1
|
Loomis S, Samoylenko E, Virley D, McCreary AC. Nabiximols (NBX) suppresses tremor in a rat Harmaline model of essential tremor. Exp Neurol 2024; 382:114988. [PMID: 39368533 DOI: 10.1016/j.expneurol.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Essential tremor (ET) is one of the most prevalent movement disorders; despite this, there remains an unmet need for novel therapies. The treatment of rats with harmaline modulates the rhythmicity of inferior olivary neurons, resulting in generalized tremor with a frequency of 9-12 Hz in rats, comparable to that of human ET (4-12 Hz). PURPOSE Interestingly, cannabinoids reduce tremor, therefore we have assessed the cannabinoid nabiximols (NBX; marketed as Sativex) a complex botanical drug mixture, in the harmaline-rat model of ET. METHOD We tested the effects of acute (single dose) and subchronic (10 days) treatment of NBX (at 5.2, 10.4 and 20.8 mg kg-1 p.o.) administered prior to harmaline and acute NBX (20.8 mg kg-1) administered post-harmaline in male SD rats. Propranolol (20 mg kg-1 i.p.) was used as a positive control. Observed Scoring (OS) was carried out prior to placement in a tremor-monitoring apparatus for the calculation of Tremor Index (TI) and Motion Power Percentage (MPP). RESULTS Acute and subchronic NBX significantly attenuated harmaline-induced tremor at 10.4 and 20.8 mg kg-1, respectively, for each parameter (OS, TI, and MPP) when administered pre-harmaline as did propranolol (20 mg kg-1). NBX did not attenuate harmaline-induced tremor when administered post-harmaline. CONCLUSIONS These data suggest efficacy of acute and subchronic NBX to reduce tremors, based on OS, TI and MPP readouts if administered prior to harmaline. These data are the first to indicate the preclinical effects of an oral botanical cannabinoid formulation, NBX, in an animal model of ET.
Collapse
Affiliation(s)
- Sally Loomis
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK.
| | - Elena Samoylenko
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | - David Virley
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | | |
Collapse
|
2
|
Habibollahi Z, Zhou Y, Jenkins ME, Jayne Garland S, Friedman E, Naish MD, Trejos AL. Tremor Suppression Using Functional Electrical Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3289-3298. [PMID: 39222447 DOI: 10.1109/tnsre.2024.3453222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) and essential tremor are two major causes of pathological tremor among people over 60 years old. Due to the side effects and complications of traditional tremor management methods such as medication and deep brain surgery, non invasive tremor suppression methods have become more popular in recent years. Functional electrical stimulation (FES) is one of the methods used to reduce tremor in several studies. However, the effect of different FES parameters on tremor suppression and discomfort level, including amplitude, the number of pulses in each stimulation burst, frequency, and pulse width is yet to be studied for longer stimulation durations. Therefore, in this work, experiments were performed on 14 participants with PD to evaluate the effect of thirty seconds of out-of-phase electrical stimulation on wrist tremor at rest. Trials were conducted by varying the stimulation amplitude and the number of pulses while keeping the frequency and pulse width constant. Each test was repeated three times for each participant. The results showed an overall tremor suppression for 11 out of 14 participants and no average positive effects for three participants. It is concluded that despite the effectiveness of FES in tremor suppression, each set of FES parameters showed different suppression levels among participants due to the variability of tremor over time. Thus, for this method to be effective, an adaptive control system would be required to tune FES parameters in real time according to changes in tremor during extended stimulation periods.
Collapse
|
3
|
Cavallieri F, Mulroy E, Moro E. The history of deep brain stimulation. Parkinsonism Relat Disord 2024; 121:105980. [PMID: 38161106 DOI: 10.1016/j.parkreldis.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Deep brain stimulation (DBS) surgery is an established and effective treatment for several movement disorders (tremor, Parkinson's disease, and dystonia), and is under investigation in numerous other neurological and psychiatric disorders. However, the origins and development of this neurofunctional technique are not always well understood and recognized. In this mini-review, we review the history of DBS, highlighting important milestones and the most remarkable protagonists (neurosurgeons, neurologists, and neurophysiologists) who pioneered and fostered this therapy throughout the 20th and early 21st century. Alongside DBS historical markers, we also briefly discuss newer developments in the field, and the future challenges which accompany such progress.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.
| |
Collapse
|
4
|
Stoycheva T, Jameel A, Bain P, Nandi D, Jones B, Honeyfield L, Gedroyc W, Moore J. 'Am I fixed, am I better now?': undergoing MR-guided focused ultrasound for essential tremor: an interpretative phenomenological analysis. Front Neurol 2024; 15:1352581. [PMID: 38390595 PMCID: PMC10882628 DOI: 10.3389/fneur.2024.1352581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Essential tremor (ET) is characterised by postural and intentional tremor typically affecting the upper limbs, which can negatively impact functionality and quality of life. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a novel and promising non-invasive treatment for ET which offers instantaneous results. Methods Using interpretative phenomenological analysis we explored the experience of undergoing MRgFUS in six ET patients as well as their experiences pre- and post-procedure. Results One-time, retrospective semi-structured interviews were conducted and six themes emerged: Life pre-treatment: "It's everyday tasks that get you down" and "Most people who understand, they are okay. Some people aren't"; MRgFUS: Treatment day: "Going into the unknown" and "There's no way I was going to press that button"; and Life post-treatment: "One is good. Two is better" and "Am I fixed, am I better now?." Discussion The findings point to a significant period of adjustment associated with living with ET and the effects of undergoing ET MRgFUS treatment. As ET progressed, participants struggled to cope with increasing symptoms and had to develop coping strategies to manage life with ET. The procedure itself was perceived as strange and extraordinary and despite some immediate adverse effects participants were determined to go through with it. Post procedure, all participants reported tremor suppression which was life changing. While some participants still felt burdened by ET, others expressed it took them a while to psychologically adjust to what essentially was their new body. This study has highlighted the need for patients to be supported at all stages of their ET journey.
Collapse
Affiliation(s)
- Tsvetina Stoycheva
- Imperial College Healthcare NHS Trust, London, United Kingdom
- King's College London, London, England, United Kingdom
| | - Ayesha Jameel
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | - Peter Bain
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | - Dipankar Nandi
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | - Brynmor Jones
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Wladyslaw Gedroyc
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | | |
Collapse
|
5
|
Singh H, Sawal N, Gupta VK, Jha R, Stamm M, Arjun S, Gupta V, Rolston JD. Increased electrode impedance as an indicator for early detection of deep brain stimulation (DBS) hardware Infection: Clinical experience and in vitro study. J Clin Neurosci 2024; 120:76-81. [PMID: 38211444 DOI: 10.1016/j.jocn.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND When deep brain stimulation (DBS) infections are identified, they are often too advanced to treat without complete hardware removal. New objective markers to promptly identify DBS infections are needed. We present a patient with GPi (globus pallidus interna) DBS for dystonia, where the electrode impedance unexpectedly increased 3-months post-operatively, followed by serologic and hematologic markers of inflammation at 6-months, prompting explantation surgery. We recreated these conditions in a laboratory environment to analyze the pattern of changing of electrical impedance across the contacts of a DBS lead following Staphylococcus biofilm formation. METHODS A stainless-steel culture chamber containing 1 % brain heart infusion agar was used. A DBS electrode was dipped in peptone water containing a strain of S. aureus and subsequently introduced into the chamber. The apparatus was incubated at 37 °C for 6 days. Impedance was measured at 24hr intervals. A control experiment without S. Aureus inoculation was used to determine changes in impedance over a period of 6-days. RESULTS The mean monopolar impedance on day-1 was 751.8 ± 23.8 Ω and on day-3 was 1004.8 ± 68.7 Ω, a 33.7 % rise (p = 0.007). A faint biofilm formation could be seen around the DBS lead by day-2 and florid growth by day-3. After addition of the linezolid solution, a 15.9 % decrease in monopolar impedance was observed from day 3-6 (p = 0.003). CONCLUSION This study gives insight into impedance trends following a hardware infection in DBS. Increased impedance outside expected norms may be valuable for early prediction of infection. Furthermore, timely management using antibiotics might reduce the frequency of infection-related explant surgeries.
Collapse
Affiliation(s)
- Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States.
| | - Nishit Sawal
- Department of Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Vipin K Gupta
- Department of Neurosurgery, Government Medical College and Hospital, Chandigarh, India
| | - Rohan Jha
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States
| | - Michaela Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States
| | - Shivani Arjun
- Department of Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
6
|
Bayoumi A, Hasan KM, Patino J, Keser Z, Thomas JA, Gabr RE, Pedroza C, Kamali A. Identifying the white matter pathways involved in multiple sclerosis-related tremor using diffusion tensor imaging. Mult Scler J Exp Transl Clin 2023; 9:20552173231208271. [PMID: 38021452 PMCID: PMC10631316 DOI: 10.1177/20552173231208271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Tremor affects up to 45% of patients with Multiple Sclerosis (PwMS). Current understanding is based on insights from other neurological disorders, thus, not fully addressing the distinctive aspects of MS pathology. Objective To characterize the brain white matter (WM) correlates of MS-related tremor using diffusion tensor imaging (DTI). Methods In a prospective case-control study, PwMS with tremor were assessed for tremor severity and underwent MRI scans including DTI. PwMS without tremor served as matched controls. After tract selection and segmentation, the resulting diffusivity measures were used to calculate group differences and correlations with tremor severity. Results This study included 72 PwMS. The tremor group (n = 36) exhibited significant changes in several pathways, notably in the right inferior longitudinal fasciculus (Cohen's d = 1.53, q < 0.001) and left corticospinal tract (d = 1.32, q < 0.001), compared to controls (n = 36). Furthermore, specific tracts showed a significant correlation with tremor severity, notably in the left medial lemniscus (Spearman's coefficient [rsp] = -0.56, p < 0.001), and forceps minor of corpus callosum (rsp = -0.45, p < 0.01). Conclusion MS-related tremor is associated with widespread diffusivity changes in WM pathways and its severity correlates with commissural and sensory projection pathways, which suggests a role for proprioception or involvement of the dentato-rubro-olivary circuit.
Collapse
Affiliation(s)
- Ahmed Bayoumi
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Khader M. Hasan
- Department of Radiology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Jorge Patino
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph A. Thomas
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Refaat E. Gabr
- Department of Radiology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Claudia Pedroza
- Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Arash Kamali
- Department of Radiology, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
7
|
Nagahawatte ND, Paskaranandavadivel N, Bear LR, Avci R, Cheng LK. A novel framework for the removal of pacing artifacts from bio-electrical recordings. Comput Biol Med 2023; 155:106673. [PMID: 36805227 DOI: 10.1016/j.compbiomed.2023.106673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Electroceuticals provide clinical solutions for a range of disorders including Parkinson's disease, cardiac arrythmias and are emerging as a potential treatment option for gastrointestinal disorders. However, pre-clinical investigations are challenged by the large stimulation artifacts registered in bio-electrical recordings. METHOD A generalized framework capable of isolating and suppressing stimulation artifacts with minimal intervention was developed. Stimulation artifacts with different pulse-parameters in synthetic and experimental cardiac and gastrointestinal signals were detected using a Hampel filter and reconstructed using 3 methods: i) autoregression, ii) weighted mean, and iii) linear interpolation. RESULTS Synthetic stimulation artifacts with amplitudes of 2 mV and 4 mV and pulse-widths of 50 ms, 100 ms, and 200 ms were successfully isolated and the artifact window size remained uninfluenced by the pulse-amplitude, but was influenced by pulse-width (e.g., the autoregression method resulted in an identical Root Mean Square Error (RMSE) of 1.64 mV for artifacts with 200 ms pulse-width and both 2 mV and 4 mV amplitudes). The performance of autoregression (RMSE = 1.45 ± 0.16 mV) and linear interpolation (RMSE = 1.22 ± 0.14 mV) methods were comparable and better than weighted mean (RMSE = 5.54 ± 0.56 mV) for synthetic data. However, for experimental recordings, artifact removal by autoregression was superior to both linear interpolation and weighted mean approaches in gastric, small intestinal and cardiac recordings. CONCLUSIONS A novel signal processing framework enabled efficient analysis of bio-electrical recordings with stimulation artifacts. This will allow the bio-electrical events induced by stimulation protocols to be efficiently and systematically evaluated, resulting in improved stimulation therapies.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Laura R Bear
- IHU Liryc, Fondation Bordeaux Université, F-33600, Pessac-Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; Université de Bordeaux, CRCTB, U1045, F-33000, Bordeaux, France
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, TN, USA; Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand.
| |
Collapse
|
8
|
Hossen A, Anwar AR, Koirala N, Ding H, Budker D, Wickenbrock A, Heute U, Deuschl G, Groppa S, Muthuraman M. Machine learning aided classification of tremor in multiple sclerosis. EBioMedicine 2022; 82:104152. [PMID: 35834887 PMCID: PMC9287478 DOI: 10.1016/j.ebiom.2022.104152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
|
9
|
Silverio AA, Silverio LAA. Developments in Deep Brain Stimulators for Successful Aging Towards Smart Devices—An Overview. FRONTIERS IN AGING 2022; 3:848219. [PMID: 35821845 PMCID: PMC9261350 DOI: 10.3389/fragi.2022.848219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022]
Abstract
This work provides an overview of the present state-of-the-art in the development of deep brain Deep Brain Stimulation (DBS) and how such devices alleviate motor and cognitive disorders for a successful aging. This work reviews chronic diseases that are addressable via DBS, reporting also the treatment efficacies. The underlying mechanism for DBS is also reported. A discussion on hardware developments focusing on DBS control paradigms is included specifically the open- and closed-loop “smart” control implementations. Furthermore, developments towards a “smart” DBS, while considering the design challenges, current state of the art, and constraints, are also presented. This work also showcased different methods, using ambient energy scavenging, that offer alternative solutions to prolong the battery life of the DBS device. These are geared towards a low maintenance, semi-autonomous, and less disruptive device to be used by the elderly patient suffering from motor and cognitive disorders.
Collapse
Affiliation(s)
- Angelito A. Silverio
- Department of Electronics Engineering, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- *Correspondence: Angelito A. Silverio,
| | | |
Collapse
|
10
|
Wong JK, Patel B, Middlebrooks EH, Hilliard JD, Foote KD, Okun MS, Almeida L. Connectomic analysis of unilateral dual lead thalamic deep brain stimulation for treatment of multiple sclerosis tremor. Brain Commun 2022; 4:fcac063. [PMID: 35368612 PMCID: PMC8971897 DOI: 10.1093/braincomms/fcac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Tremor is a common symptom in multiple sclerosis and can present as a severe postural and action tremor, leading to significant disability. Owing to the diffuse and progressive nature of the disease, it has been challenging to characterize the pathophysiology underlying multiple sclerosis tremor. Deep brain stimulation of the ventralis intermedius and the ventralis oralis posterior thalamic nuclei has been used to treat medically refractory multiple sclerosis tremors with variable results. The aim of this study was to characterize multiple sclerosis tremor at the network level by applying modern connectomic techniques to data from a previously completed single-centre, randomized, single-blind prospective trial of 12 subjects who were treated with unilateral dual-lead (ventralis intermedius + ventralis oralis posterior) thalamic deep brain stimulation. Preoperative T1-weighted MRI and postoperative head CTs were used, along with applied programming settings, to estimate the volume of tissue activated for each patient. The volumes of tissue activated were then used to make voxel-wise and structural connectivity correlations with clinically observed tremor suppression. The volume of the tissue-activated analyses identified the optimal region of stimulation at the ventralis oralis posterior ventralis intermedius border intersecting with the dentato-rubro-thalamic tract. A regression model showed strong connectivity to the supplemental motor area was positively associated with tremor suppression (r = 0.66) in this cohort, whereas connectivity to the primary motor cortex was negatively associated with tremor suppression (r = −0.69), a finding opposite to that seen in ventralis intermedius deep brain stimulation for essential tremor. Comparing the structural connectivity to that of an essential tremor cohort revealed a distinct network that lies anterior to the essential tremor network. Overall, the volumes of tissue activated and connectivity observations converge to suggest that optimal suppression of multiple sclerosis tremor will likely be achieved by directing stimulation more anteriorly toward the ventralis oralis posterior and that a wide field of stimulation synergistically modulating the ventralis oralis posterior and ventralis intermedius nuclei may be more effective than traditional ventralis intermedius deep brain stimulation at suppressing the severe tremors commonly seen in complex tremor syndromes such as multiple sclerosis tremor.
Collapse
Affiliation(s)
- Joshua K. Wong
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
- Correspondence to: Joshua K. Wong, MD 3009 Williston Road Gainesville, FL 32608, USA E-mail:
| | - Bhavana Patel
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
| | | | - Justin D. Hilliard
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Kelly D. Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Michael S. Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
11
|
Kim J, Wichmann T, Inan OT, DeWeerth SP. Analyzing the Effects of Parameters for Tremor Modulation via Phase-Locked Electrical Stimulation on a Peripheral Nerve. J Pers Med 2022; 12:76. [PMID: 35055390 PMCID: PMC8779889 DOI: 10.3390/jpm12010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Non-invasive neuromodulation is a promising alternative to medication or deep-brain stimulation treatment for Parkinson's Disease or essential tremor. In previous work, we developed and tested a wearable system that modulates tremor via the non-invasive, electrical stimulation of peripheral nerves. In this article, we examine the proper range and the effects of various stimulation parameters for phase-locked stimulation. (2) Methods: We recruited nine participants with essential tremor. The subjects performed a bean-transfer task that mimics an eating activity to elicit kinetic tremor while using the wearable stimulation system. We examined the effects of stimulation with a fixed duty cycle, at different stimulation amplitudes and frequencies. The epochs of stimulation were locked to one of four phase positions of ongoing tremor, as measured with an accelerometer. We analyzed stimulation-evoked changes of the frequency and amplitude of tremor. (3) Results: We found that the higher tremor amplitude group experienced a higher rate of tremor power reduction (up to 65%) with a higher amplitude of stimulation when the stimulation was applied at the ±peak of tremor phase. (4) Conclusions: The stimulation parameter can be adjusted to optimize tremor reduction, and this study lays the foundation for future large-scale parameter optimization experiments for personalized peripheral nerve stimulation.
Collapse
Affiliation(s)
- Jeonghee Kim
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843, USA
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA 30322, USA;
- Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center at Emory University, Atlanta, GA 30329, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (O.T.I.); (S.P.D.)
| | - Stephen P. DeWeerth
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (O.T.I.); (S.P.D.)
- Department of Biomedical Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
12
|
Tempaku A. Hybrid surgery of ventral intermediate nucleus thalamotomy using magnetic resonance-guided focus ultrasound and modulation by deep brain stimulation controls bilateral essential tremor. J Rural Med 2022; 17:265-269. [PMID: 36397792 PMCID: PMC9613375 DOI: 10.2185/jrm.2022-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022] Open
Abstract
Objective: Medication-resistant essential tremor requires surgical treatment. Deep brain stimulation to the thalamic ventral intermediate nucleus is an established procedure to
diminish tremors. Tremor on both sides needs dual deep brain stimulation implantation. Nowadays, magnetic resonance-guided focus ultrasound is broaden to treat essential tremor. However, the
safety of magnetic resonance-guided focus ultrasound against dual ventral intermediate is still under discussion, since bilateral thalamotomy causes speech disturbance or ataxia. Patient and Methods: A 66-year-old right-handed man had medication-resistant essential tremor at bilateral upper extremities superior to the left arm. A treatment of magnetic
resonance-guided focus ultrasound was performed by using the ExAblate transcranial system against the left ventral intermediate. One year after magnetic resonance-guided focus ultrasound
treatment, the stereotactic implantation of a deep brain stimulation electrode into the right ventral intermediate was done. Results: Clinical rating scale for tremor in the right arm was reduced from 12 to 0 points by magnetic resonance-guided focus ultrasound against the left ventral intermediate.
The clinical rating scale for tremor in the left arm was reduced from 23 to 1 point by deep brain stimulation to the right ventral intermediate. Conclusion: Hybrid surgery of magnetic resonance-guided focus ultrasound and deep brain stimulation refined bilateral essential tremor, without any neurological deficiencies.
This combined surgery would be useful to manage medication-resistant bilateral essential tremor patients who are carrying some difficulties to introduce deep brain stimulation on the
bilateral side.
Collapse
|
13
|
Wakim AA, Sioda NA, Zhou JJ, Lambert M, Evidente VGH, Ponce FA. Direct targeting of the ventral intermediate nucleus of the thalamus in deep brain stimulation for essential tremor: a prospective study with comparison to a historical cohort. J Neurosurg 2021; 136:662-671. [PMID: 34560647 DOI: 10.3171/2021.2.jns203815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation (DBS) to control symptoms related to essential tremor. The VIM is typically targeted using indirect methods, although studies have reported visualization of the VIM on proton density-weighted MRI. This study compares the outcomes between patients who underwent VIM DBS with direct and indirect targeting. METHODS Between August 2013 and December 2019, 230 patients underwent VIM DBS at the senior author's institution. Of these patients, 92 had direct targeting (direct visualization on proton density 3-T MRI). The remaining 138 patients had indirect targeting (relative to the third ventricle and anterior commissure-posterior commissure line). RESULTS Coordinates of electrodes placed with direct targeting were significantly more lateral (p < 0.001) and anterior (p < 0.001) than those placed with indirect targeting. The optimal stimulation amplitude for devices measured in voltage was lower for those who underwent direct targeting than for those who underwent indirect targeting (p < 0.001). Patients undergoing direct targeting had a greater improvement only in their Quality of Life in Essential Tremor Questionnaire hobby score versus those undergoing indirect targeting (p = 0.04). The direct targeting group had substantially more symptomatic hemorrhages than the indirect targeting group (p = 0.04). All patients who experienced a postoperative hemorrhage after DBS recovered without intervention. CONCLUSIONS Patients who underwent direct VIM targeting for DBS treatment of essential tremor had similar clinical outcomes to those who underwent indirect targeting. Direct VIM targeting is safe and effective.
Collapse
Affiliation(s)
- Andre A Wakim
- 1Department of Medical Education, Creighton University School of Medicine, Phoenix
| | - Natasha A Sioda
- 1Department of Medical Education, Creighton University School of Medicine, Phoenix
| | - James J Zhou
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | - Margaret Lambert
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | | | - Francisco A Ponce
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| |
Collapse
|
14
|
Zali A, Khoshnood RJ, Motavaf M, Salimi A, Akhlaghdoust M, Safari S, Ghajarzadeh M, Mirmosayyeb O. Deep brain stimulation for multiple sclerosis tremor: A systematic review and meta-analysis. Mult Scler Relat Disord 2021; 56:103256. [PMID: 34517191 DOI: 10.1016/j.msard.2021.103256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This systematic review and meta-analysis aims to evaluate efficacy of deep brain stimulation (DBS) in treating MS-related tremor. METHODS We systematically searched PubMed, Web of Science, Embase, Scopus, Google Scholar, and gray literature using a search strategy including the MeSH and text words as (((Brain Stimulations) OR (Deep Brain Stimulations) OR (Deep Brain Stimulations) OR (Deep Brain Brain Stimulation) OR (Deep Electrical Stimulation of the Brain)) AND (Multiple Sclerosis OR Sclerosis, Multiple) OR Sclerosis, Disseminated) OR Disseminated Sclerosis) OR MS (Multiple Sclerosis)) OR Multiple Sclerosis, Acute Fulminating). RESULTS The literature search revealed 1663 articles, 1027 of which remained after removing duplicates. Seventeen articles, published between 1999-2018, were included for the meta-analysis, including overall 168 patients. Follow-up time ranged between 6-62 months. The pooled frequency of tremor improvement among the enrolled patients was 73%, (95% CI:64-83%) (I2=84.1%, p<0.001). The pooled standardized mean difference (SMD) (after -before) was -2.9, (95% CI:-4.8, -0.98) (I2=89.8%, p<0.001). CONCLUSION The results of this systematic review and meta-analysis demonstrate MS-related tremor improvement after DBS.
Collapse
Affiliation(s)
- Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jalili Khoshnood
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Salimi
- Department of Anesthesiology and Critical Care, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Ghajarzadeh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Mirmosayyeb
- Department of Neurology, School of medicine, Isfahan University of medical sciences, Isfahan, Iran, Isfahan Neurosciences Research Center, Isfahan University of medical sciences, Isfahan, Iran
| |
Collapse
|
15
|
Coenen VA, Reisert M. DTI for brain targeting: Diffusion weighted imaging fiber tractography-Assisted deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:47-67. [PMID: 34446250 DOI: 10.1016/bs.irn.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fiber tractography assisted Deep Brain Stimulation (DBS) has been performed by different groups for more than 10 years to now. Groups around the world have adapted initial approaches to currently embrace the fiber tractography technology mainly for treating tremor (DBS and lesions), psychiatric indications (OCD and major depression) and pain (DBS). Despite the advantages of directly visualizing the target structure, the technology is demanding and is vulnerable to inaccuracies especially since it is performed on individual level. In this contribution, we will focus on tremor and psychiatric indications, and will show future applications of sophisticated tractography applications for subthalamic nucleus (STN) DBS surgery and stimulation steering as an example.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Radiology-Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
16
|
Lora-Millan JS, Delgado-Oleas G, Benito-León J, Rocon E. A Review on Wearable Technologies for Tremor Suppression. Front Neurol 2021; 12:700600. [PMID: 34434161 PMCID: PMC8380769 DOI: 10.3389/fneur.2021.700600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
Tremor is defined as a rhythmic, involuntary oscillatory movement of a body part. Although everyone exhibits a certain degree of tremor, some pathologies lead to very disabling tremors. These pathological tremors constitute the most prevalent movement disorder, and they imply severe difficulties in performing activities of daily living. Although tremors are currently managed through pharmacotherapy or surgery, these treatments present significant associated drawbacks: drugs often induce side effects and show decreased effectiveness over years of use, while surgery is a hazardous procedure for a very low percentage of eligible patients. In this context, recent research demonstrated the feasibility of managing upper limb tremors through wearable technologies that suppress tremors by modifying limb biomechanics or applying counteracting forces. Furthermore, recent experiments with transcutaneous afferent stimulation showed significant tremor attenuation. In this regard, this article reviews the devices developed following these tremor management paradigms, such as robotic exoskeletons, soft robotic exoskeletons, and transcutaneous neurostimulators. These works are presented, and their effectiveness is discussed. The article also evaluates the different metrics used for the validation of these devices and the lack of a standard validation procedure that allows the comparison among them.
Collapse
Affiliation(s)
- Julio S. Lora-Millan
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Madrid, Madrid, Spain
| | - Gabriel Delgado-Oleas
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Madrid, Madrid, Spain
- Ingeniería Electrónica, Universidad del Azuay, Cuenca, Ecuador
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| | - Eduardo Rocon
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Ibrahim A, Zhou Y, Jenkins ME, Trejos AL, Naish MD. Real-Time Voluntary Motion Prediction and Parkinson's Tremor Reduction Using Deep Neural Networks. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1413-1423. [PMID: 34255631 DOI: 10.1109/tnsre.2021.3097007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wearable tremor suppression devices (WTSD) have been considered as a viable solution to manage parkinsonian tremor. WTSDs showed their ability to improve the quality of life of individuals suffering from parkinsonian tremor, by helping them to perform activities of daily living (ADL). Since parkinsonian tremor has been shown to be nonstationary, nonlinear, and stochastic in nature, the performance of the tremor models used by WTSDs is affected by their inability to adapt to the nonlinear behaviour of tremor. Another drawback that the models have is their limitation to estimate or predict one step ahead, which introduces delay when used in real time with WTSDs, which compromises performance. To address these issues, this work proposes a deep neural network model that learns the correlations and nonlinearities of tremor and voluntary motion, and is capable of multi-step prediction with minimal delay. A generalized model that is task and user-independent is presented. The model achieved an average estimation percentage accuracy of 99.2%. The average future voluntary motion prediction percentage accuracy with 10, 20, 50, and 100 steps ahead was 97.0%, 94.0%, 91.6%, and 89.9%, respectively, with prediction time as low as 1.5 ms for 100 steps ahead. The proposed model also achieved an average of 93.8% ± 1.5% in tremor reduction when it was tested in an experimental setup in real time. The tremor reduction showed an improvement of 25% over the Weighted Fourier Linear Combiner (WFLC), an estimator commonly used with WTSDs.
Collapse
|
18
|
Makhoul K, Ahdab R, Riachi N, Chalah MA, Ayache SS. Tremor in Multiple Sclerosis-An Overview and Future Perspectives. Brain Sci 2020; 10:E722. [PMID: 33053877 PMCID: PMC7601003 DOI: 10.3390/brainsci10100722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
Tremor is an important and common symptom in patients with multiple sclerosis (MS). It constituted one of the three core features of MS triad described by Charcot in the last century. Tremor could have a drastic impact on patients' quality of life. This paper provides an overview of tremor in MS and future perspectives with a particular emphasis on its epidemiology (prevalence: 25-58%), clinical characteristics (i.e., large amplitude 2.5-7 Hz predominantly postural or intention tremor vs. exaggerated physiological tremor vs. pseudo-rhythmic activity arising from cerebellar dysfunction vs. psychogenic tremor), pathophysiological mechanisms (potential implication of cerebellum, cerebello-thalamo-cortical pathways, basal ganglia, and brainstem), assessment modalities (e.g., tremor rating scales, Stewart-Holmes maneuver, visual tracking, digitized spirography and accelerometric techniques, accelerometry-electromyography coupling), and therapeutic options (i.e., including pharmacological agents, botulinum toxin A injections; deep brain stimulation or thalamotomy reserved for severe, disabling, or pharmaco-resistant tremors). Some suggestions are provided to help overcome the unmet needs and guide future therapeutic and diagnostic studies in this complex disorder.
Collapse
Affiliation(s)
- Karim Makhoul
- Neurology Division, Lebanese American University Medical Center Rizk Hospital, Beirut 113288, Lebanon; (K.M.); (R.A.); (N.R.)
- Gilbert and Rose Mary Chagoury School of Medicine, Lebanese American University, Byblos 4504, Lebanon
| | - Rechdi Ahdab
- Neurology Division, Lebanese American University Medical Center Rizk Hospital, Beirut 113288, Lebanon; (K.M.); (R.A.); (N.R.)
- Gilbert and Rose Mary Chagoury School of Medicine, Lebanese American University, Byblos 4504, Lebanon
- Hamidy Medical Center, Tripoli 1300, Lebanon
| | - Naji Riachi
- Neurology Division, Lebanese American University Medical Center Rizk Hospital, Beirut 113288, Lebanon; (K.M.); (R.A.); (N.R.)
- Gilbert and Rose Mary Chagoury School of Medicine, Lebanese American University, Byblos 4504, Lebanon
| | - Moussa A. Chalah
- Service de Physiologie-Explorations Fonctionnelles, Henri Mondor Hospital, AP-HP, 94010 Créteil, France;
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France
| | - Samar S. Ayache
- Service de Physiologie-Explorations Fonctionnelles, Henri Mondor Hospital, AP-HP, 94010 Créteil, France;
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France
| |
Collapse
|
19
|
Kim J, Wichmann T, Inan OT, Deweerth SP. A Wearable System for Attenuating Essential Tremor Based on Peripheral Nerve Stimulation. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2020; 8:2000111. [PMID: 32596064 PMCID: PMC7313727 DOI: 10.1109/jtehm.2020.2985058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Currently available treatments for kinetic tremor can cause intolerable side effects or be highly invasive and expensive. Even though several studies have shown the positive effects of external feedback (i.e., electrical stimulation) for suppressing tremor, such approaches have not been fully integrated into wearable real-time feedback systems. METHOD We have developed a wireless wearable stimulation system that analyzes upper limb tremor using a three-axis accelerometer and that modulates/attenuates tremor using peripheral-nerve electrical stimulation with adjustable stimulation parameters and a real-time tremor detection algorithm. We outfitted nine subjects with tremor with a wearable system and a set of surface electrodes placed on the skin overlying the radial nerve and tested the effects of stimulation with nine combinations of parameters for open- and closed-loop stimulation on tremor. To quantify the effects of the stimulation, we measured tremor movements, and analyzed the dominant tremor frequency and tremor power. RESULTS Baseline tremor power gradually decreased over the course of 18 stimulation trials. During the last trial, compared with the control trial, the reduction rate of tremor power was 42.17 ± 3.09%. The dominant tremor frequency could be modulated more efficiently by phase-locked closed-loop stimulation. The tremor power was equally reduced by open- and closed-loop stimulation. CONCLUSION Peripheral nerve stimulation significantly affects tremor, and stimulation parameters need to be optimized to modulate tremor metrics. Clinical Impact: This preliminary study lays the foundation for future studies that will evaluate the efficacy of the proposed closed-loop peripheral nerve stimulation method in a larger group of patients with kinetic tremor.
Collapse
Affiliation(s)
- Jeonghee Kim
- Quantitative Neuro Rehabilitation LaboratoryDepartment of Engineering Technology and Industrial DistributionTexas A&M UniversityCollege StationTX77843USA
| | - Thomas Wichmann
- Department of NeurologySchool of MedicineEmory UniversityAtlantaGA30322USA
| | - Omer T. Inan
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Stephen P. Deweerth
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- P.C. Rossin College of Engineering and Applied ScienceLehigh UniversityBethlehemPA18015USA
| |
Collapse
|
20
|
Wu A, Halpern C. Essential Tremor: Deep Brain Stimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Zhou Y, Jenkins ME, Naish MD, Trejos AL. Characterization of Parkinsonian Hand Tremor and Validation of a High-Order Tremor Estimator. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1823-1834. [PMID: 30047891 DOI: 10.1109/tnsre.2018.2859793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent progress in wearable technology has made wearable tremor suppression devices (WTSDs) for Parkinson's patients a potentially viable alternative solution for tremor management. So far, in contrast to wrist and elbow tremor, finger tremors have not been studied in depth despite the huge impact that they have on a patient's daily life. In addition, more evidence has been found showing that the performance of current tremor estimators may be limited by their model order due to the multiple harmonics present in tremor. The aim of this paper is to characterize finger and wrist tremor in both the time and frequency domains, and to propose a high-order tremor estimation algorithm. Tremor magnitudes are reported in the forms of linear acceleration, angular velocity, and angular displacement. The activation of forearm flexor and extensor muscles is also investigated. The frequency analysis shows that Parkinsonian tremors produce oscillations of the hand with pronounced harmonics. At last, a high-order weighted-frequency Fourier linear combiner (WFLC)-based Kalman filter is proposed. The percentage estimation accuracy achieved from the proposed estimator is 96.3 ± 1.7%, showing average improvements of 28.5% and 48.9% over its lower-order counterpart and the WFLC. The proposed estimator shows promise for use in a WTSD.
Collapse
|
22
|
Chang JW, Park CK, Lipsman N, Schwartz ML, Ghanouni P, Henderson JM, Gwinn R, Witt J, Tierney TS, Cosgrove GR, Shah BB, Abe K, Taira T, Lozano AM, Eisenberg HM, Fishman PS, Elias WJ. A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: Results at the 2-year follow-up. Ann Neurol 2018; 83:107-114. [DOI: 10.1002/ana.25126] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Woo Chang
- Department of Neurosurgery Yonsei University College of Medicine; Seoul South Korea
| | - Chang Kyu Park
- Department of Neurosurgery Yonsei University College of Medicine; Seoul South Korea
| | - Nir Lipsman
- Department of Neurosurgery Sunnybrook Health Sciences Centre; Toronto Ontario Canada
| | - Michael L. Schwartz
- Department of Neurosurgery Sunnybrook Health Sciences Centre; Toronto Ontario Canada
| | - Pejman Ghanouni
- Department of Radiology; Stanford University School of Medicine; Stanford CA
| | - Jaimie M. Henderson
- Department of Neurosurgery; Stanford University School of Medicine; Stanford CA
| | - Ryder Gwinn
- Department of Neurosurgery Swedish Neuroscience Institute; Seattle WA
| | - Jennifer Witt
- Department of Neurosurgery Swedish Neuroscience Institute; Seattle WA
| | - Travis S. Tierney
- Department of Neurosurgery; University of Miami School of Medicine, Nicklaus Children's Hospital; Miami FL
| | - G. Rees Cosgrove
- Department of Neurosurgery; Brigham and Women's Hospital; Boston MA
| | - Binit B. Shah
- Department of Neurology; University of Virginia Health Sciences Center; Charlottesville VA
| | - Keiichi Abe
- Department of Neurosurgery; Tokyo Women's Medical University; Tokyo Japan
| | - Takaomi Taira
- Department of Neurosurgery; Tokyo Women's Medical University; Tokyo Japan
| | - Andres M. Lozano
- Department of Neurosurgery; University of Toronto; Toronto Ontario Canada
| | | | | | - W. Jeffrey Elias
- Department of Neurosurgery; University of Virginia Health Sciences Center; Charlottesville VA
| |
Collapse
|
23
|
Lee HM, Howell B, Grill WM, Ghovanloo M. Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System. IEEE Trans Biomed Eng 2017; 65:1095-1106. [PMID: 28829301 DOI: 10.1109/tbme.2017.2741107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.
Collapse
|
24
|
Oliveria SF, Rodriguez RL, Bowers D, Kantor D, Hilliard JD, Monari EH, Scott BM, Okun MS, Foote KD. Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial. Lancet Neurol 2017. [PMID: 28642125 DOI: 10.1016/s1474-4422(17)30166-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Efficacy in previous studies of surgical treatments of refractory multiple sclerosis tremor using lesioning or deep brain stimulation (DBS) has been variable. The aim of this study was to investigate the safety and efficacy of dual-lead thalamic DBS (one targeting the ventralis intermedius-ventralis oralis posterior nucleus border [the VIM lead] and one targeting the ventralis oralis anterior-ventralis oralis posterior border [the VO lead]) for the treatment of multiple sclerosis tremor. METHODS We did a single centre, single-blind, prospective, randomised pilot trial at the University of Florida Center for Movement Disorders and Neurorestoration clinic (Gainesville, FL, USA). We recruited adult patients with a clinical diagnosis of multiple sclerosis tremor refractory to previous medical therapy. Before surgery to implant both leads, we randomly assigned patients (1:1) to receive 3 months of optimised single-lead DBS-either VIM or VO. We did the randomisation with a computer-generated sequence, using three blocks of four patients, and independent members of the Center did the assignment. Patients and all clinicians other than the DBS programming nurse were masked to the choice of lead. Patients underwent surgery 1 month after their baseline visit for implantation of the dual lead DBS system. A pulse generator and two extension cables were implanted in a second surgery 3-4 weeks later. Patients then received an initial 3-month period of continuous stimulation of either the VIM or VO lead followed by blinded safety assessment of their tremor with the Tolosa-Fahn-Marin Tremor Rating Scale (TRS) during optimised VIM or VO lead stimulation at the end of the 3 months. After this visit, both leads were activated in all patients for an additional 3 months, and optimally programmed during serial visits as dictated by a prespecified programming algorithm. At the 6-month follow-up visit, TRS score was measured, and mood and psychological batteries were administered under four stimulation conditions: VIM on, VO on, both on, and both off (the order of testing was chosen by a computer-generated random sequence, assigned by independent members of the centre, and enacted by an unmasked DBS programming nurse). Each of four stimulation settings were tested over 4 consecutive days, with stimulation settings held constant for at least 12 h before testing. The primary outcome was change in mean total TRS score at the 6-month postoperative assessment with both leads activated, compared with the preoperative baseline mean TRS score. Analysis was by intention to treat. Safety was analysed in all patients who received the surgical implantation except in one patient who discontinued before the safety assessment. This trial is registered with ClinicalTrials.gov, number NCT00954421. FINDINGS Between Jan 16, 2007, and Dec 17, 2013, we enrolled 12 patients who were randomly assigned either to 3 initial months of VIM-only or VO-only stimulation. One patient from the VO-only group developed an infection necessitating DBS explantation, and was excluded from the assessment of the primary outcome. Compared with the mean baseline TRS score of 57·0 (SD 10·2), the mean score at 6 months decreased to 40·1 (17·6), -29·6% reduction; t=-0·28, p=0·03. Three of 11 patients did not respond to surgical intervention. One patient died suddenly 2 years after surgery, but this was judged to be unrelated to DBS implantation. Serious adverse events included a superficial wound infection in one patient that resolved with antibiotic therapy, and transient altered mental status and late multiple sclerosis exacerbation in another patient. The most common non-serious adverse events were headache and fatigue. INTERPRETATION Dual lead thalamic DBS might be a safe and effective option for improving severe, refractory multiple sclerosis tremor. Larger studies are necessary to show whether this technique is widely applicable, safe in the long-term, and effective in treating multiple sclerosis tremor or other severe tremor disorders. FUNDING US National Institutes of Health, the Cathy Donnellan, Albert E Einstein, and Birdie W Einstein Fund, and the William Merz Professorship.
Collapse
Affiliation(s)
- Seth F Oliveria
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA.
| | - Ramon L Rodriguez
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | | | - Justin D Hilliard
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Erin H Monari
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Bonnie M Scott
- Department of Clinical and Health Psychology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA; Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Caproni S, Colosimo C. Movement disorders and cerebrovascular diseases: from pathophysiology to treatment. Expert Rev Neurother 2016; 17:509-519. [DOI: 10.1080/14737175.2017.1267566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Stefano Caproni
- Dipartimento di Neuroscienze, Azienda Ospedaliero-Universitaria Santa Maria, Terni, Italy
| | - Carlo Colosimo
- Dipartimento di Neuroscienze, Azienda Ospedaliero-Universitaria Santa Maria, Terni, Italy
| |
Collapse
|
26
|
Pützer M, Wokurek W, Moringlane JR. Evaluation of Phonatory Behavior and Voice Quality in Patients with Multiple Sclerosis Treated with Deep Brain Stimulation. J Voice 2016; 31:483-489. [PMID: 27913092 DOI: 10.1016/j.jvoice.2016.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The effect of deep brain stimulation (DBS) on phonatory behavior and voice quality in eight patients with multiple sclerosis (MS) was examined instrumentally and perceptually. The acoustic signals of vowel productions obtained from patients (produced with and without stimulation) and from a group of 16 healthy control speakers were analyzed to prove statistically the changes of phonatory behavior and voice quality. STUDY DESIGN This is a randomized study. METHODS Firstly, a new parametrization was used to determine phonatory behavior. Secondly, a perceptual evaluation of voice quality of the same speech material was performed. RESULTS With stimulation, phonation has a greater tendency to be strained. The results of perceptual evaluation support this strained phonation behavior under stimulation, resulting in a smaller degree of breathiness ratings of all raters. Without stimulation, an impaired and partly disturbed adduction of the vocal folds can be shown. These findings are also supported in the perceptual experiment providing a higher degree of hoarseness ratings of all raters for these signals. CONCLUSIONS High-frequency electrical impulses to the thalamus in patients with MS influence the phonatory behavior of their vocal folds. The results suggest the need for long-term monitoring of phonatory behavior during DBS to initiate adequate treatments without delay.
Collapse
Affiliation(s)
- Manfred Pützer
- Language Science and Technology, Saarland University, Saarbrücken, Germany.
| | - Wolfgang Wokurek
- Institute for Natural Language Processing, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
27
|
Wagle Shukla A, Okun MS. State of the Art for Deep Brain Stimulation Therapy in Movement Disorders: A Clinical and Technological Perspective. IEEE Rev Biomed Eng 2016; 9:219-33. [PMID: 27411228 DOI: 10.1109/rbme.2016.2588399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation (DBS) therapy is a widely used brain surgery that can be applied for many neurological and psychiatric disorders. DBS is American Food and Drug Administration approved for medication refractory Parkinson's disease, essential tremor and dystonia. Although DBS has shown consistent success in many clinical trials, the therapy has limitations and there are well-recognized complications. Thus, only carefully selected patients are ideal candidates for this surgery. Over the last two decades, there have been significant advances in clinical knowledge on DBS. In addition, the surgical techniques and technology related to DBS has been rapidly evolving. The goal of this review is to describe the current status of DBS in the context of movement disorders, outline the mechanisms of action for DBS in brief, discuss the standard surgical and imaging techniques, discuss the patient selection and clinical outcomes in each of the movement disorders, and finally, introduce the recent advancements from a clinical and technological perspective.
Collapse
|
28
|
Abstract
Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expertcommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features.
Collapse
Affiliation(s)
| | - Michael S Okun
- b Department of Neurology , University of Florida Center for Movement Disorders and Neurorestoration , Gainesville FL , USA
| |
Collapse
|
29
|
Kwon DY. Movement Disorders Following Cerebrovascular Lesions: Etiology, Treatment Options and Prognosis. J Mov Disord 2016; 9:63-70. [PMID: 27240807 PMCID: PMC4886206 DOI: 10.14802/jmd.16008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Post-stroke movement disorders are uncommon, but comprise an important part of secondary movement disorders. These exert variable and heterogeneous clinical courses according to the stroke lesion and its temporal relationships. Moreover, the predominant stroke symptoms hinder a proper diagnosis in clinical practice. This article describes the etiology, treatment options and prognosis of post-stroke movement disorders.
Collapse
Affiliation(s)
- Do-Young Kwon
- Department of Neurology, Korea University College of Medicine, Ansan Hospital, Ansan, Korea
| |
Collapse
|
30
|
Choi SM. Movement Disorders Following Cerebrovascular Lesions in Cerebellar Circuits. J Mov Disord 2016; 9:80-8. [PMID: 27240809 PMCID: PMC4886204 DOI: 10.14802/jmd.16004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/04/2016] [Accepted: 03/30/2016] [Indexed: 12/29/2022] Open
Abstract
Cerebellar circuitry is important to controlling and modifying motor activity. It conducts the coordination and correction of errors in muscle contractions during active movements. Therefore, cerebrovascular lesions of the cerebellum or its pathways can cause diverse movement disorders, such as action tremor, Holmes’ tremor, palatal tremor, asterixis, and dystonia. The pathophysiology of abnormal movements after stroke remains poorly understood. However, due to the current advances in functional neuroimaging, it has recently been described as changes in functional brain networks. This review describes the clinical features and pathophysiological mechanisms in different types of movement disorders following cerebrovascular lesions in the cerebellar circuits.
Collapse
Affiliation(s)
- Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
31
|
Voice Tremor in Patients With Essential Tremor: Effects of Deep Brain Stimulation of Caudal Zona Incerta. J Voice 2016; 30:228-33. [DOI: 10.1016/j.jvoice.2015.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/02/2015] [Indexed: 11/23/2022]
|
32
|
Falowski SM, Bakay RAE. Revision Surgery of Deep Brain Stimulation Leads. Neuromodulation 2016; 19:443-50. [PMID: 26899800 DOI: 10.1111/ner.12404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is widely used for various movement disorders. DBS lead revisions are becoming more common as the indications and number of cases increases. METHODS Patients undergoing DBS lead revisions at a single institution were retrospectively analyzed based on diagnosis, reason for revision, where the lead was relocated, and surgical technique. RESULTS We reviewed 497 consecutive DBS lead placements and found that there was need for 25 DBS lead revisions with at least six months of follow-up. Loss of efficacy and development of adverse effects over time were the most common reasons for lead revision across all diagnosis. Lead malfunction was the least common. Ten patients requiring 19 DBS lead revisions that underwent their original surgery at another institution were also analyzed. Surgical technique dictated replacing with a new lead while maintaining brain position and tract with the old lead until final placement. Methods to seal exposed wire were developed. CONCLUSION Surgical technique, as well as variable options are important in lead revision and can be dictated based on reason for revision. Over time patients who have had adequate relief with DBS placement may experience loss of efficacy and development of adverse effects requiring revision of the DBS lead to maintain its effects.
Collapse
Affiliation(s)
- Steven M Falowski
- Department of Neurosurgery, St. Lukes University Health Network, Bethlehem, PA, USA
| | - Roy A E Bakay
- Department of Neurosurgery, Rush University Medical College, Chicago, IL, USA
| |
Collapse
|
33
|
Abstract
Tremors are commonly encountered in clinical practice and are the most common movement disorders seen. It is defined as a rhythmic, involuntary oscillatory movement of a body part around one or more joints. In the majority of the population, tremor tends to be mild. They have varying etiology; hence, classifying them appropriately helps in identifying the underlying cause. Clinically, tremor is classified as occurring at rest or action. They can also be classified based on their frequency, amplitude, and body part involved. Parkinsonian tremor is the most common cause of rest tremor. Essential tremor (ET) and enhanced physiological tremor are the most common causes of action tremor. Isolated head tremor is more likely to be dystonic rather than ET. Isolated voice tremor could be considered to be a spectrum of ET. Psychogenic tremor is not a diagnosis of exclusion; rather, demonstration of various clinical signs is needed to establish the diagnosis. Severity of tremor and response to treatment can be assessed using clinical rating scales as well as using electrophysiological measurements. The treatment of tremor is symptomatic. Medications are effective in half the cases of essential hand tremor and in refractory patients; deep brain stimulation is an alternative therapy. Midline tremors benefit from botulinum toxin injections. It is also the treatment of choice in dystonic tremor and primary writing tremor.
Collapse
Affiliation(s)
- Soumya Sharma
- Department of Neurology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| |
Collapse
|
34
|
Cislaghi G, Capiluppi E, Saleh C, Romano L, Servello D, Mariani C, Porto M. Bilateral globus pallidus stimulation in Westphal variant of huntington disease. Neuromodulation 2015; 17:502-5. [PMID: 24024832 DOI: 10.1111/ner.12098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giuliana Cislaghi
- Department of Clinical Sciences, L. Sacco Hospital, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7519-40. [PMID: 26154659 PMCID: PMC4515672 DOI: 10.3390/ijerph120707519] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/12/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is an essential trace element necessary for physiological processes that support development, growth and neuronal function. Secondary to elevated exposure or decreased excretion, Mn accumulates in the basal ganglia region of the brain and may cause a parkinsonian-like syndrome, referred to as manganism. The present review discusses the advances made in understanding the essentiality and neurotoxicity of Mn. We review occupational Mn-induced parkinsonism and the dynamic modes of Mn transport in biological systems, as well as the detection and pharmacokinetic modeling of Mn trafficking. In addition, we review some of the shared similarities, pathologic and clinical distinctions between Mn-induced parkinsonism and Parkinson’s disease. Where possible, we review the influence of Mn toxicity on dopamine, gamma aminobutyric acid (GABA), and glutamate neurotransmitter levels and function. We conclude with a survey of the preventive and treatment strategies for manganism and idiopathic Parkinson’s disease (PD).
Collapse
|
36
|
Abstract
Deep brain stimulation of the thalamus (and especially the ventral intermediate nucleus) does not significantly improve a drug-resistant, disabling cerebellar tremor. The dentato-rubro-olivary tract (Guillain-Mollaret triangle, including the red nucleus) is a subcortical loop that is critically involved in tremor genesis. We report the case of a 48-year-old female patient presenting with generalized cerebellar tremor caused by alcohol-related cerebellar degeneration. Resistance to pharmacological treatment and the severity of the symptoms prompted us to investigate the effects of bilateral deep brain stimulation of the red nucleus. Intra-operative microrecordings of the red nucleus revealed intense, irregular, tonic background activity but no rhythmic components that were synchronous with upper limb tremor. The postural component of the cerebellar tremor disappeared during insertion of the macro-electrodes and for a few minutes after stimulation, with no changes in the intentional (kinetic) component. Stimulation per se did not reduce postural or intentional tremor and was associated with dysautonomic symptoms (the voltage threshold for which was inversed related to the stimulation frequency). Our observations suggest that the red nucleus is (1) an important centre for the genesis of cerebellar tremor and thus (2) a possible target for drug-refractory tremor. Future research must determine how neuromodulation of the red nucleus can best be implemented in patients with cerebellar degeneration.
Collapse
|
37
|
Schrock LE, Mink JW, Woods DW, Porta M, Servello D, Visser-Vandewalle V, Silburn PA, Foltynie T, Walker HC, Shahed-Jimenez J, Savica R, Klassen BT, Machado AG, Foote KD, Zhang JG, Hu W, Ackermans L, Temel Y, Mari Z, Changizi BK, Lozano A, Auyeung M, Kaido T, Agid Y, Welter ML, Khandhar SM, Mogilner AY, Pourfar MH, Walter BL, Juncos JL, Gross RE, Kuhn J, Leckman JF, Neimat JA, Okun MS. Tourette syndrome deep brain stimulation: a review and updated recommendations. Mov Disord 2014; 30:448-71. [PMID: 25476818 DOI: 10.1002/mds.26094] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022] Open
Abstract
Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients.
Collapse
Affiliation(s)
- Lauren E Schrock
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Unusual complications of deep brain stimulation. Neurosurg Rev 2014; 38:245-52; discussion 252. [DOI: 10.1007/s10143-014-0588-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/01/2014] [Accepted: 06/22/2014] [Indexed: 11/26/2022]
|
39
|
Bendersky D, Ajler P, Yampolsky C. [The use of neuromodulation for the treatment of tremor]. Surg Neurol Int 2014; 5:S232-46. [PMID: 25165613 PMCID: PMC4138824 DOI: 10.4103/2152-7806.137944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tremor may be a disabling disorder and pharmacologic treatment is the first-line therapy for these patients. Nevertheless, this treatment may lead to a satisfactory tremor reduction in only 50% of patients with essential tremor. Thalamotomy was the treatment of choice for tremor refractory to medical therapy until deep brain stimulation (DBS) of the ventral intermedius nucleus (Vim) of the thalamus has started being used. Nowadays, thalamotomy is rarely performed. METHODS This article is a non-systematic review of the indications, results, programming parameters and surgical technique of DBS of the Vim for the treatment of tremor. RESULTS In spite of the fact that it is possible to achieve similar clinical results using thalamotomy or DBS of the Vim, the former causes more adverse effects than the latter. Furthermore, DBS can be used bilaterally, whereas thalamotomy has a high risk of causing disartria when it is performed in both sides. DBS of the Vim achieved an adequate tremor improvement in several series of patients with tremor caused by essential tremor, Parkinson's disease or multiple sclerosis. Besides the Vim, there are other targets, which are being used by some authors, such as the zona incerta and the prelemniscal radiations. CONCLUSION DBS of the Vim is a useful treatment for disabling tremor refractory to medical therapy. It is essential to carry out an accurate patient selection as well as to use a proper surgical technique. The best stereotactic target for tremor is still unknown, although the Vim is the most used one.
Collapse
Affiliation(s)
- Damián Bendersky
- Department of Neurosurgery, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Ajler
- Department of Neurosurgery, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudio Yampolsky
- Department of Neurosurgery, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
40
|
Lipsman N, Mainprize TG, Schwartz ML, Hynynen K, Lozano AM. Intracranial applications of magnetic resonance-guided focused ultrasound. Neurotherapeutics 2014; 11:593-605. [PMID: 24850310 PMCID: PMC4121456 DOI: 10.1007/s13311-014-0281-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ability to focus acoustic energy through the intact skull on to targets millimeters in size represents an important milestone in the development of neurotherapeutics. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, noninvasive method, which--under real-time imaging and thermographic guidance--can be used to generate focal intracranial thermal ablative lesions and disrupt the blood-brain barrier. An established treatment for bone metastases, uterine fibroids, and breast lesions, MRgFUS has now been proposed as an alternative to open neurosurgical procedures for a wide variety of indications. Studies investigating intracranial MRgFUS range from small animal preclinical experiments to large, late-phase randomized trials that span the clinical spectrum from movement disorders, to vascular, oncologic, and psychiatric applications. We review the principles of MRgFUS and its use for brain-based disorders, and outline future directions for this promising technology.
Collapse
Affiliation(s)
- Nir Lipsman
- Division of Neurosurgery, University Health Network, University of Toronto, 399 Bathurst Street, 4W-431, Toronoto, M5T 2S8, Canada,
| | | | | | | | | |
Collapse
|
41
|
Treating post-traumatic tremor with deep brain stimulation: Report of five cases. Parkinsonism Relat Disord 2013; 19:1100-5. [DOI: 10.1016/j.parkreldis.2013.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 07/02/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022]
|
42
|
Moscovich M, Morishita T, Foote KD, Favilla CG, Chen ZP, Okun MS. Effect of lead trajectory on the response of essential head tremor to deep brain stimulation. Parkinsonism Relat Disord 2013; 19:789-94. [PMID: 23742969 DOI: 10.1016/j.parkreldis.2013.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 03/12/2013] [Accepted: 03/22/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Essential tremor (ET) is one of the most common movement disorders. Normally ET affects the distal upper extremities, but it can also be accompanied by midline symptoms. Ventralis intermedius (VIM) thalamic deep brain stimulation (DBS) has been shown to be effective in reducing hand tremor, but its effects on head tremor have been inconsistent. METHODS Twenty-nine DBS patients with a diagnosis of ET met inclusion criteria. All implantations targeted VIM. The factors examined included age, gender, disease duration, presence or absence of head tremor, handedness, and the Fahn-Tolosa-Marin rating scale (TRS). This analysis specifically focused on TRS head tremor sub-scores at baseline, 6 months and 12 months post-DBS. Additionally, DBS lead entry angles were examined. RESULTS Twenty-three ET patients underwent unilateral DBS and six underwent staged bilateral DBS. At both 6 and 12 months following DBS, stimulation resulted in diminished head tremor (ON vs OFF; p < 0.0001). The most important predictor of head tremor suppression was the entry angle of the DBS lead in the sagittal projection relative to the AC-PC axial plane (AC-PC angle). Head tremor reduction was greater among more vertical AC-PC angles. CONCLUSION A more vertical AC-PC angle of the DBS lead trajectory was associated with improved head tremor suppression. Further studies will be necessary to confirm this potentially important finding.
Collapse
Affiliation(s)
- Mariana Moscovich
- Department of Neurology, University of Florida, Center for Movement Disorders & Neurorestoration, McKnight Brain Institute, Gainesville, FL, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Movement disorders can occur as primary (idiopathic) or genetic disease, as a manifestation of an underlying neurodegenerative disorder, or secondary to a wide range of neurological or systemic diseases. Cerebrovascular diseases represent up to 22% of secondary movement disorders, and involuntary movements develop after 1-4% of strokes. Post-stroke movement disorders can manifest in parkinsonism or a wide range of hyperkinetic movement disorders including chorea, ballism, athetosis, dystonia, tremor, myoclonus, stereotypies, and akathisia. Some of these disorders occur immediately after acute stroke, whereas others can develop later, and yet others represent delayed-onset progressive movement disorders. These movement disorders have been encountered in patients with ischaemic and haemorrhagic strokes, subarachnoid haemorrhage, cerebrovascular malformations, and dural arteriovenous fistula affecting the basal ganglia, their connections, or both.
Collapse
Affiliation(s)
- Raja Mehanna
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
44
|
Gurey LE, Sinclair CF, Blitzer A. A new paradigm for the management of essential vocal tremor with botulinum toxin. Laryngoscope 2013; 123:2497-501. [DOI: 10.1002/lary.24073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 12/19/2012] [Accepted: 02/02/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Lowell E. Gurey
- New York Center for Voice and Swallowing Disorders; St. Luke's Roosevelt Medical Center; New York; New York; U.S.A
| | - Catherine F. Sinclair
- New York Center for Voice and Swallowing Disorders; St. Luke's Roosevelt Medical Center; New York; New York; U.S.A
| | - Andrew Blitzer
- New York Center for Voice and Swallowing Disorders; St. Luke's Roosevelt Medical Center; New York; New York; U.S.A
| |
Collapse
|
45
|
Lozano A, Lipsman N. Probing and Regulating Dysfunctional Circuits Using Deep Brain Stimulation. Neuron 2013; 77:406-24. [DOI: 10.1016/j.neuron.2013.01.020] [Citation(s) in RCA: 423] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 01/04/2023]
|
46
|
Morrison S, Sosnoff JJ, Sandroff BM, Pula JH, Motl RW. The dynamics of finger tremor in multiple sclerosis is affected by whole body position. J Neurol Sci 2013; 324:84-9. [PMID: 23140807 DOI: 10.1016/j.jns.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/05/2012] [Accepted: 10/12/2012] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is a disease that results in widespread damage to the nervous system. One consequence of this disease is the emergence of enhanced tremor. This study was designed to (1) compare the tremor responses of persons with MS to that of healthy adults and to (2) examine the impact of whole body position (i.e., seated/standing) on tremor. Bilateral postural tremor was recorded using accelerometers attached to each index finger. Results revealed some similarity of tremor between groups in regard to the principal features (e.g., presence of peaks in similar frequency ranges). However, significant differences were observed with tremor for the MS persons being of greater amplitude, more regular (lower ApEn) and more strongly coupled across limbs compared to the elderly. The effects of body position were consistent across all subjects, with tremor increasing significantly from sitting-to-standing. However, the tremor increase for the MS group was greater than the elderly. Overall, the tremor for MS group was negatively affected by both this disease process and the nature of the task being performed. This latter result indicates that tremor does not simply reflect the feed-forward output of the neuromotor system but that it is influenced by the task constraints.
Collapse
Affiliation(s)
- S Morrison
- School of Physical Therapy, Old Dominion University, VA 23529, United States.
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
Essential tremor is the most common tremor disorder and is characterized by a postural and kinetic tremor. Most commonly, the disease involves the upper extremities, although other body parts may be affected. Essential tremor is seen most often in adults and may markedly limit abilities to perform daily activities. Medications often fail to control the tremor adequately. In the past, ventral intermediate nucleus of the thalamus (VIM) thalamotomy was the surgery of choice for medication-resistant patients with disabling tremor. With technological advances, deep brain stimulation (DBS) to the VIM has replaced thalamotomy as the operation of choice for patients with essential tremor, given the heightened risk of permanent neurological deficits associated with ablative surgery. Multiple studies have demonstrated that unilateral VIM DBS has significant short- and long-term benefits for targeted tremor. Unilateral VIM DBS may also improve head and voice tremor, although most commonly bilateral stimulation is required for adequate control. However, bilateral thalamic stimulation is associated with a higher incidence of neurological deficits, particularly speech and gait problems. Investigations of DBS of other brain target areas for essential tremor, such as the posterior subthalamic area and the subthalamic nucleus, are ongoing.
Collapse
Affiliation(s)
- Jules M Nazzaro
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, USA; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
49
|
Nazzaro JM, Pahwa R, Lyons KE. Long-term benefits in quality of life after unilateral thalamic deep brain stimulation for essential tremor. J Neurosurg 2012; 117:156-61. [DOI: 10.3171/2012.3.jns112316] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The goal of this study was to evaluate short- and long-term benefits in quality of life (QOL) after unilateral deep brain stimulation (DBS) for essential tremor (ET).
Methods
Patients who received unilateral DBS of the ventral intermediate nucleus of the thalamus between 1997 and 2010 and who had at least 1 follow-up evaluation at least 1 year after surgery were included. Their QOL was assessed with the Parkinson Disease Questionnaire-39 (PDQ-39), and ET was measured with the Fahn-Tolosa-Marin tremor rating scale (TRS) prior to surgery and then postoperatively with the stimulation in the on mode.
Results
Ninety-one patients (78 at 1 year; 42 at 2–7 years [mean 4 years]; and 22 at > 7–12 years [mean 9 years]) were included in the analysis. The TRS total, targeted tremor, and activities of daily living (ADL) scores were significantly improved compared with presurgical scores up to 12 years. The PDQ-39 ADL, emotional well-being, stigma, and total scores were significantly improved up to 7 years after surgery compared with presurgical scores. At the longest follow-up, only the PDQ-39 stigma score was significantly improved, and the PDQ-39 mobility score was significantly worsened.
Conclusions
Unilateral thalamic stimulation significantly reduces ET and improves ADL scores for up to 12 years after surgery, as measured by the TRS. The PDQ-39 total score and the domains of ADL, emotional well-being, and stigma were significantly improved up to 7 years. Although scores were improved compared with presurgery, other than stigma, these benefits did not remain significant at the longest (up to 12 years) follow-up, probably related in part to changes due to aging and comorbidities.
Collapse
Affiliation(s)
- Jules M. Nazzaro
- 1Departments of Neurosurgery,
- 2Neurology, and
- 3Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | |
Collapse
|
50
|
Franco V, Turner RS. Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis 2012; 47:114-25. [PMID: 22498034 PMCID: PMC3358361 DOI: 10.1016/j.nbd.2012.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/01/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022] Open
Abstract
The diverse and independently-varying signs of Parkinson's disease (PD) are often attributed to one simple mechanism: degeneration of the dopaminergic innervation of the posterolateral striatum. However, growing recognition of the dopamine (DA) loss and other pathology in extra-striatal brain regions has led to uncertainty whether loss of DA in the striatum is sufficient to cause parkinsonian signs. We tested this hypothesis by infusing cis-flupenthixol (cis-flu; a broad-spectrum D1/D2 receptor antagonist) into different regions of the macaque putamen (3 hemispheres of 2 monkeys) while the animal performed a visually-cued choice reaction time task in which visual cues indicated the arm to reach with and the peripheral target to contact to obtain food reward. Following reward delivery, the animal was required to self-initiate release of the peripheral target and return of the chosen hand to its home position (i.e., without the benefit of external sensory cues or immediate rewards). Infusions of cis-flu at 15 of 26 sites induced prolongations of reaction time (9 of 15 cases), movement duration (6 cases), and/or dwell time of the hand at the peripheral target (8 cases). Dwell times were affected more severely (+95%) than visually-triggered reaction times or movement durations (+25% and +15%, respectively). Specifically, the animal's hand often 'froze' at the peripheral target for up to 25-s, similar to the akinetic freezing episodes observed in PD patients. Across injections, slowing of self-initiation did not correlate in severity with prolongations of visually-triggered reaction time or movement duration, although the latter two were correlated with each other. Episodes of slowed self-initiation appeared primarily in the arm contralateral to the injected hemisphere and were not associated with increased muscle co-contraction or global alterations in behavioral state (i.e., inattention or reduced motivation), consistent with the idea that these episodes reflected a fundamental impairment of movement initiation. We found no evidence for an anatomic topography within the putamen for the effects elicited. We conclude that acute focal blockade of DA transmission in the putamen is sufficient to induce marked akinesia-like impairments. Furthermore, different classes of impairments can be induced independently, suggesting that specific parkinsonian signs have unique pathophysiologic substrates.
Collapse
Affiliation(s)
- Vanessa Franco
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| | - Robert S. Turner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
- Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| |
Collapse
|