1
|
Rovelli V, Zuvadelli J, Piotto M, Scopari A, Dionigi AR, Ercoli V, Paci S, Cefalo G, Salvatici E, Banderali G. L-alanine supplementation in Pompe disease (IOPD): a potential therapeutic implementation for patients on ERT? A case report. Ital J Pediatr 2022; 48:48. [PMID: 35346323 PMCID: PMC8962230 DOI: 10.1186/s13052-022-01249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pompe disease (PD) is a disorder of glycogen metabolism conditioning a progressive and life conditioning myopathy. Enzyme replacement therapy (ERT) is currently the best treatment option for PD, but is not resolutive. While other potential therapeutic approaches have been reported before, these have never been tried as co- treatments. L-alanine oral supplementation (LAOS) has been proven to reduce muscle breakdown: we hereby report the first case of supplementation on a PD patient on ERT.
Case presentation
F. is a 9 y.o. infantile onset Pompe Disease (IOPD) girl ERT-treated since age 1 developing a progressive myopathy. We started her on LAOS and performed assessments at baseline, 6 and 9 months. At baseline, F.’s weight, height and BMI were within normal ranges, while body composition showed low fat mass -FM and high resting energy expenditure—REE levels. After LAOS, a progressive FM increase and REE reduction could be observed both at 6 and 9 months.
Conclusions
ERT is not curative for PD patients thus additional treatments could be considered to improve outcomes. Our patient showed physical signs of inability to accumulate energy when exclusively on ERT, while FM increase and REE reduction occurred when supplemented with LAOS, likely reflecting anabolic pathways’ implementation. This is the first case reporting potential LAOS benefits in PD-on ERT patients. Longitudinal case control studies are yet needed to evaluate possible efficacy of combined LAOS And ERT treatment in PD patients.
Collapse
|
2
|
Karadağ Gürel A, Gürel S. To detect potential pathways and target genes in infantile Pompe patients using computational analysis. BIOIMPACTS 2022; 12:89-105. [PMID: 35411297 PMCID: PMC8905584 DOI: 10.34172/bi.2022.23467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/21/2022]
Abstract
![]()
Introduction: Pompe disease (PD) is a disease caused by pathogenic variations in the GAA gene known as glycogen storage disease type II, characterized by heart hypertrophy, respiratory failure, and muscle hypotonia, leading to premature death if not treated early. The only treatment option, enzyme replacement therapy (ERT), significantly improves the prognosis for some patients while failing to help others. In this study, the determination of key genes involved in the response to ERT and potential molecular mechanisms were investigated.
Methods: Gene Expression Omnibus (GEO) data, accession number GSE38680, containing samples of biceps and quadriceps muscles was used. Expression array data were analyzed using BRB-Array Tools. Biceps group patients did not receive ERT, while quadriceps received treatment with rhGAA at 0, 12, and 52 weeks. Differentially expressed genes (DEGs) were deeply analyzed by DAVID, GO, KEGG and STRING online analyses, respectively.
Results: A total of 1727 genes in the biceps group and 1198 genes in the quadriceps group are expressed differently. It was observed that DEGs were enriched in the group that responded poorly to ERT in the 52nd week. Genes frequently changed in the weak response group; the expression of 530 genes increased and 1245 genes decreased compared to 0 and 12 weeks. The GO analysis demonstrated that the DEGs were mainly involved in vascular smooth muscle contraction, lysosomes, autophagy, regulation of actin cytoskeleton, inflammatory response, and the WNT signaling pathway. We also discovered that the WNT signaling pathway is highly correlated with DEGs. Several DEGs, such as WNT11, WNT5A, CTNNB1, M6PR, MYL12A, VCL, TLN, FYN, YES1, and BCL2, may be important in elucidating the mechanisms underlying poor response to ERT.
Conclusion: Early diagnosis and treatment of PD are very important for the clinic of the disease. As a result, it suggests that the enriched genes and new pathways emerging as a result of the analysis may help identify the group that responds poorly to treatment and the outcome of the treatment. Obtained genes and pathways in neonatal screening will guide diagnosis and treatment.
Collapse
Affiliation(s)
- Aynur Karadağ Gürel
- Department of Medical Biology, School of Medicine, Usak University, Usak, Turkey
| | - Selçuk Gürel
- Department of Pediatrics, School of Medicine, Bahcesehir University, İstanbul, Turkey
| |
Collapse
|
3
|
Bragato C, Blasevich F, Ingenito G, Mantegazza R, Maggi L. Therapeutic efficacy of 3,4-Diaminopyridine phosphate on neuromuscular junction in Pompe disease. Biomed Pharmacother 2021; 137:111357. [PMID: 33724918 DOI: 10.1016/j.biopha.2021.111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
Abstract
3,4-Diaminopyridine (3,4-DAP) and its phosphate form, 3,4-DAPP have been used efficiently in the past years to treat muscular weakness in myasthenic syndromes with neuromuscular junctions (NMJs) impairment. Pompe disease (PD), an autosomal recessive metabolic disorder due to a defect of the lysosomal enzyme α-glucosidase (GAA), presents some secondary symptoms that are related to neuromuscular transmission dysfunction, resulting in endurance and strength failure. In order to evaluate whether 3,4-DAPP could have a beneficial effect on this pathology, we took advantage of a transient zebrafish PD model that we previously generated and characterized. We investigated presynaptic and postsynaptic structures, NMJs at the electron microscopy level, and zebrafish behavior, before and after treatment with 3,4-DAPP. After drug administration, we observed an increase in the number of acetylcholine receptors an increment in the percentage of NMJs with normal structure and amelioration in embryo behavior, with recovery of typical movements that were lost in the embryo PD model. Our results revealed early NMJ impairment in Pompe zebrafish model with improvement after administration of 3,4-DAPP, suggesting its potential use as symptomatic drug in patients with Pompe disease.
Collapse
Affiliation(s)
- Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy.
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | | | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| |
Collapse
|
4
|
Fusco AF, McCall AL, Dhindsa JS, Zheng L, Bailey A, Kahn AF, ElMallah MK. The Respiratory Phenotype of Pompe Disease Mouse Models. Int J Mol Sci 2020; 21:ijms21062256. [PMID: 32214050 PMCID: PMC7139647 DOI: 10.3390/ijms21062256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.
Collapse
|
5
|
Bragato C, Carra S, Blasevich F, Salerno F, Brix A, Bassi A, Beltrame M, Cotelli F, Maggi L, Mantegazza R, Mora M. Glycogen storage in a zebrafish Pompe disease model is reduced by 3-BrPA treatment. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165662. [PMID: 31917327 DOI: 10.1016/j.bbadis.2020.165662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Pompe disease (PD) is an autosomal recessive muscular disorder caused by deficiency of the glycogen hydrolytic enzyme acid α-glucosidase (GAA). The enzyme replacement therapy, currently the only available therapy for PD patients, is efficacious in improving cardiomyopathy in the infantile form, but not equally effective in the late onset cases with involvement of skeletal muscle. Correction of the skeletal muscle phenotype has indeed been challenging, probably due to concomitant dysfunctional autophagy. The increasing attention to the pathogenic mechanisms of PD and the search of new therapeutic strategies prompted us to generate and characterize a novel transient PD model, using zebrafish. Our model presented increased glycogen content, markedly altered motor behavior and increased lysosome content, in addition to altered expression of the autophagy-related transcripts and proteins Beclin1, p62 and Lc3b. Furthermore, the model was used to assess the beneficial effects of 3-bromopyruvic acid (3-BrPA). Treatment with 3-BrPA induced amelioration of the model phenotypes regarding glycogen storage, motility behavior and autophagy-related transcripts and proteins. Our zebrafish PD model recapitulates most of the defects observed in human patients, proving to be a powerful translational model. Moreover, 3-BrPA unveiled to be a promising compound for treatment of conditions with glycogen accumulation.
Collapse
Affiliation(s)
- Cinzia Bragato
- PhD program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy; Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan, 20149, Italy
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Franco Salerno
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Alessia Brix
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Monica Beltrame
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, 20133, Italy
| | - Franco Cotelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, 20133, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| |
Collapse
|
6
|
Pena LD, Barohn RJ, Byrne BJ, Desnuelle C, Goker-Alpan O, Ladha S, Laforêt P, Mengel KE, Pestronk A, Pouget J, Schoser B, Straub V, Trivedi J, Van Damme P, Vissing J, Young P, Kacena K, Shafi R, Thurberg BL, Culm-Merdek K, van der Ploeg AT. Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset Pompe disease: A phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul Disord 2019; 29:167-186. [DOI: 10.1016/j.nmd.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023]
|
7
|
Lim JA, Sun B, Puertollano R, Raben N. Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Mol Ther 2018; 26:1783-1796. [PMID: 29804932 DOI: 10.1016/j.ymthe.2018.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
The complexity of the pathogenic cascade in lysosomal storage disorders suggests that combination therapy will be needed to target various aspects of pathogenesis. The standard of care for Pompe disease (glycogen storage disease type II), a deficiency of lysosomal acid alpha glucosidase, is enzyme replacement therapy (ERT). Many patients have poor outcomes due to limited efficacy of the drug in clearing muscle glycogen stores. The resistance to therapy is linked to massive autophagic buildup in the diseased muscle. We have explored two strategies to address the problem. Genetic suppression of autophagy in muscle of knockout mice resulted in the removal of autophagic buildup, increase in muscle force, decrease in glycogen level, and near-complete clearance of lysosomal glycogen following ERT. However, this approach leads to accumulation of ubiquitinated proteins, oxidative stress, and exacerbation of muscle atrophy. Another approach involves AAV-mediated TSC knockdown in knockout muscle leading to upregulation of mTOR, inhibition of autophagy, reversal of atrophy, and efficient cellular clearance on ERT. Importantly, this approach reveals the possibility of reversing already established autophagic buildup, rather than preventing its development.
Collapse
Affiliation(s)
- Jeong-A Lim
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA; Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Efficient therapy for refractory Pompe disease by mannose 6-phosphate analogue grafting on acid α-glucosidase. J Control Release 2018; 269:15-23. [DOI: 10.1016/j.jconrel.2017.10.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/30/2023]
|
9
|
Spratley SJ, Deane JE. New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones. J Neurosci Res 2017; 94:1203-19. [PMID: 27638604 PMCID: PMC5031207 DOI: 10.1002/jnr.23762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/24/2022]
Abstract
Missense mutations in the lysosomal hydrolase β‐galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small‐molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samantha J Spratley
- Cambridge Institute for Medical Research, Department of Pathology University of Cambridge, Cambridge, United Kingdom
| | - Janet E Deane
- Cambridge Institute for Medical Research, Department of Pathology University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
10
|
Byrne BJ, Geberhiwot T, Barshop BA, Barohn R, Hughes D, Bratkovic D, Desnuelle C, Laforet P, Mengel E, Roberts M, Haroldsen P, Reilley K, Jayaram K, Yang K, Walsh L. A study on the safety and efficacy of reveglucosidase alfa in patients with late-onset Pompe disease. Orphanet J Rare Dis 2017; 12:144. [PMID: 28838325 PMCID: PMC5571484 DOI: 10.1186/s13023-017-0693-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Late-onset Pompe disease is a rare genetic neuromuscular disorder caused by lysosomal acid alpha-glucosidase (GAA) deficiency that ultimately results in mobility loss and respiratory failure. Current enzyme replacement therapy with recombinant human (rh)GAA has demonstrated efficacy in subjects with late-onset Pompe disease. However, long-term effects of rhGAA on pulmonary function have not been observed, likely related to inefficient delivery of rhGAA to skeletal muscle lysosomes and associated deficits in the central nervous system. To address this limitation, reveglucosidase alfa, a novel insulin-like growth factor 2 (IGF2)-tagged GAA analogue with improved lysosomal uptake, was developed. This study evaluated the pharmacokinetics, safety, and exploratory efficacy of reveglucosidase alfa in 22 subjects with late-onset Pompe disease who were previously untreated with rhGAA. RESULTS Reveglucosidase alfa plasma concentrations increased linearly with dose, and the elimination half-life was <1.2 h. Eighteen of 22 subjects completed 72 weeks of treatment. The most common adverse events were hypoglycemia (63%), dizziness, fall, headache, and nausea (55% for each). Serious adverse events included hypersensitivity (n = 1), symptomatic hypoglycemia (n = 2), presyncope (n = 1), and acute cardiac failure (n = 1). In the dose-escalation study, all treated subjects tested positive for anti-reveglucosidase alfa, anti-rhGAA, anti-IGF1, and anti-IGF2 antibodies at least once. Subjects receiving 20 mg/kg of reveglucosidase alfa demonstrated increases in predicted maximum inspiratory pressure (13.9%), predicted maximum expiratory pressure (8.0%), forced vital capacity (-0.4%), maximum voluntary ventilation (7.4 L/min), and mean absolute walking distance (22.3 m on the 6-min walk test) at 72 weeks. CONCLUSIONS Additional studies are needed to further assess the safety and efficacy of this approach. Improvements in respiratory muscle strength, lung function, and walking endurance in subjects with LOPD may make up for the risk of hypersensitivity reactions and hypoglycemia. Reveglucosidase alfa may provide a new treatment option for patients with late-onset Pompe disease. TRIAL REGISTRATION ISRCTN01435772 and ISRCTN01230801 , registered 27 October 2011.
Collapse
Affiliation(s)
- Barry J Byrne
- University of Florida, School of Medicine, 1600 SW Archer Road, Gainesville, FL, 32607, USA. .,Department of Pediatrics, University of Florida, P.O. Box 100296, Gainesville, FL, 32610, USA.
| | - Tarekegn Geberhiwot
- University Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2GW, UK
| | - Bruce A Barshop
- University of California San Diego Health System, 4168 Front Street, San Diego, CA, 92103, USA
| | - Richard Barohn
- Kansas University Medical Center, 3901 Rainbow Blvd/MSN 2012, Kansas City, KS, 66160, USA
| | - Derralynn Hughes
- Royal Free London NHS Foundation & University College London Department of Hematology, Pond St, London, NW3 2QG, UK
| | | | | | - Pascal Laforet
- Paris-Est Neuromuscular Center, INSERM U974, UPMC, Hôpital Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | - Eugen Mengel
- Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mark Roberts
- Salford Royal NHS Foundation Trust, M6 8HD, Salford, UK
| | - Peter Haroldsen
- BioMarin Pharmaceutical, 105 Digital Drive, Novato, CA, 94949, USA
| | - Kristin Reilley
- BioMarin Pharmaceutical, 105 Digital Drive, Novato, CA, 94949, USA
| | - Kala Jayaram
- BioMarin Pharmaceutical, 105 Digital Drive, Novato, CA, 94949, USA
| | - Ke Yang
- BioMarin Pharmaceutical, 105 Digital Drive, Novato, CA, 94949, USA
| | - Liron Walsh
- BioMarin Pharmaceutical, 105 Digital Drive, Novato, CA, 94949, USA
| | | |
Collapse
|
11
|
Ripolone M, Violano R, Ronchi D, Mondello S, Nascimbeni A, Colombo I, Fagiolari G, Bordoni A, Fortunato F, Lucchini V, Saredi S, Filosto M, Musumeci O, Tonin P, Mongini T, Previtali S, Morandi L, Angelini C, Mora M, Sandri M, Sciacco M, Toscano A, Comi GP, Moggio M. Effects of short-to-long term enzyme replacement therapy (ERT) on skeletal muscle tissue in late onset Pompe disease (LOPD). Neuropathol Appl Neurobiol 2017; 44:449-462. [PMID: 28574618 DOI: 10.1111/nan.12414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022]
Abstract
AIMS Pompe disease is an autosomal recessive lysosomal storage disorder resulting from deficiency of acid α-glucosidase (GAA) enzyme. Histopathological hallmarks in skeletal muscle tissue are fibre vacuolization and autophagy. Since 2006, enzyme replacement therapy (ERT) is the only approved treatment with human recombinant GAA alglucosidase alfa. We designed a study to examine ERT-related skeletal muscle changes in 18 modestly to moderately affected late onset Pompe disease (LOPD) patients along with the relationship between morphological/biochemical changes and clinical outcomes. Treatment duration was short-to-long term. METHODS We examined muscle biopsies from 18 LOPD patients at both histopathological and biochemical level. All patients underwent two muscle biopsies, before and after ERT administration respectively. The study is partially retrospective because the first biopsies were taken before the study was designed, whereas the second biopsy was always performed after at least 6 months of ERT administration. RESULTS After ERT, 15 out of 18 patients showed improved 6-min walking test (6MWT; P = 0.0007) and most of them achieved respiratory stabilization. Pretreatment muscle biopsies disclosed marked histopathological variability, ranging from an almost normal pattern to a severe vacuolar myopathy. After treatment, we detected morphological improvement in 15 patients and worsening in three patients. Post-ERT GAA enzymatic activity was mildly increased compared with pretreatment levels in all patients. Protein levels of the mature enzyme increased in 14 of the 18 patients (mean increase = +35%; P < 0.05). Additional studies demonstrated an improved autophagic flux after ERT in some patients. CONCLUSIONS ERT positively modified skeletal muscle pathology as well as motor and respiratory outcomes in the majority of LOPD patients.
Collapse
Affiliation(s)
- M Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - R Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - D Ronchi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - S Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - A Nascimbeni
- Department of Neurosciences, University of Padova, Padova, Italy
| | - I Colombo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - G Fagiolari
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - A Bordoni
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - F Fortunato
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - V Lucchini
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - S Saredi
- Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - M Filosto
- Unit of Neurology, Center for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - O Musumeci
- Department of Clinical and Experimental Medicine, Centro di Riferimento Regionale per le Malattie Neuromuscolari rare, University of Messina, Messina, Italy
| | - P Tonin
- Section of Clinical Neurology, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - T Mongini
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - S Previtali
- Division of Neuroscience, Inspe, San Raffaele, Milan, Italy
| | - L Morandi
- Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - C Angelini
- Fondazione San Camillo Hospital IRCCS, Venice, Italy
| | - M Mora
- Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - M Sandri
- Department of Biomedical Science, University of Padova, Padova, Italy.,Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, Padova, Italy
| | - M Sciacco
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - A Toscano
- Department of Clinical and Experimental Medicine, Centro di Riferimento Regionale per le Malattie Neuromuscolari rare, University of Messina, Messina, Italy
| | - G P Comi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Kronn DF, Day-Salvatore D, Hwu WL, Jones SA, Nakamura K, Okuyama T, Swoboda KJ, Kishnani PS. Management of Confirmed Newborn-Screened Patients With Pompe Disease Across the Disease Spectrum. Pediatrics 2017; 140:S24-S45. [PMID: 29162675 DOI: 10.1542/peds.2016-0280e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
After a Pompe disease diagnosis is confirmed in infants identified through newborn screening (NBS), when and if to start treatment with enzyme replacement therapy (ERT) with alglucosidase alfa must be determined. In classic infantile-onset Pompe disease, ERT should start as soon as possible. Once started, regular, routine follow-up is necessary to monitor for treatment effects, disease progression, and adverse effects. Decision-making for when or if to start ERT in late-onset Pompe disease (LOPD) is more challenging because patients typically have no measurable signs or symptoms or predictable time of symptom onset at NBS. With LOPD, adequate, ongoing follow-up and assessments for onset or progression of signs and symptoms are important to track disease state and monitor and adjust care before and after treatment is started. Because numerous tests are used to monitor patients at variable frequencies, a standardized approach across centers is lacking. Significant variability in patient assessments may result in missed opportunities for early intervention. Management of Pompe disease requires a comprehensive, multidisciplinary approach with timely disease-specific interventions that target the underlying disease process and symptom-specific manifestations. Regardless of how identified, all patients who have signs or symptoms of the disease require coordinated medical care and follow-up tailored to individual needs throughout their lives. The Pompe Disease Newborn Screening Working Group identifies key considerations before starting and during ERT; summarizes what comprises an indication to start ERT; and provides guidance on how to determine appropriate patient management and monitoring and guide the frequency and type of follow-up assessments for all patients identified through NBS.
Collapse
Affiliation(s)
- David F Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, New York
| | | | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kathryn J Swoboda
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
13
|
Kishnani P, Tarnopolsky M, Roberts M, Sivakumar K, Dasouki M, Dimachkie MM, Finanger E, Goker-Alpan O, Guter KA, Mozaffar T, Pervaiz MA, Laforet P, Levine T, Adera M, Lazauskas R, Sitaraman S, Khanna R, Benjamin E, Feng J, Flanagan JJ, Barth J, Barlow C, Lockhart DJ, Valenzano KJ, Boudes P, Johnson FK, Byrne B. Duvoglustat HCl Increases Systemic and Tissue Exposure of Active Acid α-Glucosidase in Pompe Patients Co-administered with Alglucosidase α. Mol Ther 2017; 25:1199-1208. [PMID: 28341561 PMCID: PMC5417791 DOI: 10.1016/j.ymthe.2017.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/25/2017] [Indexed: 11/26/2022] Open
Abstract
Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle. This phase 2a study consisted of an open-label, fixed-treatment sequence that evaluated the effect of single oral doses of 50 mg, 100 mg, 250 mg, or 600 mg duvoglustat HCl on the pharmacokinetics and tissue levels of intravenously infused AA (20 mg/kg) in Pompe patients. AA alone resulted in increases in total GAA activity and protein in plasma compared to baseline. Following co-administration with duvoglustat HCl, total GAA activity and protein in plasma were further increased 1.2- to 2.8-fold compared to AA alone in all 25 Pompe patients; importantly, muscle GAA activity was increased for all co-administration treatments from day 3 biopsy specimens. No duvoglustat-related adverse events or drug-related tolerability issues were identified.
Collapse
Affiliation(s)
| | - Mark Tarnopolsky
- McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada
| | - Mark Roberts
- Salford Royal Hope HNS Trust Hope Hospital, Salford M6 8HD, UK
| | | | - Majed Dasouki
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Erika Finanger
- Oregon Health and Science University, Portland, OR 97239, USA
| | - Ozlem Goker-Alpan
- LSD Research and Treatment Unit, O&O Alpan, LLC, Fairfax, VA 22030, USA
| | | | | | | | - Pascal Laforet
- Hopital la Salpetriere Institut de Myologie, 75013 Paris, France
| | - Todd Levine
- Phoenix Neurological Associates, Phoenix, AZ 85018, USA
| | | | | | | | | | | | - Jessie Feng
- Amicus Therapeutics, Cranbury, NJ 08512, USA
| | | | - Jay Barth
- Amicus Therapeutics, Cranbury, NJ 08512, USA
| | - Carrolee Barlow
- The Parkinson's Institute and Clinical Center, Sunnyvale, CA 94085, USA
| | | | | | - Pol Boudes
- Cymabay Therapeutics, Newark, CA 94560, USA
| | | | - Barry Byrne
- University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, Francis GS, Lenihan D, Lewis EF, McNamara DM, Pahl E, Vasan RS, Ramasubbu K, Rasmusson K, Towbin JA, Yancy C. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association. Circulation 2016; 134:e579-e646. [PMID: 27832612 DOI: 10.1161/cir.0000000000000455] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Peng J, Dalton J, Butt M, Tracy K, Kennedy D, Haroldsen P, Cahayag R, Zoog S, O'Neill CA, Tsuruda LS. Reveglucosidase alfa (BMN 701), an IGF2-Tagged rhAcid α-Glucosidase, Improves Respiratory Functional Parameters in a Murine Model of Pompe Disease. J Pharmacol Exp Ther 2016; 360:313-323. [PMID: 27856936 DOI: 10.1124/jpet.116.235952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/14/2016] [Indexed: 02/02/2023] Open
Abstract
Pompe disease is a rare neuromuscular disorder caused by an acid α-glucosidase (GAA) deficiency resulting in glycogen accumulation in muscle, leading to myopathy and respiratory weakness. Reveglucosidase alfa (BMN 701) is an insulin-like growth factor 2-tagged recombinant human acid GAA (rhGAA) that enhances rhGAA cellular uptake via a glycosylation-independent insulin-like growth factor 2 binding region of the cation-independent mannose-6-phosphate receptor (CI-MPR). The studies presented here evaluated the effects of Reveglucosidase alfa treatment on glycogen clearance in muscle relative to rhGAA, as well as changes in respiratory function and glycogen clearance in respiratory-related tissue in a Pompe mouse model (GAAtm1Rabn/J). In a comparison of glycogen clearance in muscle with Reveglucosidase alfa and rhGAA, Reveglucosidase alfa was more effective than rhGAA with 2.8-4.7 lower EC50 values, probably owing to increased cellular uptake. The effect of weekly intravenous administration of Reveglucosidase alfa on respiratory function was monitored in Pompe and wild-type mice using whole body plethysmography. Over 12 weeks of 20-mg/kg Reveglucosidase alfa treatment in Pompe mice, peak inspiratory flow (PIF) and peak expiratory flow (PEF) stabilized with no compensation in respiratory rate and inspiratory time during hypercapnic and recovery conditions compared with vehicle-treated Pompe mice. Dose-related decreases in glycogen levels in both ambulatory and respiratory muscles generally correlated to changes in respiratory function. Improvement of murine PIF and PEF were similar in magnitude to increases in maximal inspiratory and expiratory pressure observed clinically in late onset Pompe patients treated with Reveglucosidase alfa (Byrne et al., manuscript in preparation).
Collapse
Affiliation(s)
- Jeffrey Peng
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Jill Dalton
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Mark Butt
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Kristin Tracy
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Derek Kennedy
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Peter Haroldsen
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Rhea Cahayag
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Stephen Zoog
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Charles A O'Neill
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Laurie S Tsuruda
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| |
Collapse
|
16
|
Intravitreal implantation of TPP1-transduced stem cells delays retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2016; 152:77-87. [DOI: 10.1016/j.exer.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
|
17
|
Lukacs Z, Schoser B. Meta-opinion: from screening to diagnosis of Pompe disease – a European perspective. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1229180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Luo T, Lee J, Lü ZR, Mu H, Yue LM, Park YD, Ye ZM. Effect of Cadmium Ion on alpha-Glucosidase: An Inhibition Kinetics and Molecular Dynamics Simulation Integration Study. Protein J 2016; 35:218-24. [DOI: 10.1007/s10930-016-9664-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
["Survivors": New patient collective in anesthesia]. Anaesthesist 2015; 64:423. [PMID: 25991056 DOI: 10.1007/s00101-015-0037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Turaça LT, de Faria DOS, Kyosen SO, Teixeira VD, Motta FL, Pessoa JG, Rodrigues E Silva M, de Almeida SS, D'Almeida V, Munoz Rojas MV, Martins AM, Pesquero JB. Novel GAA mutations in patients with Pompe disease. Gene 2015; 561:124-31. [PMID: 25681614 DOI: 10.1016/j.gene.2015.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
Pompe disease is an autosomal recessive disorder linked to GAA gene that leads to a multi-system intralysosomal accumulation of glycogen. Mutation identification in the GAA gene can be very important for early diagnosis, correlation between genotype-phenotype and therapeutic intervention. For this purpose, peripheral blood from 57 individuals susceptible to Pompe disease was collected and all exons of GAA gene were amplified; the sequences and the mutations were analyzed in silico to predict possible impact on the structure and function of the human protein. In this study, 46 individuals presented 33 alterations in the GAA gene sequence, among which five (c.547-67C>G, c.547-39T>G, p.R437H, p.L641V and p.L705P) have not been previously described in the literature. The alterations in the coding region included 15 missense mutations, three nonsense mutations and one deletion. One insertion and other 13 single base changes were found in the non-coding region. The mutation p.G611D was found in homozygosis in a one-year-old child, who presented low levels of GAA activity, hypotonia and hypertrophic cardiomyopathy. Two patients presented the new mutation p.L705P in association with c.-32-13T>G. They had low levels of GAA activity and developed late onset Pompe disease. In our study, we observed alterations in the GAA gene originating from Asians, African-Americans and Caucasians, highlighting the high heterogeneity of the Brazilian population. Considering that Pompe disease studies are not very common in Brazil, this study will help to better understand the potential pathogenic role of each change in the GAA gene. Furthermore, a precise and early molecular analysis improves genetic counseling besides allowing for a more efficient treatment in potential candidates.
Collapse
Affiliation(s)
- Lauro Thiago Turaça
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Martins
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Hafler BP, Klein ZA, Jimmy Zhou Z, Strittmatter SM. Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice. Brain Res 2014; 1588:168-74. [PMID: 25234724 DOI: 10.1016/j.brainres.2014.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 01/20/2023]
Abstract
Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn(-/-) mice develop degenerative pathology similar to features of human CLN11.
Collapse
Affiliation(s)
- Brian P Hafler
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Zoe A Klein
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Z Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular and Molecular Physiology and Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
22
|
Lim JA, Li L, Raben N. Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 2014; 6:177. [PMID: 25183957 PMCID: PMC4135233 DOI: 10.3389/fnagi.2014.00177] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder in which acid alpha-glucosidase (GAA) is deficient or absent. Deficiency of this lysosomal enzyme results in progressive expansion of glycogen-filled lysosomes in multiple tissues, with cardiac and skeletal muscle being the most severely affected. The clinical spectrum ranges from fatal hypertrophic cardiomyopathy and skeletal muscle myopathy in infants to relatively attenuated forms, which manifest as a progressive myopathy without cardiac involvement. The currently available enzyme replacement therapy (ERT) proved to be successful in reversing cardiac but not skeletal muscle abnormalities. Although the overall understanding of the disease has progressed, the pathophysiology of muscle damage remains poorly understood. Lysosomal enlargement/rupture has long been considered a mechanism of relentless muscle damage in Pompe disease. In past years, it became clear that this simple view of the pathology is inadequate; the pathological cascade involves dysfunctional autophagy, a major lysosome-dependent intracellular degradative pathway. The autophagic process in Pompe skeletal muscle is affected at the termination stage—impaired autophagosomal-lysosomal fusion. Yet another abnormality in the diseased muscle is the accelerated production of large, unrelated to ageing, lipofuscin deposits—a marker of cellular oxidative damage and a sign of mitochondrial dysfunction. The massive autophagic buildup and lipofuscin inclusions appear to cause a greater effect on muscle architecture than the enlarged lysosomes outside the autophagic regions. Furthermore, the dysfunctional autophagy affects the trafficking of the replacement enzyme and interferes with its delivery to the lysosomes. Several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic manipulation of autophagy.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
23
|
Hundsberger T, Rösler KM, Findling O. Cessation and resuming of alglucosidase alfa in Pompe disease: a retrospective analysis. J Neurol 2014; 261:1684-90. [PMID: 24923245 DOI: 10.1007/s00415-014-7402-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/08/2023]
Abstract
Enzyme replacement therapy (ERT) with recombinant human alglucosidase alfa (rhGAA) in late-onset Pompe disease is moderately effective. Little is known about the clinical course after treatment termination and the resumption of ERT. In Switzerland, rhGAA therapy for Pompe disease was temporarily withdrawn after the federal court judged that the treatment costs were greatly out of proportion compared to the benefits. Re-treatment was initiated after the therapy was finally licensed. We retrospectively analysed seven Pompe patients, who underwent cessation and resumption of ERT (median age 43 years). The delay from first symptoms to final diagnosis ranged from 4 to 20 years. The demographics, clinical characteristics, assessments with the 6-min walking test (6-MWT), the predicted forced vital capacity (FVC) and muscle strength were analysed. Before initiation of ERT, all patients suffered from proximal muscle weakness of the lower limbs; one was wheelchair-bound and two patients received night-time non-invasive ventilation. Initial treatment stabilised respiratory function in most patients and improved their walking performance. After treatment cessation, upright FVC declined in most and the 6-MWT declined in all patients. Two patients needed additional non-invasive ventilatory support. Twelve months after resuming ERT, the respiratory and walking capacity improved again in most patients. However, aside for one patient, none of the patients reached the same level of respiratory function or distance walked in 6 min, as at the time of ERT withdrawal. We conclude that cessation of ERT in Pompe disease causes a decline in clinical function and should be avoided. Resuming treatment only partially recovers respiratory function and walking capacity.
Collapse
Affiliation(s)
- Thomas Hundsberger
- Department of Neurology, Cantonal Hospital St. Gallen, Rorschacherstr. 95, 9007, St. Gallen, Switzerland,
| | | | | |
Collapse
|
24
|
van den Berg LEM, Drost MR, Schaart G, de Laat J, van Doorn PA, van der Ploeg AT, Reuser AJJ. Muscle fiber-type distribution, fiber-type-specific damage, and the Pompe disease phenotype. J Inherit Metab Dis 2013; 36:787-94. [PMID: 23053471 DOI: 10.1007/s10545-012-9541-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/03/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by acid α-glucosidase deficiency and characterized by progressive muscle weakness. Enzyme replacement therapy (ERT) has ameliorated patients' perspectives, but reversal of skeletal muscle pathology remains a challenge. We studied pretreatment biopsies of 22 patients with different phenotypes to investigate to what extent fiber-type distribution and fiber-type-specific damage contribute to clinical diversity. Pompe patients have the same fiber-type distribution as healthy persons, but among nonclassic patients with the same GAA mutation (c.-32-13T>G), those with early onset of symptoms tend to have more type 2 muscle fibers than those with late-onset disease. Further, it seemed that the older, more severely affected classic infantile patients and the wheelchair-bound and ventilated nonclassic patients had a greater proportion of type 2x muscle fibers. However, as in other diseases, this may be caused by physical inactivity of those patients.
Collapse
Affiliation(s)
- L E M van den Berg
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Hundsberger T, Rohrbach M, Kern L, Rösler KM. Swiss national guideline for reimbursement of enzyme replacement therapy in late-onset Pompe disease. J Neurol 2013; 260:2279-85. [DOI: 10.1007/s00415-013-6980-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/11/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
26
|
Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 2013; 5:691-706. [PMID: 23606558 PMCID: PMC3662313 DOI: 10.1002/emmm.201202176] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/01/2023] Open
Abstract
A recently proposed therapeutic approach for lysosomal storage disorders (LSDs) relies upon the ability of transcription factor EB (TFEB) to stimulate autophagy and induce lysosomal exocytosis leading to cellular clearance. This approach is particularly attractive in glycogen storage disease type II [a severe metabolic myopathy, Pompe disease (PD)] as the currently available therapy, replacement of the missing enzyme acid alpha-glucosidase, fails to reverse skeletal muscle pathology. PD, a paradigm for LSDs, is characterized by both lysosomal abnormality and dysfunctional autophagy. Here, we show that TFEB is a viable therapeutic target in PD: overexpression of TFEB in a new muscle cell culture system and in mouse models of the disease reduced glycogen load and lysosomal size, improved autophagosome processing, and alleviated excessive accumulation of autophagic vacuoles. Unexpectedly, the exocytosed vesicles were labelled with lysosomal and autophagosomal membrane markers, suggesting that TFEB induces exocytosis of autophagolysosomes. Furthermore, the effects of TFEB were almost abrogated in the setting of genetically suppressed autophagy, supporting the role of autophagy in TFEB-mediated cellular clearance.
Collapse
|
27
|
Li HM, Feeney E, Li L, Zare H, Puertollano R, Raben N. WITHDRAWN: Clearance of lysosomal glycogen accumulation by Transcription factor EB (TFEB) in muscle cells from lysosomal alpha-glucosidase deficient mice. Biochem Biophys Res Commun 2013:S0006-291X(13)00272-6. [PMID: 23416076 PMCID: PMC3687018 DOI: 10.1016/j.bbrc.2013.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Hoi Ming Li
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine. Mol Ther 2012; 20:2201-11. [PMID: 22990675 DOI: 10.1038/mt.2012.152] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pompe disease (PD) is a metabolic myopathy due to the deficiency of the lysosomal enzyme α-glucosidase (GAA). The only approved treatment for this disorder, enzyme replacement with recombinant human GAA (rhGAA), has shown limited therapeutic efficacy in some PD patients. Pharmacological chaperone therapy (PCT), either alone or in combination with enzyme replacement, has been proposed as an alternative therapeutic strategy. However, the chaperones identified so far also are active site-directed molecules and potential inhibitors of target enzymes. We demonstrated that N-acetylcysteine (NAC) is a novel allosteric chaperone for GAA. NAC improved the stability of rhGAA as a function of pH and temperature without disrupting its catalytic activity. A computational analysis of NAC-GAA interactions confirmed that NAC does not interact with GAA catalytic domain. NAC enhanced the residual activity of mutated GAA in cultured PD fibroblasts and in COS7 cells overexpressing mutated GAA. NAC also enhanced rhGAA efficacy in PD fibroblasts. In cells incubated with NAC and rhGAA, GAA activities were 3.7-8.7-fold higher than those obtained in cells treated with rhGAA alone. In a PD mouse model the combination of NAC and rhGAA resulted in better correction of enzyme activity in liver, heart, diaphragm and gastrocnemia, compared to rhGAA alone.
Collapse
|
29
|
Bruckmann C, Repo H, Kuokkanen E, Xhaard H, Heikinheimo P. Systematic structure-activity study on potential chaperone lead compounds for acid α-glucosidase. ChemMedChem 2012; 7:1943-53. [PMID: 22969039 DOI: 10.1002/cmdc.201200309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Indexed: 01/15/2023]
Abstract
Acid α-glucosidase (GAA) is a lysosomal enzyme and a pharmacological target for Pompe disease, an inherited lysosomal storage disorder (LSD). An emerging treatment for LSDs is the use of pharmacological chaperones, small molecules that enhance total cellular activity of the target lysosomal protein. We have systematically studied thirteen inhibitors, which provide good lead compounds for the development of GAA chaperones. We have verified binding on GAA at low and neutral pH, mapping the range of pH during transport to lysosomes. These ligands inhibit GAA competitively and reversibly, and a few of the compounds show higher molecular stabilisation capacity than would be expected from their binding affinity. These molecules also increase lysosomal localisation of GAA variants in cells. In order to understand the specific molecular mechanism of the interactions, we docked the compounds to a homology model of the human GAA. Three factors contribute to the tightness of binding. Firstly, well-positioned hydroxy groups are essential to orient the ligand and make the binding specific. Secondly, the open nature of the GAA active site allows both large and small ligands to bind. The third and most important binding determinant is the positive charge on the ligand, which is neutralised by Asp 518 or Asp 616 on GAA. Our study creates a firm basis for the design of drugs to treat Pompe disease, as it provides a comparable study of the ligand properties. Our analysis suggests a useful drug design framework for specific pharmacological chaperones for human GAA.
Collapse
Affiliation(s)
- Chiara Bruckmann
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014 (Finland)
| | | | | | | | | |
Collapse
|
30
|
Regnery C, Kornblum C, Hanisch F, Vielhaber S, Strigl-Pill N, Grunert B, Müller-Felber W, Glocker FX, Spranger M, Deschauer M, Mengel E, Schoser B. 36 months observational clinical study of 38 adult Pompe disease patients under alglucosidase alfa enzyme replacement therapy. J Inherit Metab Dis 2012; 35:837-45. [PMID: 22290025 DOI: 10.1007/s10545-012-9451-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/03/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Glycogen storage disease type 2(GSD2)/Pompe disease is characterized by respiratory and skeletal muscle weakness and atrophy, resulting in functional disability and reduced life span. METHODS We present an open-label, investigator-initiated observational study of alglucosidase alfa enzyme replacement therapy (ERT) in 38 adult-onset GSD2 patients (20 female, 18 male) with a mean age at disease onset of 36.2 ± 10.5 years. Mean delay between symptom onset and start of ERT was 14.5 ± 7.2 years. Assessments included serial Walton Gardner Medwin scale, arm function tests, timed 10-meter walk tests, 4- stair climb tests, modified Gowers' maneuvers, 6-minute walk test (6MWT), MRC sum score, forced vital capacities (FVC), creatine kinase (CK) levels, and SF-36 selfreporting questionnaires. All tests were performed at baseline and every 12 months for 36 months of ERT. RESULTS In the 6MWT we found 21 patients able to walk at baseline a mean distance of 312 ± 165.5 m, improving to 344 ± 165.8 m after 12 months (p=0.006), remaining at 356.4 ± 155.9 m at 24 months (p=0.033), and declining to 325.6 ± 174.8 m after 36 months of ERT (p=0.49, n.s.). The mean FVC in 28 patients was 80.27 ± 14.08% of predicted normal at baseline, after 12 months 79.19 ± 13.09%, at 24 months 78.62 ± 16.55%, and 77.19 ± 18.05%after 36 months. Only mean CK levels were significantly decreased by 8.8% (p=0.041). All other tests were statistically nonsignificant changed. CONCLUSION Our data denote a rather variable course of neuromuscular deficits in chronic adult-onset Pompe patients during 36 months of alglucosidase alfa ERT.
Collapse
Affiliation(s)
- Caroline Regnery
- Friedrich-Baur Institute, Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cell models for McArdle disease and aminoglycoside-induced read-through of a premature termination codon. Neuromuscul Disord 2012; 23:43-51. [PMID: 22818872 DOI: 10.1016/j.nmd.2012.06.348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/29/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023]
Abstract
McArdle disease results from mutations in the gene encoding muscle glycogen phosphorylase (PYGM) protein and the two most common mutations are a premature termination codon (R50X) and a missense mutation (G205S). Myoblasts from patients cannot be used to create a cell model of McArdle disease because even normal myoblasts produce little or no PYGM protein in cell culture. We therefore created cell models by expressing wild-type or mutant (R50X or G205S) PYGM from cDNA integrated into the genome of Chinese hamster ovary cells. These cell lines enable the study of McArdle mutations in the absence of nonsense-mediated decay of mRNA transcripts. Although all cell lines produced stable mRNA, only wild-type produced detectable PYGM protein. Our data suggest that the G205S mutation affects PYGM by causing misfolding and accelerated protein turnover. Using the N-terminal region of PYGM containing the R50X mutation fused to green fluorescent protein, we were able to demonstrate both small amounts of truncated protein production and read-through of the R50X premature termination codon induced by the aminoglycoside, G418.
Collapse
|
32
|
The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PLoS One 2012; 7:e40776. [PMID: 22815812 PMCID: PMC3399870 DOI: 10.1371/journal.pone.0040776] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022] Open
Abstract
Pompe disease is an inherited lysosomal storage disease that results from a deficiency in the enzyme acid α-glucosidase (GAA), and is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. Recombinant human GAA (rhGAA) is the only approved enzyme replacement therapy (ERT) available for the treatment of Pompe disease. Although rhGAA has been shown to slow disease progression and improve some of the pathophysiogical manifestations, the infused enzyme tends to be unstable at neutral pH and body temperature, shows low uptake into some key target tissues, and may elicit immune responses that adversely affect tolerability and efficacy. We hypothesized that co-administration of the orally-available, small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) may improve the pharmacological properties of rhGAA via binding and stabilization. AT2220 co-incubation prevented rhGAA denaturation and loss of activity in vitro at neutral pH and 37°C in both buffer and blood. In addition, oral pre-administration of AT2220 to rats led to a greater than two-fold increase in the circulating half-life of intravenous rhGAA. Importantly, co-administration of AT2220 and rhGAA to GAA knock-out (KO) mice resulted in significantly greater rhGAA levels in plasma, and greater uptake and glycogen reduction in heart and skeletal muscles, compared to administration of rhGAA alone. Collectively, these preclinical data highlight the potentially beneficial effects of AT2220 on rhGAA in vitro and in vivo. As such, a Phase 2 clinical study has been initiated to investigate the effects of co-administered AT2220 on rhGAA in Pompe patients.
Collapse
|
33
|
Nayak S, Sivakumar R, Cao O, Daniell H, Byrne BJ, Herzog RW. Mapping the T helper cell response to acid α-glucosidase in Pompe mice. Mol Genet Metab 2012; 106:189-95. [PMID: 22494547 PMCID: PMC3574558 DOI: 10.1016/j.ymgme.2012.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 12/19/2022]
Abstract
Pompe disease is a neuromuscular disease caused by an inherited deficiency of the lysosomal enzyme acid α-glucosidase (GAA). The resulting accumulation of glycogen causes muscle weakness with the severe form of the disease resulting in death by cardiorespiratory failure in the first year of life. The only available treatment, enzyme replacement therapy (ERT) with recombinant GAA (rhGAA), is severely hampered by antibody responses that reduce efficacy and cause immunotoxicities. Currently, Pompe mice represent the only pre-clinical model for development of new treatments and for immunological studies. While antibody formation following ERT in this model has been described, the underlying T cell response has not been studied. In order to define the T helper response to rhGAA in Pompe mice, immunodominant CD4(+) T cell epitopes were mapped in GAA(-/-) 129SVE mice using ELISpot. Additionally, cytokine responses and antibody formation against rhGAA during ERT were measured. Among the three CD4(+) T cell epitopes identified, only epitope IFLGPEPKSVVQ, predicted to be the strongest MHC II binder, consistently contributed to IL-4 production. Frequencies of IL-4 producing T cells were considerably higher than those of IL-17 or IFN-γ producing cells, suggesting a predominantly Th2 cell mediated response. This is further supported by IgG1 being the prevalent antibody subclass against rhGAA during ERT and consistent with prior reports on IgE formation and anaphylaxis in this model. These results will facilitate mechanistic studies of the immune response to rhGAA in Pompe mice during development of new therapies and tolerance protocols.
Collapse
Affiliation(s)
- Sushrusha Nayak
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA
| | - Ramya Sivakumar
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA
| | - Ou Cao
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL, USA
| | - Barry J. Byrne
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Correspondence to: B.J. Byrne, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Roland W. Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Correspondence to: R.W. Herzog, University of Florida, Cancer and Genetics Research Center, 2033 Mowry Road, Room 203, Gainesville, FL 32610, USA. Fax: +1 352 273 8342
| |
Collapse
|
34
|
Guo J, Kelton CML, Guo JJ. Recent developments, utilization, and spending trends for pompe disease therapies. AMERICAN HEALTH & DRUG BENEFITS 2012; 5:182-189. [PMID: 24991319 PMCID: PMC4046468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Pompe disease is a rare condition, with an incidence rate estimated to be between 1 in 40,000 and 1 in 300,000 live births worldwide. For an infant who contracts the disease, which is an inherited metabolic myopathy caused by deficiency of the acid alpha-glucosidase (GAA) enzyme in lysosomal cells, the survival rate to age 1 year is estimated to be 25.7%. Before 2006, no therapies were available for this disease. OBJECTIVES The goals of this study were to review recent developments in therapies for Pompe disease, including the US Food and Drug Administration (FDA) approval of 2 biologic drugs, and to describe the associated drug utilization and spending trends in the US Medicaid program for patients with this disease. METHODS We reviewed 2 recently approved therapies for Pompe disease and compared their indications, as well as their efficacy and safety profiles. A retrospective analysis was performed using the national Medicaid pharmacy claims database. Quarterly prescriptions and reimbursement amounts were calculated for each drug from 2006 quarter 2 through 2011 quarter 2. Average per-prescription spending was calculated by dividing the drug reimbursement by the number of prescriptions written for that drug. RESULTS Myozyme (alglucosidase alfa, recombinant human GAA) and Lumizyme (alglucosidase alfa), the first 2 enzyme replacement therapies available for Pompe disease, were approved as orphan drugs by the FDA in 2006 and in 2010, respectively. Myozyme is indicated for infantile-onset Pompe disease; Lumizyme is indicated for patients aged ≥8 years. Although both drugs have been shown to improve patient survival rates, they both also have a boxed warning, because of the possibility of life-threatening allergic reactions. Moreover, Lumizyme has a restricted distribution system to ensure it is used by the correct patient population. In 2010, Medicaid spending for Myozyme was $3.6 million. In the first 2 quarters of 2011, Medicaid spending for Lumizyme was $1.8 million. Prescriptions for Myozyme increased from 1 in 2006 quarter 2 to 127 in 2011 quarter 2, whereas prescriptions for Lumizyme increased from 6 in 2010 quarter 3 to 60 in 2011 quarter 2. During the same period, expenditures rose from $9450 to $930,459 for Myozyme and from $119,691 to $1.16 million for Lumizyme. The average price per prescription was approximately $10,000 for Myozyme and approximately $20,000 for Lumizyme over the study period. CONCLUSION As can be expected after the FDA's approval of Myozyme and Lumizyme, Medicaid beneficiaries have experienced rising utilization of the 2 therapies. Spending by Medicaid has increased proportionately, implying a steady per-prescription average price for both drugs where if both numerator and denominator increase at the same rate, the ratio (price) should remain the same. New promising therapies for Pompe disease are currently being studied.
Collapse
Affiliation(s)
- Jing Guo
- PhD student at James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center
| | | | - Jeff J Guo
- Professor, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, OH
| |
Collapse
|
35
|
Manwaring V, Prunty H, Bainbridge K, Burke D, Finnegan N, Franses R, Lam A, Vellodi A, Heales S. Urine analysis of glucose tetrasaccharide by HPLC; a useful marker for the investigation of patients with Pompe and other glycogen storage diseases. J Inherit Metab Dis 2012; 35:311-6. [PMID: 21687968 DOI: 10.1007/s10545-011-9360-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 01/07/2023]
Abstract
A high performance liquid chromatography method, adapted from an established urinary sugars method, has been developed for the analysis of a tetraglucose oligomer (Glc(4)) in urine. Pompe disease results from defects in the activity of lysosomal acid α-glucosidase (GAA) with patients typically excreting increased amounts of Glc(4). Rapid determination of GAA in dried blood spots is now possible. However, enzymatic analysis is unable to discriminate between patients with Pompe disease and those individuals harbouring pseudo deficiency mutations. This method was able to quantify Glc(4) levels in all patients analysed with an established diagnosis of Pompe disease, and all controls analysed had Glc(4) levels below the limit of detection for this method. Importantly the method was able to discriminate between an individual known to harbour a pseudo Pompe mutation and patients with Pompe disease, providing a useful supporting test to enzymatic analysis. Sequential measurement of urinary Glc(4) has been proposed to monitor the effects of enzyme replacement therapy (ERT). We observed a clear decrease in Glc(4) levels following commencement of treatment in three patients studied. Additionally, raised levels of Glc(4) were observed in patients with glycogen storage disease (GSD) type Ia and type III suggesting that this method may have applications in other GSDs.
Collapse
Affiliation(s)
- Victoria Manwaring
- Enzyme and Metabolic Unit, Chemical Pathology, Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ishigaki K, Yoshikawa Y, Kuwatsuru R, Oda E, Murakami T, Sato T, Saito T, Umezu R, Osawa M. High-density CT of muscle and liver may allow early diagnosis of childhood-onset Pompe disease. Brain Dev 2012; 34:103-6. [PMID: 21704464 DOI: 10.1016/j.braindev.2011.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 05/29/2011] [Accepted: 05/29/2011] [Indexed: 11/20/2022]
Abstract
Pompe disease is classified into infantile-, childhood- and adult-onset forms based on onset age and the degree of organ involvement. Differing from the infantile-onset form which is characterized by marked organ involvement, the childhood-onset form usually presents with muscle weakness and elevation of serum creatine kinase (CK), mimicking those of progressive muscular dystrophy. We report our successful early diagnosis and initiation of enzyme replacement therapy (ERT) in a young girl with childhood-onset Pompe disease before the development of skeletal muscle symptoms. She was referred to our hospital at the age of 2 years 4 months because of hyperCKemia detected incidentally. She was active and lacked developmental delay and muscle weakness; however, hepatomegaly was noted. The combination of high-density changes in the liver and skeletal muscle on computed tomography (CT) images was suggestive of glycogen storage disorder, especially childhood-onset Pompe disease. Low alpha-glucosidase (GAA) activity on dried blood spots facilitated the diagnostic process, and genetic analysis of GAA allowed a definitive diagnosis, without performing muscle biopsy. We promptly started ERT at the age of 2 years 6 months. After 1 year, she still had not developed any skeletal muscle symptoms, and serum CK level was almost normal. Since the efficacy of ERT is thought to depend on the extent of muscle damage at its commencement, we expect that ERT may have prevented the manifestation of skeletal muscle involvement in this patient.
Collapse
Affiliation(s)
- Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ishigaki K, Murakami T, Nakanishi T, Oda E, Sato T, Osawa M. Close monitoring of initial enzyme replacement therapy in a patient with childhood-onset Pompe disease. Brain Dev 2012; 34:98-102. [PMID: 21676566 DOI: 10.1016/j.braindev.2011.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/28/2022]
Abstract
Pompe disease is classified into infantile and late-onset (childhood and adult) forms based on onset age and degree of organ involvement. While benefits of enzyme replacement therapy (ERT) for the infantile form have been confirmed, efficacy for late-onset forms reportedly varies. We report close monitoring of initial ERT, focusing especially on the first year, in a 12-year-old boy with childhood-onset Pompe disease. At age 10, he started ERT at 20 mg/kg every other week. Respiratory and motor functions were evaluated at each infusion, and by skeletal muscle computed tomography (CT) and cardiac echography every 4 months. He gained the ability to climb stairs without a rail and % vital capacity improved just 1.5 months after starting ERT. Grip power, manual muscle testing (MMT) and the timed and 6-min walking distance tests (6MWT) improved promptly, paralleling improvements in clinical symptoms. However, this steady improvement stopped around 8 months, with deterioration to the initial level by about 24 months. Antibody against recombinant human alpha-glucosidase was very low at 15 months; therefore, the lack of treatment response did not completely correspond to antibody production. On the other hand, cardiac wall thickening worsened after 4 months, then improved to better than baseline after 8 months, and this improvement was well maintained. Among our set parameters, the timed test results corresponded better to his changing clinical course than did grip power, MMT or 6-min walking test results.
Collapse
Affiliation(s)
- Keiko Ishigaki
- Department of Pediatrics, Heart Institute of Japan, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Schüller A, Wenninger S, Strigl-Pill N, Schoser B. Toward deconstructing the phenotype of late-onset Pompe disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:80-8. [DOI: 10.1002/ajmg.c.31322] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Mass spectrometric quantification of glycogen to assess primary substrate accumulation in the Pompe mouse. Anal Biochem 2011; 421:759-63. [PMID: 22239964 DOI: 10.1016/j.ab.2011.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022]
Abstract
Glycogen storage in the α-glucosidase knockout((6neo/6neo)) mouse recapitulates the biochemical defect that occurs in the human condition; as such, this mouse serves as a model for the inherited metabolic deficiency of lysosomal acid α-glucosidase known as Pompe disease. Although this model has been widely used for the assessment of therapies, the time course of glycogen accumulation that occurs as untreated Pompe mice age has not been reported. To address this, we developed a quantitative method involving amyloglucosidase digestion of glycogen and quantification of the resulting free glucose by liquid chromatography/electrospray ionization-tandem mass spectrometry. The method was sensitive enough to measure as little as 0.1 μg of glycogen in tissue extracts with intra- and interassay coefficients of variation of less than 12%. Quantification of glycogen in tissues from Pompe mice from birth to 26 weeks of age showed that, in addition to the accumulation of glycogen in the heart and skeletal muscle, glycogen also progressively accumulated in the brain, diaphragm, and skin. Glycogen storage was also evident at birth in these tissues. This method may be particularly useful for longitudinal assessment of glycogen reduction in response to experimental therapies being trialed in this model.
Collapse
|
40
|
Cupler EJ, Berger KI, Leshner RT, Wolfe GI, Han JJ, Barohn RJ, Kissel JT. Consensus treatment recommendations for late-onset Pompe disease. Muscle Nerve 2011; 45:319-33. [PMID: 22173792 DOI: 10.1002/mus.22329] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2011] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Pompe disease is a rare, autosomal recessive disorder caused by deficiency of the glycogen-degrading lysosomal enzyme acid alpha-glucosidase. Late-onset Pompe disease is a multisystem condition, with a heterogeneous clinical presentation that mimics other neuromuscular disorders. METHODS Objective is to propose consensus-based treatment and management recommendations for late-onset Pompe disease. METHODS A systematic review of the literature by a panel of specialists with expertise in Pompe disease was undertaken. CONCLUSIONS A multidisciplinary team should be involved to properly treat the pulmonary, neuromuscular, orthopedic, and gastrointestinal elements of late-onset Pompe disease. Presymptomatic patients with subtle objective signs of Pompe disease (and patients symptomatic at diagnosis) should begin treatment with enzyme replacement therapy (ERT) immediately; presymptomatic patients without symptoms or signs should be observed without use of ERT. After 1 year of ERT, patients' condition should be reevaluated to determine whether ERT should be continued.
Collapse
Affiliation(s)
- Edward J Cupler
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shadrach JL, Wagers AJ. Stem cells for skeletal muscle repair. Philos Trans R Soc Lond B Biol Sci 2011; 366:2297-306. [PMID: 21727135 DOI: 10.1098/rstb.2011.0027] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a highly specialized tissue composed of non-dividing, multi-nucleated muscle fibres that contract to generate force in a controlled and directed manner. Skeletal muscle is formed during embryogenesis from a subset of muscle precursor cells, which generate both differentiated muscle fibres and specialized muscle-forming stem cells known as satellite cells. Satellite cells remain associated with muscle fibres after birth and are responsible for muscle growth and repair throughout life. Failure in satellite cell function can lead to delayed, impaired or failed recovery after muscle injury, and such failures become increasingly prominent in cases of progressive muscle disease and in old age. Recent progress in the isolation of muscle satellite cells and elucidation of the cellular and molecular mediators controlling their activity indicate that these cells represent promising therapeutic targets. Such satellite cell-based therapies may involve either direct cell replacement or development of drugs that enhance endogenous muscle repair mechanisms. Here, we discuss recent breakthroughs in understanding both the cell intrinsic and extrinsic regulators that determine the formation and function of muscle satellite cells, as well as promising paths forward to realizing their full therapeutic potential.
Collapse
Affiliation(s)
- Jennifer L Shadrach
- Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard University and Joslin Diabetes Center, Bauer Center, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
42
|
Hsu J, Northrup L, Bhowmick T, Muro S. Enhanced delivery of α-glucosidase for Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for three distinct lysosomal storage disorders. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:731-9. [PMID: 21906578 DOI: 10.1016/j.nano.2011.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/08/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022]
Abstract
UNLABELLED Enzyme replacement therapies for lysosomal storage disorders are often hindered by suboptimal biodistribution of recombinant enzymes after systemic injection. This is the case for Pompe disease caused by acid α-glucosidase (GAA) deficiency, leading to excess glycogen storage throughout the body, mainly the liver and striated muscle. Targeting intercellular adhesion molecule-1 (ICAM-1), a protein involved in inflammation and overexpressed on most cells under pathological conditions, provides broad biodistribution and lysosomal transport of therapeutic cargoes. To improve its delivery, we coupled GAA to polymer nanocarriers (NCs; ∼180 nm) coated with an antibody specific to ICAM-1. Fluorescence microscopy showed specific targeting of anti-ICAM/GAA NCs to cells, with efficient internalization and lysosomal transport, enhancing glycogen degradation over nontargeted GAA. Radioisotope tracing in mice demonstrated enhanced GAA accumulation in all organs, including Pompe targets. Along with improved delivery of Niemann-Pick and Fabry enzymes, previously described, these results indicate that ICAM-1 targeting holds promise as a broad platform for lysosomal enzyme delivery. FROM THE CLINICAL EDITOR In this study, ICAM-1 targeted nanocarriers were used to deliver GAA (acid alpha glucosidase) into cells to address the specific enzyme deficiency in Pompe's disease. The results unequivocally demonstrate enhanced enzyme delivery over nontargeted GAA in a mice model.
Collapse
Affiliation(s)
- Janet Hsu
- Fischell Department of Bioengineering, School of Engineering, University of Maryland, College Park, Maryland, USA
| | | | | | | |
Collapse
|
43
|
Güngör D, de Vries JM, Hop WCJ, Reuser AJJ, van Doorn PA, van der Ploeg AT, Hagemans MLC. Survival and associated factors in 268 adults with Pompe disease prior to treatment with enzyme replacement therapy. Orphanet J Rare Dis 2011; 6:34. [PMID: 21631931 PMCID: PMC3135500 DOI: 10.1186/1750-1172-6-34] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pompe disease is a rare lysosomal storage disorder characterized by muscle weakness and wasting. The majority of adult patients have slowly progressive disease, which gradually impairs mobility and respiratory function and may lead to wheelchair and ventilator dependency. It is as yet unknown to what extent the disease reduces the life span of these patients. Our objective was to determine the survival of adults with Pompe disease not receiving ERT and to identify prognostic factors associated with survival. METHODS Data of 268 patients were collected in a prospective international observational study conducted between 2002 and 2009. Survival analyses from time of diagnosis and from time of study entry were performed using Kaplan-Meier curves and Cox-proportional-hazards regression. RESULTS Median age at study entry was 48 years (range 19-79 years). Median survival after diagnosis was 27 years, while median age at diagnosis was 38 years. During follow-up, twenty-three patients died prior to ERT, with a median age at death of 55 (range 23-77 years). Use of wheelchair and/or respiratory support and patients' score on the Rotterdam Handicap Scale (RHS) were identified as prognostic factors for survival. Five-year survival for patients without a wheelchair or respiratory support was 95% compared to 74% in patients who were wheelchair-bound and used respiratory support. In a Dutch subgroup of 99 patients, we compared the observed number of deaths to the expected number of deaths in the age- and sex-matched general population. During a median follow-up of 2.3 years, the number of deaths among the Dutch Pompe patients was higher than the expected number of deaths in the general population. CONCLUSION Our study shows for the first time that untreated adults with Pompe disease have a higher mortality than the general population and that their levels of disability and handicap/participation are the most important factors associated with mortality. These results may be of relevance when addressing the effect of ERT or other potential treatment options on survival.
Collapse
Affiliation(s)
- Deniz Güngör
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Dr, Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
44
|
Raben N, Ralston E, Chien YH, Baum R, Schreiner C, Hwu WL, Zaal KJM, Plotz PH. Differences in the predominance of lysosomal and autophagic pathologies between infants and adults with Pompe disease: implications for therapy. Mol Genet Metab 2010; 101:324-31. [PMID: 20801068 PMCID: PMC2991562 DOI: 10.1016/j.ymgme.2010.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/29/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by the deficiency of acid alpha-glucosidase, the enzyme that degrades glycogen in the lysosomes. The disease manifests as a fatal cardiomyopathy and skeletal muscle myopathy in infants; in milder late-onset forms skeletal muscle is the major tissue affected. We have previously demonstrated that autophagic inclusions in muscle are prominent in adult patients and the mouse model. In this study we have evaluated the contribution of the autophagic pathology in infants before and 6 months after enzyme replacement therapy. Single muscle fibers, isolated from muscle biopsies, were stained for autophagosomal and lysosomal markers and analyzed by confocal microscopy. In addition, unstained bundles of fixed muscles were analyzed by second harmonic imaging. Unexpectedly, the autophagic component which is so prominent in juvenile and adult patients was negligible in infants; instead, the overwhelming characteristic was the presence of hugely expanded lysosomes. After 6 months on therapy, however, the autophagic buildup becomes visible as if unmasked by the clearance of glycogen. In most fibers, the two pathologies did not seem to coexist. These data point to the possibility of differences in the pathogenesis of Pompe disease in infants and adults.
Collapse
Affiliation(s)
- Nina Raben
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Del Rizzo M, Fanin M, Cerutti A, Cazzorla C, Milanesi O, Nascimbeni AC, Angelini C, Giordano L, Bordugo A, Burlina AB. Long-term follow-up results in enzyme replacement therapy for Pompe disease: a case report. J Inherit Metab Dis 2010; 33 Suppl 3:S389-93. [PMID: 20830524 DOI: 10.1007/s10545-010-9195-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/11/2010] [Accepted: 08/23/2010] [Indexed: 12/01/2022]
Abstract
Pompe disease (PD) is a metabolic myopathy caused by a deficiency of acid-alpha glucosidase (GAA), a lysosomal enzyme that cleaves glycogen. The classic infantile-onset form is characterised by severe hypotonia and cardiomyopathy. Untreated patients usually die within the first year of life due to cardiorespiratory failure. Several studies involving patients with infantile-onset PD have shown that enzyme replacement therapy (ERT) with alglucosidase alfa, recombinant human GAA (rhGAA), significantly prolongs survival, decreases cardiomegaly, and improves cardiac function and conduction abnormalities. However, the efficacy on motor, cognitive and social milestones appears to be more related to the condition of the patient before the start of treatment. To date, the sample of early diagnosed and treated patients is small and the length of follow-up is still limited. We report the results of a long-term follow-up of one patient presenting severe bradycardia and cardiomyopathy at birth, diagnosed in the third day of life and successfully treated by ERT. Serum muscle enzymes at diagnosis were AST 200 U/L, ALT 99 U/L and CPK 731 U/L (n.v. 0-295); the molecular study identified the homozygous missense mutation c.1933 G> A p.Asp645Asn (GAA exon 14). Left Ventricular Mass Index (LVMI) at baseline was 171 g/m(2) (Z-score = 4.3) and decreased to normal values since the 3-month follow-up. A muscle biopsy performed at 18 months after the start of therapy, showed only a low degree of muscle involvement. To our knowledge, this is the longest ERT treatment follow-up in a symptomatic neonatal patient with Pompe disease.
Collapse
Affiliation(s)
- Monica Del Rizzo
- Division of Metabolic Diseases, Department of Paediatrics, University Hospital Padua, Via Giustiniani 3, 35128 Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rapoport M, Salman L, Sabag O, Patel MS, Lorberboum-Galski H. Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. J Mol Med (Berl) 2010; 89:161-70. [PMID: 21079907 DOI: 10.1007/s00109-010-0693-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 11/25/2022]
Abstract
Medicine today offers no cure for patients suffering from mitochondrial disorders, such as lipoamide dehydrogenase (LAD; also known as E3) deficiency, and treatment is limited to symptomatic care. LAD is one of the components of the α-ketoacid dehydrogenase complexes, which are mitochondrial multienzyme complexes crucial for the metabolism of carbohydrates and amino acids. Recently, we tested the therapeutic approach for treating mitochondrial disorders whereby the activity of multicomponent complexes in the mitochondria is restored by TAT-mediated enzyme replacement therapy (ERT). The LAD deficiency disease was used before as a proof-of-principle in vitro, in patients' cells, utilizing the TAT-LAD fusion protein. In this report, we present successful TAT-mediated ERT in an in vivo mouse model using E3-deficient mice. We demonstrate the delivery of TAT-LAD into E3-deficient mice tissues and that a single administration of TAT-LAD results in a significant increase in the enzymatic activity of the mitochondrial multienzyme complex pyruvate dehydrogenase complex within the liver, heart and, most importantly, the brain of TAT-LAD-treated E3-deficient mice. We believe that this TAT-mediated ERT approach could change the management of mitochondrial disorders and of other metabolic diseases in modern medicine.
Collapse
Affiliation(s)
- Matan Rapoport
- Department of Biochemistry and Molecular Biology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | | | | | | | | |
Collapse
|
47
|
Xu S, Galperin M, Melvin G, Horowits R, Raben N, Plotz P, Yu L. Impaired organization and function of myofilaments in single muscle fibers from a mouse model of Pompe disease. J Appl Physiol (1985) 2010; 108:1383-8. [PMID: 20223998 DOI: 10.1152/japplphysiol.01253.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pompe disease, a deficiency of lysosomal acid alpha-glucosidase, is a disorder of glycogen metabolism that can affect infants, children, or adults. In all forms of the disease, there is progressive muscle pathology leading to premature death. The pathology is characterized by accumulation of glycogen in lysosomes, autophagic buildup, and muscle atrophy. The purpose of the present investigation was to determine if myofibrillar dysfunction in Pompe disease contributes to muscle weakness beyond that attributed to atrophy. The study was performed on isolated myofibers dissected from severely affected fast glycolytic muscle in the alpha-glucosidase knockout mouse model. Psoas muscle fibers were first permeabilized, so that the contractile proteins could be directly relaxed or activated by control of the composition of the bathing solution. When normalized by cross-sectional area, single fibers from knockout mice produced 6.3 N/cm2 of maximum Ca2+-activated tension compared with 12.0 N/cm2 produced by wild-type fibers. The total protein concentration was slightly higher in the knockout mice, but concentrations of the contractile proteins myosin and actin remained unchanged. Structurally, X-ray diffraction showed that the actin and myosin filaments, normally arranged in hexagonal arrays, were disordered in the knockout muscle, and a lower fraction of myosin cross bridges was near the actin filaments in the relaxed muscle. The results are consistent with a disruption of actin and myosin interactions in the knockout muscles, demonstrating that impaired myofibrillar function contributes to weakness in the diseased muscle fibers.
Collapse
Affiliation(s)
- Sengen Xu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bldg. 50, Rm. 1531, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Del Gaizo A, Banerjee S, Terk M. Adult onset glycogen storage disease type II (adult onset Pompe disease): report and magnetic resonance images of two cases. Skeletal Radiol 2009; 38:1205-8. [PMID: 19771425 DOI: 10.1007/s00256-009-0797-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 02/02/2023]
Abstract
Glycogen storage disease type II (GSDII), also referred to as Pompe disease or acid maltase deficiency, is a rare inherited condition caused by a deficiency in acid alpha-glucosidase (GAA) enzyme activity (Tinkle andLeslie. GeneReviews, 2008. http://www.genetests.org). The condition is often classified by age of presentation,with infantile and late onset variants (Laforet et al. J Neurology 55:1122-8, 2000). Late onset tends to present with progressive proximal muscle weakness and respiratory insufficiency (Winkel et al. J Neurology 252:875-84, 2005). We report two cases of biopsy confirmed adulto nset GSDII, along with key Magnetic Resonance (MR) images.
Collapse
Affiliation(s)
- Andrew Del Gaizo
- Emory University School of Medicine, 1648 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
49
|
Abstract
The cornea is particularly suited to gene therapy. The cornea is readily accessible, normally transparent, and is somewhat sequestrated from the general circulation and the systemic immune system. The principle of genetic therapy for the cornea is to use an appropriate vector system to transfer a gene to the cornea itself, or to the ocular environs, or systemically, so that a transgenic protein will be expressed that will modulate congenital or acquired disease. The protein may be structural such as a collagen, or functionally active such as an enzyme, cytokine or growth factor that may modulate a pathological process. Alternatively, gene expression may be silenced by the use of modalities such as antisense oligonucleotides. Interestingly, despite a very considerable amount of work in animal models, clinical translation directed to gene therapy of the human cornea has been minimal. This is in contrast to gene therapy for monogenic inherited diseases of the retina, where promising early results of clinical trials for Leber's congenital amaurosis have already been published and a number of other trials are ongoing.
Collapse
Affiliation(s)
- Keryn A Williams
- Department of Ophthalmology, Flinders University, Adelaide, South Australia 5042, Australia.
| | | |
Collapse
|
50
|
The state of the field: myology. Curr Opin Neurol 2009; 22:498-9. [PMID: 19755869 DOI: 10.1097/wco.0b013e328330b2c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|