1
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
2
|
Yang X, Mai YX, Wei L, Peng LY, Pang FX, Wang LJ, Li ZP, Zhang JF, Jin AM. MLK3 silence suppressed osteogenic differentiation and delayed bone formation via influencing the bone metabolism and disturbing MAPK signaling. J Orthop Translat 2023; 38:98-105. [PMCID: PMC9619354 DOI: 10.1016/j.jot.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiao Yang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-xin Mai
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lan Wei
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-yang Peng
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng-xiang Pang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-jun Wang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-peng Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rehabilitation, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding author. Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China. Tel: +86 13724839892.
| | - Jin-fang Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Corresponding author. Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Tel: +86 13802983267.
| | - An-min Jin
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Corresponding author. Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Abstract
Infection with Human Immunodeficiency Virus (HIV)-1 continues to cause HIV-associated neurocognitive disorders despite combined antiretroviral therapy. Interferons (IFNs) are important for any antiviral immune response, but the lasting production of IFNα causes exhaustive activation leading eventually to progression to AIDS. Expression of IFNα in the HIV-exposed central nervous system has been linked to cognitive impairment and inflammatory neuropathology. In contrast, IFNβ exerts anti-inflammatory effects, appears to control, at least temporarily, lentiviral infection in the brain and provides neuroprotection. The dichotomy of type I IFN effects on HIV-1 infection and the associated brain injury will be discussed in this review, because the underlying mechanisms require further investigation to allow harnessing these innate immune factors for therapeutic purposes.
Collapse
Affiliation(s)
- Victoria E Thaney
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California
| | - Marcus Kaul
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California.,2 Division of Biomedical Sciences, School of Medicine, University of California , Riverside, Riverside, California
| |
Collapse
|
4
|
Dong W, Embury CM, Lu Y, Whitmire SM, Dyavarshetty B, Gelbard HA, Gendelman HE, Kiyota T. The mixed-lineage kinase 3 inhibitor URMC-099 facilitates microglial amyloid-β degradation. J Neuroinflammation 2016; 13:184. [PMID: 27401058 PMCID: PMC4940949 DOI: 10.1186/s12974-016-0646-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/27/2016] [Indexed: 02/28/2023] Open
Abstract
Background Amyloid-β (Aβ)-stimulated microglial inflammatory responses engage mitogen-activated protein kinase (MAPK) pathways in Alzheimer’s disease (AD). Mixed-lineage kinases (MLKs) regulate upstream MAPK signaling that include p38 MAPK and c-Jun amino-terminal kinase (JNK). However, whether MLK-MAPK pathways affect Aβ-mediated neuroinflammation is unknown. To this end, we investigated if URMC-099, a brain-penetrant small-molecule MLK type 3 inhibitor, can modulate Aβ trafficking and processing required for generating AD-associated microglial inflammatory responses. Methods Aβ1-42 (Aβ42) and/or URMC-099-treated murine microglia were investigated for phosphorylated mitogen-activated protein kinase kinase (MKK)3, MKK4 (p-MKK3, p-MKK4), p38 (p-p38), and JNK (p-JNK). These pathways were studied in tandem with the expression of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Gene expression of the anti-inflammatory cytokines, IL-4 and IL-13, was evaluated by real-time quantitative polymerase chain reaction. Aβ uptake and expression of scavenger receptors were measured. Protein trafficking was assessed by measures of endolysosomal markers using confocal microscopy. Results Aβ42-mediated microglial activation pathways were shown by phosphorylation of MKK3, MKK4, p38, and JNK and by expression of IL-1β, IL-6, and TNF-α. URMC-099 modulated microglial inflammatory responses with induction of IL-4 and IL-13. Phagocytosis of Aβ42 was facilitated by URMC-099 with up-regulation of scavenger receptors. Co-localization of Aβ and endolysosomal markers associated with enhanced Aβ42 degradation was observed. Conclusions URMC-099 reduced microglial inflammatory responses and facilitated phagolysosomal trafficking with associated Aβ degradation. These data demonstrate a new immunomodulatory role for URMC-099 to inhibit MLK and to induce microglial anti-inflammatory responses. Thus, URMC-099 may be developed further as a novel disease-modifying AD therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0646-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiguo Dong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.,Department of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People's Republic of China
| | - Christine M Embury
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Sarah M Whitmire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Harris A Gelbard
- Department of Neurology, Center for Neural Development & Disease, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, 14642, NY, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, 68198-5880, NE, USA
| | - Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
5
|
DeVaughn S, Müller-Oehring EM, Markey B, Brontë-Stewart HM, Schulte T. Aging with HIV-1 Infection: Motor Functions, Cognition, and Attention--A Comparison with Parkinson's Disease. Neuropsychol Rev 2015; 25:424-38. [PMID: 26577508 PMCID: PMC5519342 DOI: 10.1007/s11065-015-9305-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/08/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in highly active anti-retroviral therapy (HAART) in their various combinations have dramatically increased the life expectancies of HIV-infected persons. People diagnosed with HIV are living beyond the age of 50 but are experiencing the cumulative effects of HIV infection and aging on brain function. In HIV-infected aging individuals, the potential synergy between immunosenescence and HIV viral loads increases susceptibility to HIV-related brain injury and functional brain network degradation similar to that seen in Parkinson's disease (PD), the second most common neurodegenerative disorder in the aging population. Although there are clear diagnostic differences in the primary pathology of both diseases, i.e., death of dopamine-generating cells in the substantia nigra in PD and neuroinflammation in HIV, neurotoxicity to dopaminergic terminals in the basal ganglia (BG) has been implied in the pathogenesis of HIV and neuroinflammation in the pathogenesis of PD. Similar to PD, HIV infection affects structures of the BG, which are part of interconnected circuits including mesocorticolimbic pathways linking brainstem nuclei to BG and cortices subserving attention, cognitive control, and motor functions. The present review discusses the combined effects of aging and neuroinflammation in HIV individuals on cognition and motor function in comparison with age-related neurodegenerative processes in PD. Despite the many challenges, some HIV patients manage to age successfully, most likely by redistribution of neural network resources to enhance function, as occurs in healthy elderly; such compensation could be curtailed by emerging PD.
Collapse
Affiliation(s)
- S DeVaughn
- Bioscience Division, Neuroscience Program, SRI International, 333 Ravenswood Ave, Menlo Park, CA, USA
- Pacific Graduate School of Psychology, Palo Alto University, Palo Alto, CA, USA
| | - E M Müller-Oehring
- Bioscience Division, Neuroscience Program, SRI International, 333 Ravenswood Ave, Menlo Park, CA, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - B Markey
- Pacific Graduate School of Psychology, Palo Alto University, Palo Alto, CA, USA
| | - H M Brontë-Stewart
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - T Schulte
- Bioscience Division, Neuroscience Program, SRI International, 333 Ravenswood Ave, Menlo Park, CA, USA.
- Pacific Graduate School of Psychology, Palo Alto University, Palo Alto, CA, USA.
| |
Collapse
|
6
|
Adjunctive and long-acting nanoformulated antiretroviral therapies for HIV-associated neurocognitive disorders. Curr Opin HIV AIDS 2015; 9:585-90. [PMID: 25226025 DOI: 10.1097/coh.0000000000000111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are pleased to review current and future strategies being developed to modulate neuroinflammation while reducing residual viral burden in the central nervous system. This has been realized by targeted long-acting antiretroviral nano and adjunctive therapies being developed for HIV-infected people. Our ultimate goal is to eliminate virus from its central nervous system reservoirs and, in so doing, reverse the cognitive and motor dysfunctions. RECENT FINDINGS Herein, we highlight our laboratories' development of adjunctive and nanomedicine therapies for HIV-associated neurocognitive disorders. An emphasis is placed on drug-drug interactions that target both the viral life cycle and secretory proinflammatory neurotoxic factors and signaling pathways. SUMMARY Antiretroviral therapy has improved the quality and duration of life for people living with HIV-1. A significant long-term comorbid illness is HIV-associated neurocognitive disorders. Symptoms, although reduced in severity, are common. Disease occurs, in part, through continued low-level viral replication, inducing secondary glial neuroinflammatory activities. Our recent works and those of others have seen disease attenuated in animal models through the use of adjunctive and long-acting reservoir-targeted nanoformulated antiretroviral therapy. The translation of these inventions from animals to humans is the focus of this review.
Collapse
|
7
|
Lamers SL, Fogel GB, Nolan DJ, McGrath MS, Salemi M. HIV-associated neuropathogenesis: a systems biology perspective for modeling and therapy. Biosystems 2014; 119:53-61. [PMID: 24732754 DOI: 10.1016/j.biosystems.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/19/2022]
Abstract
Despite the development of powerful antiretroviral drugs, HIV-1 associated neurological disorders (HAND) will affect approximately half of those infected with HIV-1. Combined anti-retroviral therapy (cART) targets viral replication and increases T-cell counts, but it does not always control macrophage polarization, brain infection or inflammation. Moreover, it remains difficult to identify those at risk for HAND. New therapies that focus on modulating host immune response by making use of biological pathways could prove to be more effective than cART for the treatment of neuroAIDS. Additionally, while numerous HAND biomarkers have been suggested, they are of little use without methods for appropriate data integration and a systems-level interpretation. Machine learning, could be used to develop multifactorial computational models that provide clinicians and researchers with the ability to identify which factors (in what combination and relative importance) are considered important to outcome.
Collapse
Affiliation(s)
| | - Gary B Fogel
- Natural Selection, Inc., 5910 Pacific Center Blvd Suite 315, San Diego, CA 92121, USA.
| | - David J Nolan
- University of Florida, 2055 Mowry Road, Department of Pathology and Laboratory Medicine, Gainesville, FL 32610, USA.
| | - Michael S McGrath
- University of California, 1001 Potrero Avenue, Building 20, 4(th) Floor, Room 2407, San Francisco, CA 94110-3518, USA.
| | - Marco Salemi
- University of Florida, 2055 Mowry Road, Department of Pathology and Laboratory Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
8
|
Goodfellow VS, Loweth CJ, Ravula SB, Wiemann T, Nguyen T, Xu Y, Todd DE, Sheppard D, Pollack S, Polesskaya O, Marker DF, Dewhurst S, Gelbard HA. Discovery, synthesis, and characterization of an orally bioavailable, brain penetrant inhibitor of mixed lineage kinase 3. J Med Chem 2013; 56:8032-48. [PMID: 24044867 PMCID: PMC4032177 DOI: 10.1021/jm401094t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibition of mixed lineage kinase 3 (MLK3) is a potential strategy for treatment of Parkinson's disease and HIV-1 associated neurocognitive disorders (HAND), requiring an inhibitor that can achieve significant brain concentration levels. We report here URMC-099 (1) an orally bioavailable (F = 41%), potent (IC50 = 14 nM) MLK3 inhibitor with excellent brain exposure in mouse PK models and minimal interference with key human CYP450 enzymes or hERG channels. The compound inhibits LPS-induced TNFα release in microglial cells, HIV-1 Tat-induced release of cytokines in human monocytes and up-regulation of phospho-JNK in Tat-injected brains of mice. Compound 1 likely functions in HAND preclinical models by inhibiting multiple kinase pathways, including MLK3 and LRRK2 (IC50 = 11 nM). We compare the kinase specificity and BBB penetration of 1 with CEP-1347 (2). Compound 1 is well tolerated, with excellent in vivo activity in HAND models, and is under investigation for further development.
Collapse
Affiliation(s)
| | - Colin J. Loweth
- Califia Bio Inc, 11575 Sorrento Valley Road, San Diego, California
| | | | - Torsten Wiemann
- Califia Bio Inc, 11575 Sorrento Valley Road, San Diego, California
| | - Thong Nguyen
- Califia Bio Inc, 11575 Sorrento Valley Road, San Diego, California
| | | | - Daniel E. Todd
- BioFocus, Chesterford Research Park, Saffron Walden, Essex CB10 1XL, UK
| | - David Sheppard
- BioFocus, Chesterford Research Park, Saffron Walden, Essex CB10 1XL, UK
| | - Scott Pollack
- BioFocus, Chesterford Research Park, Saffron Walden, Essex CB10 1XL, UK
| | - Oksana Polesskaya
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| | - Daniel F. Marker
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| | - Stephen Dewhurst
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| | - Harris A. Gelbard
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| |
Collapse
|
9
|
Vo QT, Cox C, Li X, Jacobson LP, McKaig R, Sacktor N, Selnes OA, Martin E, Becker JT, Miller EN. Neuropsychological test performance before and after HIV-1 seroconversion: the Multicenter AIDS Cohort Study. J Neurovirol 2013; 19:24-31. [PMID: 23229349 PMCID: PMC3568242 DOI: 10.1007/s13365-012-0136-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/14/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022]
Abstract
The objective of this study is to compare neuropsychological test performance before and after HIV-1 seroconversion in order to identify possible acute changes in psychomotor speed, memory, attention, and concentration secondary to seroconversion. The study utilized mixed effects models to examine longitudinal neuropsychological test data. We conducted a nested cohort study of 362 male HIV-1 seroconverters enrolled in the Multicenter AIDS Cohort Study. We used linear mixed models with random subject effects to compare repeated neuropsychological test outcomes from 5 years before seroconversion to 2 years after seroconversion on the Trail Making Test (parts A and B), Symbol-Digit Test, Grooved Pegboard (dominant and non-dominant hands), Stroop Color-Interference Test, Rey Auditory Verbal Learning Test, and the CalCAP Reaction Time Test. We found no significant changes in the time-dependent score after seroconversion for the majority of neuropsychological tests used in the Multicenter AIDS Cohort Study. There was a significant change in time trend after seroconversion on part B of the Trail Making Test (p=0.042), but the difference only represented a 2 % decrease in performance. We found the following characteristics to be associated with worse neuropsychological test performance: lower education levels, history of depression, older age, and no previous neurocognitive testing (p< .05). Our results suggest that despite a 50 % decrease in CD4 cell count immediately following infection, HIV-1 does not appear to have a measurable effect on psychomotor or complex cognitive processing for up to 2 years following infection, using this set of neurocognitive measures.
Collapse
Affiliation(s)
- Quynh T Vo
- Division of AIDS, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 2012; 7:686-700. [PMID: 22391864 PMCID: PMC3419353 DOI: 10.1007/s11481-012-9345-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/06/2012] [Indexed: 12/15/2022]
Abstract
Changes in synapse structure occur in frontal neocortex with HIV encephalitis (HIVE) and may contribute to HIV-associated neurocognitive disorders (HAND). A postmortem survey was conducted to determine if mRNAs involved in synaptic transmission are perturbed in dorsolateral prefrontal cortex (DLPFC) in subjects with HIVE or HAND. Expression of the opioid neurotransmitter preproenkephalin mRNA (PENK) was significantly decreased in a sampling of 446 brain specimens from HIV-1 infected people compared to 67 HIV negative subjects. Decreased DLPFC PENK was most evident in subjects with HIVE and/or increased expression of interferon regulatory factor 1 mRNA (IRF1). Type 2 dopamine receptor mRNA (DRD2L) was decreased significantly, but not in the same set of subjects with PENK dysregulation. DRD2L downregulation occurred primarily in the subjects without HIVE or neurocognitive impairment. Subjects with neurocognitive impairment often failed to significantly downregulate DRD2L and had abnormally high IRF1 expression. Conclusion: Dysregulation of synaptic preproenkephalin and DRD2L in frontal neocortex can occur with and without neurocognitive impairment in HIV-infected people. Downregulation of DRD2L in the prefrontal cortex was associated with more favorable neuropsychological and neuropathological outcomes; the failure to downregulate DRD2L was significantly less favorable. PENK downregulation was related neuropathologically to HIVE, but was not related to neuropsychological outcome independently. Emulating endogenous synaptic plasticity pharmacodynamically could enhance synaptic accommodation and improve neuropsychological and neuropathological outcomes in HIV/AIDS.
Collapse
|
11
|
Mitogen-activated protein kinase p38 in HIV infection and associated brain injury. J Neuroimmune Pharmacol 2011; 6:202-15. [PMID: 21286833 DOI: 10.1007/s11481-011-9260-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/23/2011] [Indexed: 02/05/2023]
Abstract
Infection with human immunodeficiency virus-1 (HIV-1) often leads to HIV-associated neurocognitive disorders (HAND) prior to the progression to acquired immunodeficiency syndrome (AIDS). At the cellular level, mitogen-activated protein kinases (MAPK) provide a family of signal transducers that regulate many processes in response to extracellular stimuli and environmental stress, such as viral infection. Recently, evidence has accumulated suggesting that p38 MAPK plays crucial roles in various pathological processes associated with HIV infection, ranging from macrophage activation to neurotoxicity and impairment of neurogenesis to lymphocyte apoptosis. Thus, p38 MAPK, which has generally been linked to stress-related signal transduction, may be an important mediator in the development of AIDS and HAND.
Collapse
|