26 vs. 31.64 ± 4.40%, p = 0.028) in EAT of CAD relative to the non-CAD group. In both groups, EAT showed an elevated percentage of B cells (5.22 ± 2.43 vs. 0.96 ± 0.21%, p = 0.039 for CAD and 12.49 ± 5.83 vs. 1.16 ± 0.19%, p = 0.016 for non-CAD) and reduced natural killer (NK) cells (5.96 ± 1.32 vs. 13.22 ± 2.10%, p = 0.012 for CAD and 5.32 ± 1.97 vs. 13.81 ± 2.72%, p = 0.022 for non-CAD) relative to SAT. In conclusion, epicardial adipose tissue in subjects with CAD shows an increased amount of T lymphocytes relative to non-CAD individuals as well as a higher number of total and B lymphocytes and reduced NK cells as compared with corresponding SAT. These changes could contribute to the development of local inflammation and coronary atherosclerosis.
Collapse
|
43
|
Liu Z, Wang S, Wang Y, Zhou N, Shu J, Stamm C, Jiang M, Luo F. Association of epicardial adipose tissue attenuation with coronary atherosclerosis in patients with a high risk of coronary artery disease. Atherosclerosis 2019; 284:230-236. [PMID: 30777338 DOI: 10.1016/j.atherosclerosis.2019.01.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Density may indicate some tissue characteristics and help reveal the role of epicardial adipose tissue (EAT) in coronary artery disease (CAD). Therefore, we assessed the association of EAT density with the coronary artery plaque burden in patients presenting with chest pain. METHODS This retrospective cohort study comprised 614 patients (mean age 61 ± 9 years, 61% males) with a high cardiovascular disease risk, who underwent cardiac computed tomography angiography. Density was reflected as attenuation. RESULTS EAT attenuation was significantly associated with EAT volume with a negative Pearson's correlation coefficient and gradually increased across coronary artery calcium (CAC) scores of 0, 1-100, 101-400 and > 400. EAT attenuation was tightly associated with CAD risk factors, including age, sex, BMI, total cholesterol, neutrophil to lymphocyte ratios and CAC score. The association between EAT attenuation and CAC score was strengthened after adjusting for multivariable indices (OR 1.21, 95% CI 1.05-1.40, p = 0.01) and further adjusting for EAT volume (OR 1.26 95% CI 1.06-1.51, p<0.01). However, EAT attenuation was associated only with CAD presence (OR 1.32, 95% CI 1.02-1.69, p<0.05), CAC presence (OR 1.28, 95% CI 1.02-1.60, p<0.05), segment involvement score (OR 1.19, 95% CI 1.01-1.40, p<0.05) and segment stenosis score (OR 1.19, 95% CI 1.01-1.40, p<0.05) in the EAT volume- and multivariable-adjusted model. Additionally, EAT attenuation was not associated with significant coronary artery lesions and triple-vessel plaques. CONCLUSIONS Higher EAT attenuation is associated with a higher risk of CAD.
Collapse
Affiliation(s)
- Zihou Liu
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Shunjun Wang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yongqiang Wang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ningbo Zhou
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jie Shu
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Meng Jiang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
44
|
Pabon MA, Manocha K, Cheung JW, Lo JC. Linking Arrhythmias and Adipocytes: Insights, Mechanisms, and Future Directions. Front Physiol 2018; 9:1752. [PMID: 30568603 PMCID: PMC6290087 DOI: 10.3389/fphys.2018.01752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023] Open
Abstract
Obesity and atrial fibrillation have risen to epidemic levels worldwide and may continue to grow over the next decades. Emerging evidence suggests that obesity promotes atrial and ventricular arrhythmias. This has led to trials employing various strategies with the ultimate goal of decreasing the atrial arrhythmic burden in obese patients. The effectiveness of these interventions remains to be determined. Obesity is defined by the expansion of adipose mass, making adipocytes a prime candidate to mediate the pro-arrhythmogenic effects of obesity. The molecular mechanisms linking obesity and adipocytes to increased arrhythmogenicity in both the atria and ventricles remain poorly understood. In this focused review, we highlight areas of potential molecular interplay between adipocytes and cardiomyocytes. The effects of adipocytes may be direct, local or remote. Direct effect refers to adipocyte or fatty infiltration of the atrial and ventricular myocardium itself, possibly causing increased dispersion of normal myocardial electrical signals and fibrotic substrate of adipocytes that promote reentry or adipocytes serving as a direct source of aberrant signals. Local effects may originate from nearby adipose depots, specifically epicardial adipose tissue (EAT) and pericardial adipose tissue, which may play a role in the secretion of adipokines and chemokines that can incite inflammation given the direct contact and disrupt the conduction system. Adipocytes can also have a remote effect on the myocardium arising from their systemic secretion of adipokines, cytokines and metabolites. These factors may lead to mitochondrial dysfunction, oxidative stress, autophagy, mitophagy, autonomic dysfunction, and cardiomyocyte death to ultimately produce a pro-arrhythmogenic state. By better understanding the molecular mechanisms connecting dysfunctional adipocytes and arrhythmias, novel therapies may be developed to sever the link between obesity and arrhythmias.
Collapse
Affiliation(s)
- Maria A Pabon
- Joan and Sanford I. Weill, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Kevin Manocha
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Jim W Cheung
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - James C Lo
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Metabolic Health Center, Weill Cornell Medicine, New York, NY, United States.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
45
|
Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 2018; 22:889-902. [PMID: 28762019 DOI: 10.1007/s10741-017-9644-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Obesity and diabetes are strongly associated with metabolic and cardiovascular disorders including dyslipidemia, coronary artery disease, hypertension, and heart failure. Adipose tissue is identified as a complex endocrine organ, which by exerting a wide array of regulatory functions at the cellular, tissue and systemic levels can have profound effects on the cardiovascular system. Different terms including "epicardial," "pericardial," and "paracardial" have been used to describe adipose tissue deposits surrounding the heart. Epicardial adipose tissue (EAT) is a unique and multifaceted fat depot with local and systemic effects. The functional and anatomic proximity of EAT to the myocardium enables endocrine, paracrine, and vasocrine effects on the heart. EAT displays a large secretosome, which regulates physiological and pathophysiological processes in the heart. Perivascular adipose tissue (PVAT) secretes adipose-derived relaxing factor, which is a "cocktail" of cytokines, adipokines, microRNAs, and cellular mediators, with a potent effect on paracrine regulation of vascular tone, vascular smooth muscle cell proliferation, migration, atherosclerosis-susceptibility, and restenosis. Although there are various physiological functions of the EAT and PVAT, a phenotypic transformation can lead to a major pathogenic role in various cardiovascular diseases. The equilibrium between the physiological and pathophysiological properties of EAT is very delicate and susceptible to the influences of intrinsic and extrinsic factors. Various adipokines secreted from EAT and PVAT have a profound effect on the myocardium and coronary arteries; targeting these adipokines could be an important therapeutic approach to counteract cardiovascular disease.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saumya Shah
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
- Department of Physiology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
46
|
Zhu X, Tu Y, Chen H, Jackson AO, Patel V, Yin K. Micro-environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes Metab Res Rev 2018; 34:e2993. [PMID: 29475214 DOI: 10.1002/dmrr.2993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
The accumulation and pro-inflammatory polarization of immune cells, mainly macrophages, in adipose tissue (AT) are considered crucial factors for obesity-induced chronic inflammatory diseases. In this review, we highlighted the role of adipose tissue macrophage (ATM) polarization on AT function in the obese state and the effect of the micro-environment and intracellular metabolism on the dynamic switch of ATMs into their pro-inflammatory or anti-inflammatory phenotypes, which may have distinct influences on obesity-related chronic inflammatory diseases. Obesity-associated metabolic dysfunctions, including those of glucose, fatty acid, cholesterol, and other nutrient substrates such as vitamin D and iron in AT, promote the pro-inflammatory polarization of ATMs and AT inflammation via regulating the interaction between ATMs and adipocytes and intracellular metabolic pathways, including glycolysis, fatty acid oxidation, and reverse cholesterol transportation. Focusing on the regulation of ATM metabolism will provide a novel target for the treatment of obesity-related chronic inflammatory diseases, including insulin resistance, cardiovascular diseases, and cancers.
Collapse
Affiliation(s)
- Xiao Zhu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yixuan Tu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Hainan Chen
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Ampadu O Jackson
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Vaibhav Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
47
|
Microenvironment of Immune Cells Within the Visceral Adipose Tissue Sensu Lato vs. Epicardial Adipose Tissue: What Do We Know? Inflammation 2018; 41:1142-1156. [PMID: 29846855 DOI: 10.1007/s10753-018-0798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The chronic low-grade inflammation of the visceral adipose tissue is now fully established as one of the main contributors to metabolic disorders such as insulin resistance, subsequently leading to metabolic syndrome and other associated cardiometabolic pathologies. The orchestration of immune response and the "ratio of responsibility" of different immune cell populations have been studied extensively over the last few years within the visceral adipose tissue in general sense (sensu lato). However, it is essential to clearly distinguish different types of visceral fat distribution. Visceral adipose tissue is not only the classical omental or epididymal depot, but includes also specific type of fat in the close vicinity to the myocardium-the epicardial adipose tissue. Disruption of this type of fat during obesity was found to have a unique and direct influence over the cardiovascular disease development. Therefore, epicardial adipose tissue and other types of visceral adipose tissue depots should be studied separately. The purpose of this review is to explore the present knowledge about the morphology and dynamics of individual populations of immune cells within the visceral adipose tissue sensu lato in comparison to the knowledge regarding the epicardial adipose tissue specifically.
Collapse
|
48
|
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients. Acta Biomater 2018; 70:25-34. [PMID: 29396167 PMCID: PMC5871600 DOI: 10.1016/j.actbio.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Hyperglycemia and dyslipidemia coexist in diabetes and result in inflammation, degeneration, and impaired tissue remodeling, processes which are not conducive to the desired integration of tissue engineered products into the surrounding tissues. There are several challenges for vascular tissue engineering such as non-thrombogenicity, adequate burst pressure and compliance, suturability, appropriate remodeling responses, and vasoactivity, but, under diabetic conditions, an additional challenge needs to be considered: the aggressive oxidative environment generated by the high glucose and lipid concentrations that lead to the formation of advanced glycation end products (AGEs) in the vascular wall. Extracellular matrix-based scaffolds have adequate physical properties and are biocompatible, however, these scaffolds are altered in diabetes by the formation AGEs and impaired collagen degradation, consequently increasing vascular wall stiffness. In addition, vascular cells detect and respond to altered stimuli from the matrix by pathological remodeling of the vascular wall. Due to the immunomodulatory effects of mesenchymal stem cells (MSCs), they are frequently used in tissue engineering in order to protect the scaffolds from inflammation. MSCs together with antioxidant treatments of the scaffolds are expected to protect the vascular grafts from diabetes-induced alterations. In conclusion, as one of the most daunting environments that could damage the ECM and its interaction with cells is progressively built in diabetes, we recommend that cells and scaffolds used in vascular tissue engineering for diabetic patients are tested in diabetic animal models, in order to obtain valuable results regarding their resistance to diabetic adversities. STATEMENT OF SIGNIFICANCE Almost 25 million Americans have diabetes, characterized by high levels of blood sugar that binds to tissues and disturbs the function of cardiovascular structures. Therefore, patients with diabetes have a high risk of cardiovascular diseases. Surgery is required to replace diseased arteries with implants, but these fail after 5-10 years because they are made of non-living materials, not resistant to diabetes. New tissue engineering materials are developed, based on the patients' own stem cells, isolated from fat, and added to extracellular matrix-based scaffolds. Our main concern is that diabetes could damage the tissue-like implants. Thus we review studies related to the effect of diabetes on tissue components and recommend antioxidant treatments to increase the resistance of implants to diabetes.
Collapse
|
49
|
Yadav S, Kujur PK, Pandey SK, Goel Y, Maurya BN, Verma A, Kumar A, Singh RP, Singh SM. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death. Toxicol Appl Pharmacol 2018; 339:52-64. [DOI: 10.1016/j.taap.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
|
50
|
Zhu Y, Zhang L, Lu Q, Gao Y, Cai Y, Sui A, Su T, Shen X, Xie B. Identification of different macrophage subpopulations with distinct activities in a mouse model of oxygen-induced retinopathy. Int J Mol Med 2017; 40:281-292. [PMID: 28627621 PMCID: PMC5504985 DOI: 10.3892/ijmm.2017.3022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to characterize the phenotypic shift, quantity and role changes in different subgroups of retinal macrophages in a mouse model of oxygen-induced retinopathy (OIR). The mRNA expression levels of macrophage M1 and M2 subgroup marker genes and polarization-associated genes were analyzed by RT-qPCR. The number of M1 and M2 macrophages in our mouse model of OIR was analyzed by flow cytometry at different time points during the progression of OIR. Immunofluorescence whole mount staining of the retinas of mice with OIR was performed at different time points to examine the influx of macrophages, as well as the morphological characteristics and roles of M1 and M2 macrophages. An increased number of macrophages was recruited during the progression of angiogenesis in the retinas of mice with OIR due to the pro-inflammatory microenvironment containing high levels of cell adhesion and leukocyte transendothelial migration molecules. RT-qPCR and flow cytometric analysis at different time points revealed a decline in the number of M1 cells from a significantly high level at post-natal day (P)13 to a relatively normal level at P21, as well as an increase in the number of M2 cells from P13 to P21 in the mice with OIR, implicating a shift of macrophage polarization towards the M2 subtype. Immunofluorescence staining suggested that the M1 cells interacted with endothelial tip cells at the vascular front, while M2 cells embraced the emerging vessels and bridged the neighboring vessel sprouts. Thus, our data indicate that macrophages play an active role in OIR by contributing to the different steps of neovascularization. Our findings indicate that tissue macrophages may be considered as a potential target for the anti-angiogenic therapy of ocular neovascularization disease.
Collapse
Affiliation(s)
- Yanji Zhu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ling Zhang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9277, USA
| | - Qing Lu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yushuo Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yujuan Cai
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ailing Sui
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ting Su
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Bing Xie
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|