1
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2024; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Shang S, Wang L, Lu X. β-Hydroxybutyrate enhances astrocyte glutamate uptake through EAAT1 expression regulation. Mol Cell Neurosci 2024; 131:103959. [PMID: 39179164 DOI: 10.1016/j.mcn.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
β-Hydroxybutyrate (BHB) has been reported to exert neuroprotective functions and is considered a promising treatment for neurodegenerative diseases such as Parkinson's and Alzheimer's. Numerous studies have revealed BHB's multifaceted roles, including anti-senescence, anti-oxidative, and anti-inflammatory activities. However, the underlying mechanisms warrant further investigation. Astrocytes, the most abundant glial cells in the central nervous system, play a pivotal role in the development and progression of neurodegenerative diseases. While BHB is known to alter neuronal metabolism and function, its effects on astrocytes remain poorly understood. In this study, we conducted transcriptome sequencing analysis to identify differentially expressed genes induced by BHB in astrocytes and found that the gene Solute carrier family 1 member 3 (Slc1a3), encoding the glutamate transporter EAAT1, was significantly upregulated by BHB treatment. Cellular and animal-based experiments confirmed an increase in EAAT1 protein expression in primary astrocytes and the hippocampus of mice treated with BHB. This upregulation may be due to the activation of the Ca2+/CAMKII pathway by BHB. Furthermore, BHB improved astrocytes' glutamate uptake and partially restored neuronal viability impaired by glutamate-induced excitotoxicity when astrocytes were functionalized. Our results suggest that BHB may alleviate neuronal damage caused by excessive glutamate by enhancing the glutamate absorption and uptake capacity of astrocytes. This study proposes a novel mechanism for the neuroprotective effects of BHB and reinforces its beneficial impact on the central nervous system (CNS).
Collapse
Affiliation(s)
- Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Leilei Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
3
|
Currais A, Kepchia D, Liang Z, Maher P. The Role of AMP-activated Protein Kinase in Oxytosis/Ferroptosis: Protector or Potentiator? Antioxid Redox Signal 2024; 41:e1173-e1186. [PMID: 35243895 PMCID: PMC11693968 DOI: 10.1089/ars.2022.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/20/2023]
Abstract
Significance: Evidence for a role for the oxytosis/ferroptosis regulated cell death pathway in aging and neurodegenerative diseases has been growing over the past few years. Because of this, there is an increasing necessity to identify endogenous signaling pathways that can be modulated to protect cells from this form of cell death. Recent Advances: Recently, several studies have identified a protective role for the AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase 1 (ACC1) pathway in oxytosis/ferroptosis. However, there are also a number of studies suggesting that this pathway contributes to cell death initiated by various inducers of oxytosis/ferroptosis. Critical Issues: The goals of this review are to provide an overview and analysis of the published studies and highlight specific areas where more research is needed. Future Directions: Much remains to be learned about AMPK signaling in oxytosis/ferroptosis, especially the conditions where it is protective. Furthermore, the role of AMPK signaling in the brain and especially the aging brain needs further investigation.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Devin Kepchia
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
4
|
He K, Li Y, Xiong W, Xing Y, Gao W, Du Y, Kong W, Chen L, Yang X, Dai Z. Sevoflurane exposure accelerates the onset of cognitive impairment via promoting p-Drp1 S616-mediated mitochondrial fission in a mouse model of Alzheimer's disease. Free Radic Biol Med 2024; 225:699-710. [PMID: 39490772 DOI: 10.1016/j.freeradbiomed.2024.10.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Sevoflurane is an inhalational anesthetic widely used in clinical settings. Accumulating evidence has shown that sevoflurane exposure may impair cognitive function, potentially contributing to Alzheimer's disease (AD)-related changes. However, the underlying mechanism remains poorly understood. In the present study, 4-month-old 5xFAD mice were used to investigate the effect of sevoflurane exposure on cognitive decline by Y-maze test and novel object recognition test. We found that sevoflurane exposure promoted the appearance of cognitive impairment of 5xFAD mice, accompanied with the deterioration of Aβ accumulation, synaptic defects, and neuroinflammation. Additionally, sevoflurane was also found to aggravate mitochondrial fission of 5xFAD mice, as indicated by the further upregulated expression of p-Drp1S616. Moreover, sevoflurane significantly increased mitochondrial damage and dysfunction of AD models both in vitro and in vivo experiments. Seahorse XF analysis further indicated that sevoflurane exposure facilitated a metabolic shift from oxidative phosphorylation to glycolysis. Further rescue experiments revealed that a key mechanism underlying sevoflurane-induced cognitive impairment was the excessive mitochondrial fission, as supported by the result that the mitochondrial fission inhibitor Mdivi-1 counteracted the sevoflurane-mediated deteriorative effects in 5xFAD mice. These findings provided evidence for a new mechanism of sevoflurane exposure accelerating AD-related cognitive decline.
Collapse
Affiliation(s)
- Kaiwu He
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Youzhi Li
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Wei Xiong
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Yanmei Xing
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Wenli Gao
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Yuting Du
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Wei Kong
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Almanza DLV, Koletar MM, Lai AY, Lam WW, Joo L, Hill ME, Stanisz GJ, McLaurin J, Stefanovic B. High caloric intake improves neuronal metabolism and functional hyperemia in a rat model of early AD pathology. Theranostics 2024; 14:7405-7423. [PMID: 39659583 PMCID: PMC11626934 DOI: 10.7150/thno.98793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction: While obesity has been linked to both increased and decreased rate of cognitive decline in Alzheimer's Disease (AD) patients, there is no consensus on the interaction between obesity and AD. Methods: The TgF344-AD rat model was used to investigate the effects of high carbohydrate, high fat (HCHF) diet on brain glucose metabolism and hemodynamics in the presence or absence of AD transgenes, in presymptomatic (6-month-old) vs. symptomatic (12-month-old) stages of AD progression using non-invasive neuroimaging. Results: In presymptomatic AD, HCHF exerted detrimental effects, attenuating both hippocampal glucose uptake and resting perfusion in both non-transgenic and TgAD cohorts, when compared to CHOW-fed cohorts. In contrast, HCHF consumption was beneficial in established AD, resolving the AD-progression associated attenuation in hippocampal glucose uptake and functional hyperemia. Discussion: Whereas HCHF was harmful to the presymptomatic AD brain, it ameliorated deficits in hippocampal metabolism and neurovascular coupling in symptomatic TgAD rats.
Collapse
Affiliation(s)
- Dustin Loren V. Almanza
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Aaron Y. Lai
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Wilfred W. Lam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Lewis Joo
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Mary E. Hill
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Greg J. Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| | - JoAnne McLaurin
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Bojana Stefanovic
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
7
|
Huang L, Fu Y, Zhang Y, Hu H, Ma L, Ge Y, Zhao Y, Zhang Y, Chen S, Feng J, Cheng W, Tan L, Yu J. Identifying modifiable factors associated with neuroimaging markers of brain health. CNS Neurosci Ther 2024; 30:e70057. [PMID: 39404063 PMCID: PMC11474882 DOI: 10.1111/cns.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Brain structural alterations begin long before the presentation of brain disorders; therefore, we aimed to systematically investigate a wide range of influencing factors on neuroimaging markers of brain health. METHODS Utilizing data from 30,651 participants from the UK Biobank, we explored associations between 218 modifiable factors and neuroimaging markers of brain health. We conducted an exposome-wide association study using the least absolute shrinkage and selection operator (LASSO) technique. Restricted cubic splines (RCS) were further employed to estimate potential nonlinear correlations. Weighted standardized scores for neuroimaging markers were computed based on the estimates for individual factors. Finally, stratum-specific analyses were performed to examine differences in factors affecting brain health at different ages. RESULTS The identified factors related to neuroimaging markers of brain health fell into six domains, including systematic diseases, lifestyle factors, personality traits, social support, anthropometric indicators, and biochemical markers. The explained variance percentage of neuroimaging markers by weighted standardized scores ranged from 0.5% to 7%. Notably, associations between systematic diseases and neuroimaging markers were stronger in older individuals than in younger ones. CONCLUSION This study identified a series of factors related to neuroimaging markers of brain health. Targeting the identified factors might help in formulating effective strategies for maintaining brain health.
Collapse
Affiliation(s)
- Liang‐Yu Huang
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yan Fu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yi Zhang
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - He‐Ying Hu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Ling‐Zhi Ma
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yi‐Jun Ge
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yong‐Li Zhao
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Ya‐Ru Zhang
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Wei Cheng
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
8
|
Madreiter-Sokolowski CT, Hiden U, Krstic J, Panzitt K, Wagner M, Enzinger C, Khalil M, Abdellatif M, Malle E, Madl T, Osto E, Schosserer M, Binder CJ, Olschewski A. Targeting organ-specific mitochondrial dysfunction to improve biological aging. Pharmacol Ther 2024; 262:108710. [PMID: 39179117 DOI: 10.1016/j.pharmthera.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
In an aging society, unveiling new anti-aging strategies to prevent and combat aging-related diseases is of utmost importance. Mitochondria are the primary ATP production sites and key regulators of programmed cell death. Consequently, these highly dynamic organelles play a central role in maintaining tissue function, and mitochondrial dysfunction is a pivotal factor in the progressive age-related decline in cellular homeostasis and organ function. The current review examines recent advances in understanding the interplay between mitochondrial dysfunction and organ-specific aging. Thereby, we dissect molecular mechanisms underlying mitochondrial impairment associated with the deterioration of organ function, exploring the role of mitochondrial DNA, reactive oxygen species homeostasis, metabolic activity, damage-associated molecular patterns, biogenesis, turnover, and dynamics. We also highlight emerging therapeutic strategies in preclinical and clinical tests that are supposed to rejuvenate mitochondrial function, such as antioxidants, mitochondrial biogenesis stimulators, and modulators of mitochondrial turnover and dynamics. Furthermore, we discuss potential benefits and challenges associated with the use of these interventions, emphasizing the need for organ-specific approaches given the unique mitochondrial characteristics of different tissues. In conclusion, this review highlights the therapeutic potential of addressing mitochondrial dysfunction to mitigate organ-specific aging, focusing on the skin, liver, lung, brain, skeletal muscle, and lung, as well as on the reproductive, immune, and cardiovascular systems. Based on a comprehensive understanding of the multifaceted roles of mitochondria, innovative therapeutic strategies may be developed and optimized to combat biological aging and promote healthy aging across diverse organ systems.
Collapse
Affiliation(s)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Research Unit of Early Life Determinants, Medical University of Graz, Austria
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Katrin Panzitt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Medical University of Graz
| | - Markus Schosserer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Olschewski
- Department of Anesthesiology and Intensive Care Medicine, LBI for Lung Vascular Research, Medical University of Graz, Austria.
| |
Collapse
|
9
|
Ameen AO, Nielsen SW, Kjær MW, Andersen JV, Westi EW, Freude KK, Aldana BI. Metabolic preferences of astrocytes: Functional metabolic mapping reveals butyrate outcompetes acetate. J Cereb Blood Flow Metab 2024:271678X241270457. [PMID: 39340267 PMCID: PMC11563520 DOI: 10.1177/0271678x241270457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 09/30/2024]
Abstract
Disruptions to the gut-brain-axis have been linked to neurodegenerative disorders. Of these disruptions, reductions in the levels of short-chain fatty acids (SCFAs), like butyrate, have been observed in mouse models of Alzheimer's disease (AD). Butyrate supplementation in mice has shown promise in reducing neuroinflammation, amyloid-β accumulation, and enhancing memory. However, the underlying mechanisms remain unclear. To address this, we investigated the impact of butyrate on energy metabolism in mouse brain slices, primary cultures of astrocytes and neurons and in-vivo by dynamic isotope labelling with [U-13C]butyrate and [1,2-13C]acetate to map metabolism via mass spectrometry. Metabolic competition assays in cerebral cortical slices revealed no competition between butyrate and the ketone body, β-hydroxybutyrate, but competition with acetate. Astrocytes favoured butyrate metabolism compared to neurons, suggesting that the astrocytic compartment is the primary site of butyrate metabolism. In-vivo metabolism investigated in the 5xFAD mouse, an AD pathology model, showed no difference in 13C-labelling of TCA cycle metabolites between wild-type and 5xFAD brains, but butyrate metabolism remained elevated compared to acetate in both groups, indicating sustained uptake and metabolism in 5xFAD mice. Overall, these findings highlight the role of astrocytes in butyrate metabolism and the potential use of butyrate as an alternative brain fuel source.
Collapse
Affiliation(s)
- Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian W Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin W Kjær
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
12
|
Fung KW, Baye F, Baik SH, McDonald CJ. Tamsulosin use in benign prostatic hyperplasia and risks of Parkinson's disease, Alzheimer's disease and mortality: An observational cohort study of elderly Medicare enrollees. PLoS One 2024; 19:e0309222. [PMID: 39172922 PMCID: PMC11340942 DOI: 10.1371/journal.pone.0309222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
PURPOSE To study the effects of benign prostatic hyperplasia treatments, namely: alpha-adrenergic receptor blockers, 5-alpha-reductase inhibitors and phosphodiesterase-5 inhibitors on the risk of Parkinson's disease, Alzheimer's disease and mortality. MATERIALS AND METHODS All male Medicare enrollees aged 65 or above who were diagnosed with benign prostatic hyperplasia and received one of the study drugs between 2007-2020 were followed-up for the three outcomes. We used Cox regression analysis to assess the relative risk of each of the outcomes for each study drug compared to the most prescribed drug, tamsulosin, while controlling for demographic, socioeconomic and comorbidity factors. RESULTS AND CONCLUSIONS The study analyzed 1.1 million patients for a mean follow-up period of 3.1 years from being prescribed one of the study drugs. For all outcomes, patients on tamsulosin were used as the reference for comparison. For mortality, alfuzosin was associated with 27% risk reduction (HR 0.73, 95%CI 0.68-0.78), and doxazosin with 6% risk reduction (HR 0.94, 95%CI 0.91-0.97). For Parkinson's disease, terazosin was associated with 26% risk reduction (HR 0.74, 95%CI 0.66-0.83), and doxazosin with 21% risk reduction (HR 0.79, 95%CI 0.72-0.88). For Alzheimer's disease, terazosin was associated with 27% risk reduction (HR 0.73, 95%CI 0.65-0.82), and doxazosin with 16% risk reduction (HR 0.84, 95%CI 0.76-0.92). Tadalafil was associated with risk reduction (27-40%) in all 3 outcomes. More research is needed to elucidate the underlying mechanisms of these observations. Given the availability of safer alternatives for treating benign prostatic hyperplasia, caution should be exercised when using tamsulosin in elderly patients, especially those with an increased risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- Kin Wah Fung
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fitsum Baye
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seo H. Baik
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Clement J. McDonald
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Leclerc M, Tremblay C, Bourassa P, Schneider JA, Bennett DA, Calon F. Lower GLUT1 and unchanged MCT1 in Alzheimer's disease cerebrovasculature. J Cereb Blood Flow Metab 2024; 44:1417-1432. [PMID: 38441044 PMCID: PMC11342728 DOI: 10.1177/0271678x241237484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
The brain is a highly demanding organ, utilizing mainly glucose but also ketone bodies as sources of energy. Glucose transporter-1 (GLUT1) and monocarboxylates transporter-1 (MCT1) respectively transport glucose and ketone bodies across the blood-brain barrier. While reduced glucose uptake by the brain is one of the earliest signs of Alzheimer's disease (AD), no change in the uptake of ketone bodies has been evidenced yet. To probe for changes in GLUT1 and MCT1, we performed Western immunoblotting in microvessel extracts from the parietal cortex of 60 participants of the Religious Orders Study. Participants clinically diagnosed with AD had lower cerebrovascular levels of GLUT1, whereas MCT1 remained unchanged. GLUT1 reduction was associated with lower cognitive scores. No such association was found for MCT1. GLUT1 was inversely correlated with neuritic plaques and cerebrovascular β-secretase-derived fragment levels. No other significant associations were found between both transporters, markers of Aβ and tau pathologies, sex, age at death or apolipoprotein-ε4 genotype. These results suggest that, while a deficit of GLUT1 may underlie the reduced transport of glucose to the brain in AD, no such impairment occurs for MCT1. This study thus supports the exploration of ketone bodies as an alternative energy source for the aging brain.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| |
Collapse
|
14
|
Xie J, Luo Y, Wei L, Fan H, Wang Y, Wang Q, Zou Y, Luo Y, Tang Y. Effects of environmental enrichment on GLUT expression in the visual cortex of amblyopic rats. Brain Res 2024; 1836:148933. [PMID: 38604554 DOI: 10.1016/j.brainres.2024.148933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE To investigate the potential changes of glucose metabolism and glucose transporter protein (GLUT) in the visual cortex of formally deprived amblyopic rats, as well as the effects of enriched environments on the levels of nerve conduction and glucose metabolism in the visual cortex of amblyopic rats. METHODS 36 rats were randomly divided into three groups: CON + SE (n = 12), MD + SE (n = 12) and MD + EE (n = 12). The right eyelids of both MD + SE and MD + EE groups were sutured. After successful modelling, the MD + EE group was maintained in an enriched environment, and the other two groups were kept in the same environment. Pattern visual evoked potentials (PVEP) was used to confirm models' effect, glucose metabolism was analyzed by Micro-PET/CT (18F-FDG), and the protein as well as mRNA expression levels of GLUT were detected by Western Blot and quantitative RT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction) analyses, site of GLUT expression by immunofluorescence (IF). RESULTS After suture modelling, both the MD + EE and MD + SE groups objective visual nerve conduction function decreased, the glucose metabolism in the visual cortex was markedly lower. After the enriched environment intervention, it recovered in the MD + EE group. The expression levels of GLUT1 and GLUT3 were increased in the MD + EE group in comparison with the MD + SE group. GLUT1 was primarily expressed on astrocytes and endothelial cells, but GLUT3 was mainly expressed on neurons. CONCLUSION Enrichment of the environment exhibited a therapeutic effect on amblyopia, which could be related to the enhancement of glucose metabolism and GLUT expression in the visual cortex.
Collapse
Affiliation(s)
- Juan Xie
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China; Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Yue Luo
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Lingjun Wei
- Department of Ophthalmology, Zhoukou Central Hospital, Zhoukou, China
| | - Haobo Fan
- Department of Optometry and Pediatric Ophthalmology, Ineye Hospital of Chengdu University of TCM, Chengdu, China
| | - Ying Wang
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Qian Wang
- Department of Ophthalmology, Yulin First Hospital, Yulin, China
| | - Yunchun Zou
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China; Department of Optometry, North Sichuan Medical College, Nanchong, China.
| | - Yuehan Luo
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Yangyu Tang
- Department of Optometry, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
15
|
Reddy BL, Reddy VS, Saier MH. Health Benefits of Intermittent Fasting. Microb Physiol 2024; 34:142-152. [PMID: 38955141 PMCID: PMC11262566 DOI: 10.1159/000540068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
We propose that intermittent fasting (time-restricted eating), in agreement with the conclusions of other biologists, as revealed in recent publications, promotes the achievement of numerous health benefits including the extension of human and animal lifespans. Background: There is evidence, obtained both with animal model systems and with humans, that intermittent fasting has health benefits. These benefits include extended longevity, weight loss, and counteracting various disease conditions. Such procedures positively influence the benefits of human tissue-specific microbiomes and minimize the consequences of organellar apoptosis. Key Messages: In this review, we attempt to summarize the predominant evidence, published in the scientific literature, relevant to the conclusions that in general, and in many specific instances, intermittent fasting has long-term benefits to animals, including humans, with respect to overall and specific organismal health and longevity.
Collapse
Affiliation(s)
- B. Lakshmi Reddy
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| | | | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| |
Collapse
|
16
|
Li J, Huang Q, Qi N, He K, Li S, Huang L, Pan F, Ren S, Hua F, Huang Y, Guan Y, Guo Q, Zhao J, Xie F. The associations between synaptic density and "A/T/N" biomarkers in Alzheimer's disease: An 18F-SynVesT-1 PET/MR study. J Cereb Blood Flow Metab 2024; 44:1199-1207. [PMID: 38295871 PMCID: PMC11179616 DOI: 10.1177/0271678x241230733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 06/13/2024]
Abstract
A newly developed SV2A radiotracer, 18F-SynVesT-1, was used in this study to investigate synaptic density and its association with Alzheimer's disease (AD) "A/T/N" biomarkers. The study included a cohort of 97 subjects, consisting of 64 patients with cognitive impairment (CI) and 33 individuals with normal cognition (CU). All subjects underwent 18F-SynVesT-1 PET/MR and 18F-florbetapir PET/CT scans. Additionally, a subgroup of individuals also underwent 18F-MK-6240, 18F-FDG PET/CT, plasma Aβ42/Aβ40 and p-tau181 tests. The differences in synaptic density between the groups and the correlations between synaptic density and AD "A/T/N" biomarkers were analyzed. The results showed that compared to the CU group, the CI with Aβ+ (CI+) group exhibited the most pronounced synapse loss in the hippocampus, with some loss also observed in the neocortex. Furthermore, synaptic density in the hippocampus and parahippocampal gyrus showed associations with AD biomarkers detected by both imaging and plasma tests in the CI group. The associations between synaptic density and FDG uptake and hippocampal volume were also observed in the CI+ group. In conclusion, the study demonstrated significant synaptic density loss, as measured by the promising tracer 18F-SynVesT-1, and its close correlation with "A/T/N" biomarkers in patients with both Alzheimer's clinical syndrome and pathological changes.
Collapse
Affiliation(s)
- Junpeng Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Qi
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Huang
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Tidman MM, White DR, White TA. Impact of a keto diet on symptoms of Parkinson's disease, biomarkers, depression, anxiety and quality of life: a longitudinal study. Neurodegener Dis Manag 2024; 14:97-110. [PMID: 38869924 PMCID: PMC11457624 DOI: 10.1080/17582024.2024.2352394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
Aim: Evidence suggests low-carbohydrate diets (LCHF) may assist in treating neurodegenerative diseases such as Parkinson's disease (PD); however, gaps exist in the literature.Patients & methods: We conducted a small 24-week pilot study to investigate the effects of an LCHF diet on motor and nonmotor symptoms, health biomarkers, anxiety, and depression in seven people with PD. We also captured patient experiences during the process (quality of life [QoL]).Results: Participants reported improved biomarkers, enhanced cognition, mood, motor and nonmotor symptoms, and reduced pain and anxiety. Participants felt improvements enhanced their QoL.Conclusion: We conclude that an LCHF intervention is safe, feasible, and potentially effective in mitigating the symptoms of this disorder. However, more extensive randomized controlled studies are needed to create generalizable recommendations.
Collapse
Affiliation(s)
- Melanie M Tidman
- College of Graduate Health Studies, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO 63501, USA
- Doctor of Health Science Program, School of Health Sciences, Liberty University, 1971 University Blvd Lynchburg, VA 24515, USA
- PhD in Occupational Therapy Program, Dr. Pallavi Patel College of Health Care Sciences, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL33328-2004, USA
| | - Dawn Reid White
- College of Graduate Health Studies, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO 63501, USA
- Benard College, University of the Pacific, 3601 Pacific Ave, Stockton, CA95211, USA
- Research Fellow, Evidence Synthesis Group, EBHC South America: A JBI Affiliated Group, Calle Cartavio 406 Lima, Lima, 15023, Peru
| | - Tim A White
- Benard College, University of the Pacific, 3601 Pacific Ave, Stockton, CA95211, USA
- School of Health Sciences, Department of Healthcare Administration, American Public University Systems, Full-time faculty, 111 West Congress Street, Charles Town, WV25414, USA
- Department of Global Health Services & Administration, School of Business, University of Maryland Global Campus, 3501 University Blvd E, Adelphi, MD20783, USA
| |
Collapse
|
18
|
Mares J, Costa AP, Dartora WJ, Wartchow KM, Lazarian A, Bennett DA, Nuriel T, Menon V, McIntire LBJ. Brain and serum lipidomic profiles implicate Lands cycle acyl chain remodeling association with APOEε4 and mild cognitive impairment. Front Aging Neurosci 2024; 16:1419253. [PMID: 38938596 PMCID: PMC11210445 DOI: 10.3389/fnagi.2024.1419253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction At least one-third of the identified risk alleles from Genome-Wide Association Studies (GWAS) of Alzheimer's disease (AD) are involved in lipid metabolism, lipid transport, or direct lipid binding. In fact, a common genetic variant (ε4) in a cholesterol and phospholipid transporter, Apolipoprotein E (APOEε4), is the primary genetic risk factor for late-onset AD. In addition to genetic variants, lipidomic studies have reported severe metabolic dysregulation in human autopsy brain tissue, cerebrospinal fluid, blood, and multiple mouse models of AD. Methods We aimed to identify an overarching metabolic pathway in lipid metabolism by integrating analyses of lipidomics and transcriptomics from the Religious Order Study and Rush Memory Aging Project (ROSMAP) using differential analysis and network correlation analysis. Results Coordinated differences in lipids were found to be dysregulated in association with both mild cognitive impairment (MCI) and APOEε4 carriers. Interestingly, these correlations were weakened when adjusting for education. Indeed, the cognitively non-impaired APOEε4 carriers have higher education levels in the ROSMAP cohort, suggesting that this lipid signature may be associated with a resilience phenotype. Network correlation analysis identified multiple differential lipids within a single module that are substrates and products in the Lands Cycle for acyl chain remodeling. In addition, our analyses identified multiple genes in the Lands Cycle acyl chain remodeling pathway, which were associated with cognitive decline independent of amyloid-β (Aβ) load and tau tangle pathologies. Discussion Our studies highlight the critical differences in acyl chain remodeling in brain tissue from APOEε4 carriers and individual non-carriers with MCI. A coordinated lipid profile shift in dorsolateral prefrontal cortex from both APOEε4 carriers and MCI suggests differences in lipid metabolism occur early in disease stage and highlights lipid homeostasis as a tractable target for early disease modifying intervention.
Collapse
Affiliation(s)
- Jason Mares
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Ana Paula Costa
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - William J. Dartora
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Krista M. Wartchow
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Artur Lazarian
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Tal Nuriel
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Laura Beth J. McIntire
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Hidalgo-Lanussa O, González Santos J, Barreto GE. Sex-specific vulnerabilities in human astrocytes underpin the differential impact of palmitic acid. Neurobiol Dis 2024; 195:106489. [PMID: 38552721 DOI: 10.1016/j.nbd.2024.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Obesity and neurometabolic diseases have been linked to neurodegenerative diseases. Our hypothesis is that the endogenous estrogenic component of human astrocytes plays a critical role in cell response during lipotoxic damage, given that obesity can disrupt hormonal homeostasis and cause brain inflammation. Our findings showed that high concentrations of palmitic acid (PA) significantly reduced cell viability more in male astrocytes, indicating sex-specific vulnerabilities. PA induced a greater increase in cytosolic reactive oxygen species (ROS) production in males, while female astrocytes exhibited higher superoxide ion levels in mitochondria. In addition, female astrocytes treated with PA showed increased expression of antioxidant proteins, including catalase, Gpx-1 and Nrf2 suggesting a stronger cellular defence mechanism. Interestingly, there was a difference in the expression of estrogenic components, such as estrogen, androgens, and progesterone receptors, as well as aromatase and 5α-reductase enzymes, between males and females. PA induced their expression mainly in females, indicating a potential protective mechanism mediated by endogenous hormones. In summary, our findings highlight the impact of sex on the response of human astrocytes to lipotoxicity. Male astrocytes appear to be more susceptible to cellular damage when exposed to high concentrations of fatty acids.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Janneth González Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
20
|
Lamichhane P, Tariq A, Akhtar AN, Raza M, Lamsal AB, Agrawal A. Risk of Parkinson's disease among users of alpha-adrenergic receptor antagonists: a systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:3409-3415. [PMID: 38846867 PMCID: PMC11152853 DOI: 10.1097/ms9.0000000000002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
Background Recent studies have tried to establish an association between the use of alpha-1-adrenergic receptor antagonists (A1ARAs) used in benign prostatic hyperplasia (BPH) and the risk of PD. The objective of the study is to compare the risk of Parkinson's disease (PD) between terazosin/alfuzosin/doxazosin (TZ/AZ/DZ) users and tamsulosin users. Methods PubMed, Google Scholar, and Embase were systematically searched from inception to April 2023. Observational studies comparing the risk of PD among patients using different types of A1ARAs were included in the meta-analysis. The primary outcome was the hazard ratio (HR) with a 95% CI for the risk of occurrence of PD among A1ARAs users of two different classes. Results This study was based on a total of 678 433 BPH patients, out of which 287 080 patients belonged to the TZ/AZ/DZ cohort and 391 353 patients belonged to the tamsulosin cohort. The pooled incidence of PD was higher in tamsulosin users (1.28%, 95% CI: 1.04-1.55%) than in TZ/AZ/DZ drug users (1.11%, 95% CI: 0.83-1.42%). The risk of occurrence of PD was significantly lower in patients taking TZ/AZ/DZ than tamsulosin (n= 610,363, HR = 0.82, 95% CI = 0.71-0.94, P = 0.01; I2 = 87.4%). Conclusion This meta-analysis demonstrated that patients with BPH who take TZ/AZ/DZ have a lower risk for developing PD than those who take tamsulosin.
Collapse
Affiliation(s)
| | - Alina Tariq
- Larkin Community Hospital Global Research Program, Miami, FL
| | | | | | | | - Anushka Agrawal
- Maharajgunj Medical Campus, Institute of Medicine, Kathmandu, Nepal
| |
Collapse
|
21
|
Cardim-Pires TR, de Rus Jacquet A, Cicchetti F. Healthy blood, healthy brain: a window into understanding and treating neurodegenerative diseases. J Neurol 2024; 271:3682-3689. [PMID: 38607433 DOI: 10.1007/s00415-024-12337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Our limited understanding of complex neurodegenerative disorders has held us back on the development of efficient therapies. While several approaches are currently being considered, it is still unclear what will be most successful. Among the latest and more novel ideas, the concept of blood or plasma transfusion from young healthy donors to diseased patients is gaining momentum and attracting attention beyond the scientific arena. While young or healthy blood is enriched with protective and restorative components, blood from older subjects may accumulate neurotoxic agents or be impoverished of beneficial factors. In this commentary, we present an overview of the compelling evidence collected in various animal models of brain diseases (e.g., Alzheimer, Parkinson, Huntington) to the actual clinical trials that have been conducted to test the validity of blood-related treatments in neurodegenerative diseases and argue in favor of such approach.
Collapse
Affiliation(s)
- Thyago R Cardim-Pires
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
| | - Aurélie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1K 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1K 0A6, Canada.
| |
Collapse
|
22
|
Schultz JL, Gander PE, Workman CD, Ponto LL, Cross S, Nance CS, Groth CL, Taylor EB, Ernst SE, Xu J, Uc EY, Magnotta VA, Welsh MJ, Narayanan NS. A pilot dose-finding study of Terazosin in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.22.24307622. [PMID: 38826433 PMCID: PMC11142298 DOI: 10.1101/2024.05.22.24307622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Parkinson's disease (PD) is a prevalent neurodegenerative disorder where progressive neuron loss is driven by impaired brain bioenergetics, particularly mitochondrial dysfunction and disrupted cellular respiration. Terazosin (TZ), an α-1 adrenergic receptor antagonist with a known efficacy in treating benign prostatic hypertrophy and hypertension, has shown potential in addressing energy metabolism deficits associated with PD due to its action on phosphoglycerate kinase 1 (PGK1). This study aimed to investigate the safety, tolerability, bioenergetic target engagement, and optimal dose of TZ in neurologically healthy subjects. Methods Eighteen healthy men and women (60 - 85 years old) were stratified into two cohorts based on maximum TZ dosages (5 mg and 10 mg daily). Methods included plasma and cerebrospinal fluid TZ concentration measurements, whole blood ATP levels, 31 Phosphorous magnetic resonance spectroscopy for brain ATP levels, 18 F-FDG PET imaging for cerebral metabolic activity, and plasma metabolomics. Results Our results indicated that a 5 mg/day dose of TZ significantly increased whole blood ATP levels and reduced global cerebral 18 F-FDG PET uptake without significant side effects or orthostatic hypotension. These effects were consistent across sexes. Higher doses did not result in additional benefits and showed a potential biphasic dose-response. Conclusions TZ at a dosage of 5 mg/day engages its metabolic targets effectively in both sexes without inducing significant adverse effects and provides a promising therapeutic avenue for mitigating energetic deficiencies. Further investigation via clinical trials to validate TZ's efficacy and safety in neurodegenerative (i.e., PD) contexts is warranted.
Collapse
|
23
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-β-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554428. [PMID: 37662316 PMCID: PMC10473684 DOI: 10.1101/2023.08.23.554428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-β-hydroxybutyrate (D-βHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-βHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D-βHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
- George Washington University School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
24
|
McNay EC. Diet-induced diabetes is associated with lower hippocampal glycogen and reduced glycogenolysis following local exogenous insulin. J Neurochem 2024; 168:760-764. [PMID: 37885343 PMCID: PMC11045660 DOI: 10.1111/jnc.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Brain fuel (specifically, glucose) supply and metabolism are well-established to be limiting factors for cognitive performance, with the largest body of data being for hippocampally mediated tasks. Consistent with this, disease states such as Alzheimer's disease and insulin-resistant diabetes, that impair cognitive metabolism, impair cognition with this being shown again most prominently for hippocampally mediated processes. In addition to glucose supplied from the blood, brain oxidative metabolism can use local glycogen stores (within astrocytes) as a fuel source via conversion to lactate; both lactate and glycogen have been shown to be important contributors to regulation of cognitive metabolism. Insulin has been shown to be a key regulator of hippocampal cognitive and metabolic processes; in the periphery, insulin facilitates glycogen synthesis and storage, but the impact on brain glycogen is unclear. Furthermore, the impact of diet-induced diabetes on hippocampal glycogen levels and/or metabolism is unknown. Here, we show that in rats with high-fat diet-induced diabetes, hippocampal glycogen is reduced and is less responsive to acute intrahippocampal administration of insulin, which significantly reduces glycogen in the hippocampi of control animals: Our data suggest that impaired fuel availability from glycogen may be a contributing factor to the cognitive impairment seen in disease states that include central insulin resistance.
Collapse
Affiliation(s)
- Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA
| |
Collapse
|
25
|
Salcedo C, Pozo Garcia V, García-Adán B, Ameen AO, Gegelashvili G, Waagepetersen HS, Freude KK, Aldana BI. Increased glucose metabolism and impaired glutamate transport in human astrocytes are potential early triggers of abnormal extracellular glutamate accumulation in hiPSC-derived models of Alzheimer's disease. J Neurochem 2024; 168:822-840. [PMID: 38063257 DOI: 10.1111/jnc.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 05/19/2024]
Abstract
Glutamate recycling between neurons and astrocytes is essential to maintain neurotransmitter homeostasis. Disturbances in glutamate homeostasis, resulting in excitotoxicity and neuronal death, have been described as a potential mechanism in Alzheimer's disease (AD) pathophysiology. However, glutamate neurotransmitter metabolism in different human brain cells, particularly astrocytes, has been poorly investigated at the early stages of AD. We sought to investigate glucose and glutamate metabolism in AD by employing human induced pluripotent stem cell (hiPSC)-derived astrocytes and neurons carrying mutations in the amyloid precursor protein (APP) or presenilin-1 (PSEN-1) gene as found in familial types of AD (fAD). Methods such as live-cell bioenergetics and metabolic mapping using [13C]-enriched substrates were used to examine metabolism in the early stages of AD. Our results revealed greater glycolysis and glucose oxidative metabolism in astrocytes and neurons with APP or PSEN-1 mutations, accompanied by an elevated glutamate synthesis compared to control WT cells. Astrocytes with APP or PSEN-1 mutations exhibited reduced expression of the excitatory amino acid transporter 2 (EAAT2), and glutamine uptake increased in mutated neurons, with enhanced glutamate release specifically in neurons with a PSEN-1 mutation. These results demonstrate a hypermetabolic phenotype in astrocytes with fAD mutations possibly linked to toxic glutamate accumulation. Our findings further identify metabolic imbalances that may occur in the early phases of AD pathophysiology.
Collapse
Affiliation(s)
- Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Pozo Garcia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bernat García-Adán
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georgi Gegelashvili
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Guo B, Li QY, Liu XJ, Luo GH, Wu YJ, Nie J. Diabetes mellitus and Alzheimer's disease: Vacuolar adenosine triphosphatase as a potential link. Eur J Neurosci 2024; 59:2577-2595. [PMID: 38419188 DOI: 10.1111/ejn.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and β-amyloid (Aβ). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aβ by affecting the production and degradation of Aβ. Therefore, v-ATPase may be the bridge between DM and AD.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ye Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue-Jia Liu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo-Hui Luo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Juan Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
27
|
Wang X, Liu Q, Yu HT, Xie JZ, Zhao JN, Fang ZT, Qu M, Zhang Y, Yang Y, Wang JZ. A positive feedback inhibition of isocitrate dehydrogenase 3β on paired-box gene 6 promotes Alzheimer-like pathology. Signal Transduct Target Ther 2024; 9:105. [PMID: 38679634 PMCID: PMC11056379 DOI: 10.1038/s41392-024-01812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Impaired brain glucose metabolism is an early indicator of Alzheimer's disease (AD); however, the fundamental mechanism is unknown. In this study, we found a substantial decline in isocitrate dehydrogenase 3β (IDH3β) levels, a critical tricarboxylic acid cycle enzyme, in AD patients and AD-transgenic mice's brains. Further investigations demonstrated that the knockdown of IDH3β induced oxidation-phosphorylation uncoupling, leading to reduced energy metabolism and lactate accumulation. The resulting increased lactate, a source of lactyl, was found to promote histone lactylation, thereby enhancing the expression of paired-box gene 6 (PAX6). As an inhibitory transcription factor of IDH3β, the elevated PAX6 in turn inhibited the expression of IDH3β, leading to tau hyperphosphorylation, synapse impairment, and learning and memory deficits resembling those seen in AD. In AD-transgenic mice, upregulating IDH3β and downregulating PAX6 were found to improve cognitive functioning and reverse AD-like pathologies. Collectively, our data suggest that impaired oxidative phosphorylation accelerates AD progression via a positive feedback inhibition loop of IDH3β-lactate-PAX6-IDH3β. Breaking this loop by upregulating IDH3β or downregulating PAX6 attenuates AD neurodegeneration and cognitive impairments.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Tao Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia-Zhao Xie
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Ning Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Ting Fang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Hubei Provincial Academy of Preventive Medicine, Wuhan, 430000, China
| | - Yao Zhang
- Endocrine Department of Liyuan Hospital; Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
28
|
Yang Q, Han X, Ye M, Jiang T, Wang B, Zhang Z, Li F. Association of genetically predicted 486 blood metabolites on the risk of Alzheimer's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1372605. [PMID: 38681667 PMCID: PMC11047179 DOI: 10.3389/fnagi.2024.1372605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Background Studies have reported that metabolic disturbance exhibits in patients with Alzheimer's disease (AD). Still, the presence of definitive evidence concerning the genetic effect of metabolites on AD risk remains insufficient. A systematic exploration of the genetic association between blood metabolites and AD would contribute to the identification of new targets for AD screening and prevention. Methods We conducted an exploratory two-sample Mendelian randomization (MR) study aiming to preliminarily identify the potential metabolites involved in AD development. A genome-wide association study (GWAS) involving 7,824 participants provided information on 486 human blood metabolites. Outcome information was obtained from a large-scale GWAS meta-analysis of AD, encompassing 21,982 cases and 41,944 controls of Europeans. The primary two-sample MR analysis utilized the inverse variance weighted (IVW) model while supplementary analyses used Weighted median (WM), MR Egger, Simple mode, and Weighted mode, followed by sensitivity analyses such as the heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis. For the further identification of metabolites, replication and meta-analysis with FinnGen data, steiger test, linkage disequilibrium score regression, confounding analysis, and were conducted for further evaluation. Multivariable MR was performed to assess the direct effect of metabolites on AD. Besides, an extra replication analysis with EADB data was conducted for final evaluation of the most promising findings. Results After rigorous genetic variant selection, IVW, complementary analysis, sensitivity analysis, replication and meta-analysis with the FinnGen data, five metabolites (epiandrosterone sulfate, X-12680, pyruvate, docosapentaenoate, and 1-stearoylglycerophosphocholine) were identified as being genetically associated with AD. MVMR analysis disclosed that genetically predicted these four known metabolites can directly influence AD independently of other metabolites. Only epiandrosterone sulfate and X-12680 remained suggestive significant associations with AD after replication analysis with the EADB data. Conclusion By integrating genomics with metabonomics, this study furnishes evidence substantiating the genetic association of epiandrosterone sulfate and X-12680 with AD. These findings hold significance for the screening, prevention, and treatment strategies for AD.
Collapse
Affiliation(s)
- Qiqi Yang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Xinyu Han
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Min Ye
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Tianxin Jiang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Baoguo Wang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zhenfeng Zhang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Fei Li
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Intelligent Manufacturing Institute, Hefei University of Technology, Hefei, China
| |
Collapse
|
29
|
Liu S, Chen H, He XD, Yang XO. Glucometabolic-Related Genes as Diagnostic Biomarkers and Therapeutic Targets for Alzheimer's Disease and Type 2 Diabetes Mellitus: A Bioinformatics Analysis. Neurol Res Int 2024; 2024:5200222. [PMID: 38595695 PMCID: PMC11003797 DOI: 10.1155/2024/5200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 04/11/2024] Open
Abstract
Background Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two widespread chronic disorders characterized by shared risk factors and molecular pathways. Glucose metabolism, pivotal for cellular homeostasis and energy supply, plays a critical role in these diseases. Its disturbance has been linked to the pathogenesis of both AD and T2DM. However, a comprehensive investigation into the specific roles of glucometabolic genes in the onset and progression of AD and T2DM has yet to be conducted. Methods By analyzing microarray datasets from the Gene Expression Omnibus (GEO) repository, we identified differentially expressed glucometabolic genes (DEGs) in AD and T2DM cohorts. A range of bioinformatics tools were employed for functional annotation, pathway enrichment, protein interaction network construction, module analysis, ROC curve assessment, correlation matrix construction, gene set enrichment analysis, and gene-drug interaction mapping of these DEGs. Key genes were further validated using quantitative real-time polymerase chain reaction (qRT-PCR) in AD and T2DM murine models. Results Our investigation identified 41 glucometabolic-related DEGs, with six prominent genes (G6PD, PKM, ENO3, PFKL, PGD, and TALDO1) being common in both AD and T2DM cohorts. These genes play crucial roles in metabolic pathways including glycolysis, pentose phosphate pathway, and amino sugar metabolism. Their diagnostic potential was highlighted by area under curve (AUC) values exceeding 0.6 for AD and 0.8 for T2DM. Further analysis explored the interactions, pathway enrichments, regulatory mechanisms, and potential drug interactions of these key genes. In the AD murine model, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed significant upregulation of G6pd, Eno3, and Taldo1. Similarly, in the T2DM murine model, elevated expression levels of G6pd, Pfkl, Eno3, and Pgd were observed. Conclusion Our rigorous research sheds light on the molecular interconnections between AD and T2DM from a glucometabolic perspective, revealing new opportunities for pharmacological innovation and therapeutic approaches. This study appears to be the first to extensively investigate glucometabolic-associated DEGs and key genes in both AD and T2DM, utilizing multiple datasets. These insights are set to enhance our understanding of the complex pathophysiology underlying these widespread chronic diseases.
Collapse
Affiliation(s)
- Shuo Liu
- The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - He Chen
- The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Xiao-Dong He
- The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Xiao-Ou Yang
- The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| |
Collapse
|
30
|
Buchholz A, Deme P, Betz JF, Brandt J, Haughey N, Cervenka MC. A randomized feasibility trial of the modified Atkins diet in older adults with mild cognitive impairment due to Alzheimer's disease. Front Endocrinol (Lausanne) 2024; 15:1182519. [PMID: 38505743 PMCID: PMC10949529 DOI: 10.3389/fendo.2024.1182519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Background Alzheimer's disease (AD) is increasing in prevalence, but effective treatments for its cognitive impairment remain severely limited. This study investigates the impact of ketone body production through dietary manipulation on memory in persons with mild cognitive impairment due to early AD and explores potential mechanisms of action. Methods We conducted a 12-week, parallel-group, controlled feasibility trial of a ketogenic diet, the modified Atkins diet (MAD), compared to a control diet in patients with cognitive impairments attributed to AD. We administered neuropsychological assessments, including memory tests, and collected blood samples at baseline and after 12 weeks of intervention. We performed untargeted lipidomic and targeted metabolomic analyses on plasma samples to detect changes over time. Results A total of 839 individuals were screened to yield 38 randomized participants, with 20 assigned to receive MAD and 18 assigned to receive a control diet. Due to attrition, only 13 in the MAD arm and nine in the control arm were assessed for the primary endpoint, with two participants meeting ketosis levels used to define MAD adherence criteria. The average change from baseline in the Memory Composite Score was 1.37 (95% CI: -0.87, 4.90) points higher in the MAD group compared to the control group. The effect size of the intervention on baseline MAD change was moderate (Cohen's D = 0.57, 95% CI: -0.67, 1.33). In the 15 participants (nine MAD, six control) assessed for lipidomic and metabolomic-lipidomics and metabolomics, 13 metabolites and 10 lipids showed significant changes from baseline to 12 weeks, including triacylglycerols (TAGs, 50:5, 52:5, and 52:6), sphingomyelins (SM, 44:3, 46:0, 46:3, and 48:1), acetoacetate, fatty acylcarnitines, glycerol-3-phosphate, and hydroxy fatty acids. Conclusions Attrition was greatest between baseline and week 6. All participants retained at week 6 completed the study. Despite low rates of adherence by criteria defined a priori, lipidomic and metabolomic analyses indicate significant changes from baseline in circulating lipids and metabolites between MAD and control participants at 12-week postrandomization, and MAD participants showed greater, albeit nonsignificant, improvement in memory.
Collapse
Affiliation(s)
- Alison Buchholz
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pragney Deme
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua F. Betz
- Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jason Brandt
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Norman Haughey
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mackenzie C. Cervenka
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Bakhtiari A, Benedek K, Law I, Fagerlund B, Mortensen EL, Osler M, Lauritzen M, Larsson HBW, Vestergaard MB. Early cerebral amyloid-β accumulation and hypermetabolism are associated with subtle cognitive deficits before accelerated cerebral atrophy. GeroScience 2024; 46:769-782. [PMID: 38102439 PMCID: PMC10828321 DOI: 10.1007/s11357-023-01031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is characterized by the accumulation of amyloid beta (Aβ) in the brain. The deposition of Aβ is believed to initiate a detrimental cascade, including cerebral hypometabolism, accelerated brain atrophy, and cognitive problems-ultimately resulting in AD. However, the timing and causality of the cascade resulting in AD are not yet fully established. Therefore, we examined whether early Aβ accumulation affects cerebral glucose metabolism, atrophy rate, and age-related cognitive decline before the onset of neurodegenerative disease. METHODS Participants from the Metropolit 1953 Danish Male Birth Cohort underwent brain positron emission tomography (PET) imaging using the radiotracers [11C]Pittsburgh Compound-B (PiB) (N = 70) and [18F]Fluorodeoxyglucose (FDG) (N = 76) to assess cerebral Aβ accumulation and glucose metabolism, respectively. The atrophy rate was calculated from anatomical magnetic resonance imaging (MRI) scans conducted presently and 10 years ago. Cognitive decline was examined from neurophysiological tests conducted presently and ten or 5 years ago. RESULTS Higher Aβ accumulation in AD-critical brain regions correlated with greater visual memory decline (p = 0.023). Aβ accumulation did not correlate with brain atrophy rates. Increased cerebral glucose metabolism in AD-susceptible regions correlated with worse verbal memory performance (p = 0.040). CONCLUSIONS Aβ accumulation in known AD-related areas was associated with subtle cognitive deficits. The association was observed before hypometabolism or accelerated brain atrophy, suggesting that Aβ accumulation is involved early in age-related cognitive dysfunction. The association between hypermetabolism and worse memory performance may be due to early compensatory mechanisms adapting for malfunctioning neurons by increasing metabolism.
Collapse
Affiliation(s)
- Aftab Bakhtiari
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Krisztina Benedek
- Department of Neurology, Neurophysiology, Zealand University Hospital, Roskilde, Denmark
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, , University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | | | - Merete Osler
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Ye YC, Chai SF, Li XR, Wu MN, Cai HY, Wang ZJ. Intermittent fasting and Alzheimer's disease-Targeting ketone bodies as a potential strategy for brain energy rescue. Metab Brain Dis 2024; 39:129-146. [PMID: 37823968 DOI: 10.1007/s11011-023-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Collapse
Affiliation(s)
- Yu- Cai Ye
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Ru Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
33
|
Geng C, Wang Z, Tang Y. Machine learning in Alzheimer's disease drug discovery and target identification. Ageing Res Rev 2024; 93:102172. [PMID: 38104638 DOI: 10.1016/j.arr.2023.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment that poses a substantial threat to the elderly population, with no known curative or disease-slowing drugs in existence. Among the vital and time-consuming stages in the drug discovery process, disease modeling and target identification hold particular significance. Disease modeling allows for a deeper comprehension of disease progression mechanisms and potential therapeutic avenues. On the other hand, target identification serves as the foundational step in drug development, exerting a profound influence on all subsequent phases and ultimately determining the success rate of drug development endeavors. Machine learning (ML) techniques have ushered in transformative breakthroughs in the realm of target discovery. Leveraging the strengths of large dataset analysis, multifaceted data processing, and the exploration of intricate biological mechanisms, ML has become instrumental in the quest for effective AD treatments. In this comprehensive review, we offer an account of how ML methodologies are being deployed in the pursuit of drug discovery for AD. Furthermore, we provide an overview of the utilization of ML in uncovering potential intervention strategies and prospective therapeutic targets for AD. Finally, we discuss the principal challenges and limitations currently faced by these approaches. We also explore the avenues for future research that hold promise in addressing these challenges.
Collapse
Affiliation(s)
- Chaofan Geng
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - ZhiBin Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China.
| |
Collapse
|
34
|
Kim SA, Maeda M, Murata F, Fujii T, Ueda E, Ono R, Fukuda H. Impact of Concurrent Visual and Hearing Impairment on Incident Alzheimer's Disease: The LIFE Study. J Alzheimers Dis 2024; 98:197-207. [PMID: 38363608 PMCID: PMC10977410 DOI: 10.3233/jad-230806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/17/2024]
Abstract
Background The prevalence of Alzheimer's disease (AD) is increasing in Japan due to population aging. The association between sensory impairment and incident AD remains unclear. Objective This study aimed to investigate the impact of sensory impairment on incident AD. Methods We analyzed residents of five municipalities participating in the Longevity Improvement & Fair Evidence (LIFE) Study. The participants comprised individuals who had newly applied for long-term care needs certification between 2017 and 2022 and had no cognitive impairment upon application or AD diagnosis within the preceding six months. Participants were classified according to sensory impairment status: visual impairment (VI), hearing impairment (HI), neither sensory impairment (NSI), and dual sensory impairment (DSI). The month succeeding the certification application was set as the index month, and the interval from that month until AD onset was assessed. Multivariable Cox proportional hazards analysis was performed to calculate the risk of AD onset according to sensory impairment status while adjusting for sex, age, dependence level, self-reliance level, and comorbidities. Results Among 14,186 participants, we identified 1,194 (8.4%) who developed AD over a median follow-up period of 22.6 months. VI and HI only were not associated with incident AD. However, DSI conferred a significantly higher risk (HR: 1.6, CI: 1.1-2.2, p = 0.008) of AD onset than NSI. Conclusions Individuals with concurrent DSI have a higher risk of developing AD than those with single or NSI. Preventing and treating sensory impairment may not only improve functional outcomes, but could also help to reduce the future risk of AD.
Collapse
Affiliation(s)
- Sung-a Kim
- Department of Healthcare Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- St. Mary’s Research Center, Kurume, Japan
| | - Megumi Maeda
- Department of Healthcare Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumiko Murata
- Department of Healthcare Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Fujii
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emi Ueda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rei Ono
- Kobe University Graduate School of Health Sciences, Hyogo, Japan
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruhisa Fukuda
- Department of Healthcare Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
McNair LM, Andersen JV, Waagepetersen HS. Stable isotope tracing reveals disturbed cellular energy and glutamate metabolism in hippocampal slices of aged male mice. Neurochem Int 2023; 171:105626. [PMID: 37838084 DOI: 10.1016/j.neuint.2023.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Neurons and astrocytes work in close metabolic collaboration, linking neurotransmission to brain energy and neurotransmitter metabolism. Dysregulated energy metabolism is a hallmark of the aging brain and may underlie the progressive age-dependent cognitive decline. However, astrocyte and neurotransmitter metabolism remains understudied in aging brain research. In particular, how aging affects metabolism of glutamate, being the primary excitatory neurotransmitter, is still poorly understood. Here we investigated critical aspects of cellular energy metabolism in the aging male mouse hippocampus using stable isotope tracing in vitro. Metabolism of [U-13C]glucose demonstrated an elevated glycolytic capacity of aged hippocampal slices, whereas oxidative [U-13C]glucose metabolism in the TCA cycle was significantly reduced with aging. In addition, metabolism of [1,2-13C]acetate, reflecting astrocyte energy metabolism, was likewise reduced in the hippocampal slices of old mice. In contrast, uptake and subsequent metabolism of [U-13C]glutamate was elevated, suggesting increased capacity for cellular glutamate handling with aging. Finally, metabolism of [15N]glutamate was maintained in the aged slices, demonstrating sustained glutamate nitrogen metabolism. Collectively, this study reveals fundamental alterations in cellular energy and neurotransmitter metabolism in the aging brain, which may contribute to age-related hippocampal deficits.
Collapse
Affiliation(s)
- Laura Mikél McNair
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Helle Sønderby Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
36
|
Ramezani M, Fernando M, Eslick S, Asih PR, Shadfar S, Bandara EMS, Hillebrandt H, Meghwar S, Shahriari M, Chatterjee P, Thota R, Dias CB, Garg ML, Martins RN. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer's disease. Front Neurosci 2023; 17:1297984. [PMID: 38033541 PMCID: PMC10687427 DOI: 10.3389/fnins.2023.1297984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.
Collapse
Affiliation(s)
- Matin Ramezani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Malika Fernando
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Shaun Eslick
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Prita R. Asih
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Heidi Hillebrandt
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Silochna Meghwar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Maryam Shahriari
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Rohith Thota
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Cintia B. Dias
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Manohar L. Garg
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
37
|
Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep 2023; 11:10.14814/phy2.15852. [PMID: 38010200 PMCID: PMC10680579 DOI: 10.14814/phy2.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Insulin resistance (IR) is associated with reductions in neuronal proteins often observed with Alzheimer's disease (AD), however, the mechanisms through which IR promotes neurodegeneration/AD pathogenesis are poorly understood. Metformin (MET), a potent activator of the metabolic regulator AMPK is used to treat IR but its effectiveness for AD is unclear. We have previously shown that chronic AMPK activation impairs neurite growth and protein synthesis in SH-SY5Y neurons, however, AMPK activation in IR was not explored. Therefore, we examined the effects of MET-driven AMPK activation with and without IR. Retinoic acid-differentiated SH-SY5Y neurons were treated with: (1) Ctl: 24 h vehicle followed by 24 h Vehicle; (2) HI: 100 nM insulin (24 h HI followed by 24 h HI); or (3) MET: 24 h vehicle followed by 24 h 2 mM metformin; (4) HI/MET: 24 h 100 nM insulin followed by 24 h 100 nM INS+2 mM MET. INS and INS/MET groups saw impairments in markers of insulin signaling (Akt S473, mTOR S2448, p70s6k T389, and IRS-1S636) demonstrating IR was not recovered with MET treatment. All treatment groups showed reductions in neuronal markers (post-synaptic marker HOMER1 mRNA content and synapse marker synaptophysin protein content). INS and MET treatments showed a reduction in the content of the mature neuronal marker NeuN that was prevented by INS/MET. Similarly, increases in cell size/area, neurite length/area observed with INS and MET, were prevented with INS/MET. These findings indicate that IR and MET impair neuronal markers through distinct pathways and suggest that MET is ineffective in treating IR-driven impairments in neurons.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Ahmad Mohammad
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Michael S. Finch
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Gaynor Spencer
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Aleksandar Necakov
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
38
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
39
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
40
|
Nakamura Y, Kabayama M, Godai K, Tseng W, Akasaka H, Yamamoto K, Takami Y, Takeya Y, Gondo Y, Yasumoto S, Ogawa M, Kasuga A, Masui Y, Ikebe K, Arai Y, Ishizaki T, Rakugi H, Kamide K. Longitudinal association of hypertension and dyslipidemia with cognitive function in community-dwelling older adults: the SONIC study. Hypertens Res 2023; 46:1829-1839. [PMID: 37095338 PMCID: PMC10404512 DOI: 10.1038/s41440-023-01271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
The associations among cognitive function, hypertension, and dyslipidemia in older adults are controversial. Therefore, we investigated the associations among cognitive decline, hypertension, dyslipidemia, and their combination in community-dwelling older people in their 70s, 80s, and 90s in the long-term observational Septuagenarians, Octogenarians, Nonagenarians, Investigation with Centenarians (SONIC) study. We administered the Montreal Cognitive Assessment Japanese version (MoCA-J) by trained geriatricians and psychologists, and conducted blood testing and blood pressure (BP) measuring by medical staff involving 1186 participants. We performed multiple regression analysis to assess the relationships among hypertension, dyslipidemia, their combination, and lipid and BP levels with cognitive function at the 3-year follow-up after adjusting for covariate factors. At the baseline, the percentage of the combination of hypertension and dyslipidemia was 46.6% (n = 553), hypertension was 25.6% (n = 304), dyslipidemia was 15.0% (n = 178), and that without hypertension or dyslipidemia was 12.7% (n = 151). Conducting multiple regression analysis, no significant correlation was found between the combination of hypertension and dyslipidemia and MoCA-J score. In the group with the combination, high high-density lipoprotein cholesterol (HDL) levels resulted in higher MoCA-J scores at the follow-up (β = 0.06; P < 0.05) and high diastolic BP (DBP) also resulted in higher MoCA-J scores (β = 0.08; P < 0.05). The results suggest that high HDL and DBP levels of individuals with HT & DL and high SBP levels of individuals with HT were associated with cognitive function in community-dwelling older adults. In the SONIC study, which is an epidemiological study of Japanese older persons aged 70 years or older, a disease-specific examination suggested that high HDL and DBP levels of individuals with hypertension & dyslipidemia and high SBP levels of individuals with hypertension were associated with maintaining cognitive function in community-dwelling older adults.
Collapse
Affiliation(s)
- Yuko Nakamura
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Mai Kabayama
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Kayo Godai
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Winston Tseng
- School of Public Health, University of California, Berkeley, 2199 Addison Street Room 50, Berkeley, CA, 94720-7358, USA
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yasushi Takeya
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yasuyuki Gondo
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Saori Yasumoto
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Madoka Ogawa
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Ayaka Kasuga
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yukie Masui
- Research Team for Human Care, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kazunori Ikebe
- Center for Super Centenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasumichi Arai
- Center for Super Centenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tatsuro Ishizaki
- Research Team for Human Care, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Kei Kamide
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan.
| |
Collapse
|
41
|
Jia D, Wang F, Yu H. Systemic alterations of tricarboxylic acid cycle enzymes in Alzheimer's disease. Front Neurosci 2023; 17:1206688. [PMID: 37575300 PMCID: PMC10413568 DOI: 10.3389/fnins.2023.1206688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction, especially tricarboxylic acid (TCA) cycle arrest, is strongly associated with Alzheimer's disease (AD), however, its systemic alterations in the central and peripheral of AD patients are not well defined. Here, we performed an integrated analysis of AD brain and peripheral blood cells transcriptomics to reveal the expression levels of nine TCA cycle enzymes involving 35 genes. The results showed that TCA cycle related genes were consistently down-regulated in the AD brain, whereas 11 genes were increased and 16 genes were decreased in the peripheral system. Pearson analysis of the TCA cycle genes with Aβ, Tau and mini-mental state examination (MMSE) revealed several significant correlated genes, including pyruvate dehydrogenase complex subunit (PDHB), isocitrate dehydrogenase subunits (IDH3B, IDH3G), 2-oxoglutarate dehydrogenase complex subunit (DLD), succinyl-CoA synthetase subunit (SUCLA2), malate dehydrogenase subunit (MDH1). In addition, SUCLA2, MDH1, and PDHB were also uniformly down-regulated in peripheral blood cells, suggesting that they may be candidate biomarkers for the early diagnosis of AD. Taken together, TCA cycle enzymes were systemically altered in AD progression, PDHB, SUCLA2, and MDH1 may be potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Dongdong Jia
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Yu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
42
|
Juras JA, Webb MB, Young LE, Markussen KH, Hawkinson TR, Buoncristiani MD, Bolton KE, Coburn PT, Williams MI, Sun LP, Sanders WC, Bruntz RC, Conroy LR, Wang C, Gentry MS, Smith BN, Sun RC. In situ microwave fixation provides an instantaneous snapshot of the brain metabolome. CELL REPORTS METHODS 2023; 3:100455. [PMID: 37159672 PMCID: PMC10163000 DOI: 10.1016/j.crmeth.2023.100455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Brain glucose metabolism is highly heterogeneous among brain regions and continues postmortem. In particular, we demonstrate exhaustion of glycogen and glucose and an increase in lactate production during conventional rapid brain resection and preservation by liquid nitrogen. In contrast, we show that these postmortem changes are not observed with simultaneous animal sacrifice and in situ fixation with focused, high-power microwave. We further employ microwave fixation to define brain glucose metabolism in the mouse model of streptozotocin-induced type 1 diabetes. Using both total pool and isotope tracing analyses, we identified global glucose hypometabolism in multiple brain regions, evidenced by reduced 13C enrichment into glycogen, glycolysis, and the tricarboxylic acid (TCA) cycle. Reduced glucose metabolism correlated with a marked decrease in GLUT2 expression and several metabolic enzymes in unique brain regions. In conclusion, our study supports the incorporation of microwave fixation for more accurate studies of brain metabolism in rodent models.
Collapse
Affiliation(s)
- Jelena A. Juras
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Madison B. Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Tara R. Hawkinson
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Michael D. Buoncristiani
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Kayli E. Bolton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Peyton T. Coburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Meredith I. Williams
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lisa P.Y. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - William C. Sanders
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Ronald C. Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Division of Biostatics, Department of Internal Medicine, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ramon C. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
43
|
Hanson AJ, Banks WA, Bettcher LF, Pepin R, Raftery D, Navarro SL, Craft S. Cerebrospinal Fluid Metabolomics: Pilot Study of Using Metabolomics to Assess Diet and Metabolic Interventions in Alzheimer's Disease and Mild Cognitive Impairment. Metabolites 2023; 13:569. [PMID: 37110227 PMCID: PMC10145981 DOI: 10.3390/metabo13040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Brain glucose hypometabolism is an early sign of Alzheimer's disease (AD), and interventions which offset this deficit, such as ketogenic diets, show promise as AD therapeutics. Conversely, high-fat feeding may exacerbate AD risk. We analyzed the metabolomic profile of cerebrospinal fluid (CSF) in a pilot study of older adults who underwent saline and triglyceride (TG) infusions. Older adults (12 cognitively normal (CN), age 65.3 ± 8.1, and 9 with cognitive impairment (CI), age 70.9 ± 8.6) underwent a 5 h TG or saline infusion on different days using a random crossover design; CSF was collected at the end of infusion. Aqueous metabolites were measured using a targeted mass spectroscopy (MS) platform focusing on 215 metabolites from over 35 different metabolic pathways. Data were analyzed using MetaboAnalyst 4.0 and SAS. Of the 215 targeted metabolites, 99 were detectable in CSF. Only one metabolite significantly differed by treatment: the ketone body 3-hydroxybutyrate (HBA). Post hoc analyses showed that HBA levels were associated with age and markers of metabolic syndrome and demonstrated different correlation patterns for the two treatments. When analyzed by cognitive diagnosis group, TG-induced increases in HBA were over 3 times higher for those with cognitive impairment (change score CN +9.8 uM ± 8.3, CI +32.4 ± 7.4, p = 0.0191). Interestingly, individuals with cognitive impairment had higher HBA levels after TG infusion than those with normal cognition. These results suggest that interventions that increase plasma ketones may lead to higher brain ketones in groups at risk for AD and should be confirmed in larger intervention studies.
Collapse
Affiliation(s)
- Angela J. Hanson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - William A. Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98102, USA
| | - Lisa F. Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| |
Collapse
|
44
|
Xiong Y, Cheng Q, Li Y, Han Y, Sun X, Liu L. Vimar/RAP1GDS1 promotes acceleration of brain aging after flies and mice reach middle age. Commun Biol 2023; 6:420. [PMID: 37061660 PMCID: PMC10105717 DOI: 10.1038/s42003-023-04822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Brain aging may accelerate after rodents reach middle age. However, the endogenous mediator that promotes this acceleration is unknown. We predict that the mediator may be expressed after an organism reaches middle age and dysregulates mitochondrial function. In the neurons of wild-type Drosophila (flies), we observed that mitochondria were fragmented in aged flies, and this fragmentation was associated with mitochondrial calcium overload. In a previous study, we found that mitochondrial fragmentation induced by calcium overload was reversed by the loss of Vimar, which forms a complex with Miro. Interestingly, Vimar expression was increased after the flies reached middle age. Overexpression of Vimar in neurons resulted in premature aging and mitochondrial calcium overload. In contrast, downregulation of Vimar in flies older than middle age promoted healthy aging. As the mouse homolog of Vimar, RAP1GDS1 expression was found to be increased after mice reached middle age; RAP1GDS1-transgenic and RAP1GDS1-knockdown mice displayed similar responses to flies with overexpressed and reduced Vimar expression, respectively. This research provides genetic evidence of a conserved endogenous mediator that promotes accelerated brain aging.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Qi Cheng
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yajie Li
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yanping Han
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Xin Sun
- School of Pharmaceutical Science, Jilin Medical University, Jilin City, 132013, China.
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China.
| |
Collapse
|
45
|
Bucci M, Iozzo P, Merisaari H, Huovinen V, Lipponen H, Räikkönen K, Parkkola R, Salonen M, Sandboge S, Eriksson JG, Nummenmaa L, Nuutila P. Resistance Training Increases White Matter Density in Frail Elderly Women. J Clin Med 2023; 12:jcm12072684. [PMID: 37048767 PMCID: PMC10094827 DOI: 10.3390/jcm12072684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
We aimed to investigate the effects of maternal obesity on brain structure and metabolism in frail women, and their reversibility in response to exercise. We recruited 37 frail elderly women (20 offspring of lean/normal-weight mothers (OLM) and 17 offspring of obese/overweight mothers (OOM)) and nine non-frail controls to undergo magnetic resonance and diffusion tensor imaging (DTI), positron emission tomography with Fluorine-18-fluorodeoxyglucose (PET), and cognitive function tests (CERAD). Frail women were studied before and after a 4-month resistance training, and controls were studied once. White matter (WM) density (voxel-based morphometry) was higher in OLM than in OOM subjects. Exercise increased WM density in both OLM and OOM in the cerebellum in superior parietal regions in OLM and in cuneal and precuneal regions in OOM. OLM gained more WM density than OOM in response to intervention. No significant results were found from the Freesurfer analysis, nor from PET or DTI images. Exercise has an impact on brain morphology and cognition in elderly frail women.
Collapse
Affiliation(s)
- Marco Bucci
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Huddinge, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska University, 171 77 Stockholm, Sweden
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Harri Merisaari
- Department of Radiology, Turku University Hospital, University of Turku, 20014 Turku, Finland
- Turku Brain and Mind Center, University of Turku, 20014 Turku, Finland
| | - Ville Huovinen
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, 20014 Turku, Finland
| | - Heta Lipponen
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, 20014 Turku, Finland
| | | | - Samuel Sandboge
- Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Psychology/Welfare Sciences, Faculty of Social Sciences, University of Tampere, 33014 Tampere, Finland
| | - Johan Gunnar Eriksson
- Folkhälsan Research Centre, 00250 Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore 138632, Singapore
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
46
|
Zou Y, Wang Q, Cheng X. Causal Relationship Between Basal Metabolic Rate and Alzheimer's Disease: A Bidirectional Two-sample Mendelian Randomization Study. Neurol Ther 2023; 12:763-776. [PMID: 36894827 DOI: 10.1007/s40120-023-00458-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION Objective observational studies have shown that basal metabolic rate (BMR) decreases in patients with Alzheimer's disease (AD), but the causal relationship between BMR and AD has not been established. We determined the causal relationship between BMR and AD by two-way Mendelian randomization (MR) and investigated the impact of factors associated with BMR on AD. METHODS We obtained BMR (n = 454,874) and AD from a large genome-wide association study (GWAS) database (21,982 patients with AD, 41,944 controls). The causal relationship between AD and BMR was investigated using two-way MR. Additionally, we identified the causal relationship between AD and factors related with BMR, hyperthyroidism (hy/thy) and type 2 diabetes (T2D), height and weight. RESULTS BMR had a causal relationship with AD [451 single nucleotide polymorphisms (SNPs), odds ratio (OR) 0.749, 95% confidence intervals (CIs) 0.663-0.858, P = 2.40E-03]. There was no causal relationship between hy/thy or T2D and AD (P > 0.05). The bidirectional MR showed that there was also a causal relationship between AD and BMR (OR 0.992, Cls 0.987-0.997, NSNPs18, P = 1.50E-03). BMR, height and weight have a protective effect on AD. Based on MVMR analysis, we found that genetically determined height and weight may be adjusted by BMR to have a causal effect on AD, not height and weight themselves. CONCLUSION Our study showed that higher BMR reduced the risk of AD, and patients with AD had a lower BMR. Because of a positive correlation with BMR, height and weight may have a protective effect on AD. The two metabolism-related diseases, hy/thy and T2D, had no causal relationship with AD.
Collapse
Affiliation(s)
- Yuexiao Zou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qingxian Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaorui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
47
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
48
|
Effects of Marginal Zn Excess and Thiamine Deficiency on Microglial N9 Cell Metabolism and Their Interactions with Septal SN56 Cholinergic Cells. Int J Mol Sci 2023; 24:ijms24054465. [PMID: 36901896 PMCID: PMC10002586 DOI: 10.3390/ijms24054465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.
Collapse
|
49
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
50
|
Gao J, Zhou N, Lu M, Wang Q, Zhao C, Wang J, Zhou M, Xu Y. Effects of electroacupuncture on urinary metabolome and microbiota in presenilin1/2 conditional double knockout mice. Front Microbiol 2023; 13:1047121. [PMID: 36762099 PMCID: PMC9904445 DOI: 10.3389/fmicb.2022.1047121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
Aim The treatment of Alzheimer's disease (AD) is still a worldwide problem due to the unclear pathogenesis and lack of effective therapeutic targets. In recent years, metabolomic and gut microbiome changes in patients with AD have received increasing attention, and the microbiome-gut-brain (MGB) axis has been proposed as a new hypothesis for its etiology. Considering that electroacupuncture (EA) efficiently moderates cognitive deficits in AD and its mechanisms remain poorly understood, especially regarding its effects on the gut microbiota, we performed urinary metabolomic and microbial community profiling on EA-treated AD model mice, presenilin 1/2 conditional double knockout (PS cDKO) mice, to observe the effect of EA treatment on the gut microbiota in AD and find the connection between affected gut microbiota and metabolites. Materials and methods After 30 days of EA treatment, the recognition memory ability of PS cDKO mice was evaluated by the Y maze and the novel object recognition task. Urinary metabolomic profiling was conducted with the untargeted GC-MS method, and 16S rRNA sequence analysis was applied to analyze the microbial community. In addition, the association between differential urinary metabolites and gut microbiota was clarified by Spearman's correlation coefficient analysis. Key findings In addition to reversed cognitive deficits, the urinary metabolome and gut microbiota of PS cDKO mice were altered as a result of EA treatment. Notably, the increased level of isovalerylglycine and the decreased levels of glycine and threonic acid in the urine of PS cDKO mice were reversed by EA treatment, which is involved in glyoxylate and dicarboxylate metabolism, as well as glycine, serine, and threonine metabolism. In addition to significantly enhancing the diversity and richness of the microbial community, EA treatment significantly increased the abundance of the genus Mucispirillum, while displaying no remarkable effect on the other major altered gut microbiota in PS cDKO mice, norank_f_Muribaculaceae, Lactobacillus, and Lachnospiraceae_NK4A136 group. There was a significant correlation between differential urinary metabolites and differential gut microbiota. Significance Electroacupuncture alleviates cognitive deficits in AD by modulating gut microbiota and metabolites. Mucispirillum might play an important role in the underlying mechanism of EA treatment. Our study provides a reference for future treatment of AD from the MGB axis.
Collapse
Affiliation(s)
- Jie Gao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Nian Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengna Lu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Zhao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Jian Wang,
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Mingmei Zhou, ; orcid.org/0000-0002-2552-4754
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Ying Xu, ; orcid.org/0000-0003-3563-4233
| |
Collapse
|