1
|
Santisteban V, Muñoz-Garcia N, López-Yerena A, Puntes M, Badimon L, Padro T. Efficacy of Food Industry By-Product β-Glucan/Chitin-Chitosan on Lipid Profile of Overweight and Obese Individuals: Sustainability and Nutraceuticals. Nutrients 2024; 16:3420. [PMID: 39408385 PMCID: PMC11478763 DOI: 10.3390/nu16193420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Fat-binding nutraceutical supplements have gained considerable attention as potential cholesterol-lowering strategies to address dyslipidemia in overweight and obese individuals. This study aimed to evaluate the effects of a polysaccharide-rich compound containing β-glucan/chitin-chitosan (βGluCnCs) on lipid profiles and lipoprotein function. In a prospective, two-arm clinical trial, 58 overweight and obese individuals were randomized to receive either 3 g/day of βGluCnCs or a placebo (microcrystalline cellulose) for 12 weeks. Serum lipids and lipoprotein functions were assessed at baseline and at 4-week intervals throughout the study. The administration of βGluCnCs led to a significant increase in HDL cholesterol (HDLc) levels and improved HDLc/non-HDLc and HDLc/total cholesterol (TC) ratios, while reducing apolipoprotein B (ApoB) levels (p < 0.05). However, the intervention did not affect HDL particle diameter, particle number, or lipoprotein functionality. Women demonstrated greater sensitivity to changes in HDLc during βGluCnCs supplementation, whereas men exhibited a significant reduction in ApoB levels. When stratified by baseline LDL cholesterol (LDLc) levels (cut-off: 130 mg/dL), the increase in HDLc and the ApoA1/ApoB ratio was found in the low-LDL group. In contrast, the high-LDL group experienced a significant reduction in atherogenic non-LDLc and LDLc, along with an improvement in HDL's antioxidant capacity after βGluCnCs intervention. These changes were not statistically significant in the placebo group. In conclusion, our study demonstrated that daily supplementation with βGluCnCs significantly improved lipid profiles, with effects that varied based on sex and baseline LDLc levels.
Collapse
Affiliation(s)
- Victoria Santisteban
- Institut Recerca Sant Pau, Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (V.S.); (N.M.-G.); (A.L.-Y.); (L.B.)
- School of Pharmacy and Food Sciences, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Natàlia Muñoz-Garcia
- Institut Recerca Sant Pau, Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (V.S.); (N.M.-G.); (A.L.-Y.); (L.B.)
| | - Anallely López-Yerena
- Institut Recerca Sant Pau, Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (V.S.); (N.M.-G.); (A.L.-Y.); (L.B.)
| | - Montserrat Puntes
- Medicament Research Center (CIM), Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain;
| | - Lina Badimon
- Institut Recerca Sant Pau, Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (V.S.); (N.M.-G.); (A.L.-Y.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Teresa Padro
- Institut Recerca Sant Pau, Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (V.S.); (N.M.-G.); (A.L.-Y.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Peng Y, Zhang L, Bao X, Qian X, Dong W, Jiang M. Palmitoleic acid-rich oleaginous yeast Scheffersomyces segobiensis DSM 27193 exerts anti-obesity effects by ameliorating hepatic steatosis and adipose tissue hypertrophy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2156-2164. [PMID: 37926439 DOI: 10.1002/jsfa.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Yeast biomass, encompassing fatty acids, terpenoids, vitamins, antioxidants, enzymes, and other bioactive compounds have been extensively utilized in food-related fields. The safety and potential bioactivities of Scheffersomyces segobiensis DSM 27193, an oleaginous yeast strain, are unclear. RESULTS Scheffersomyces segobiensis DSM 27193 accumulated large palmitoleic acid (POA) levels (43.4 g kg-1 biomass) according to the results of whole-cell components. We annotated the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and predicted the categories and host of the pathogen-host interactions (PHI) genes in S. segobiensis DSM 27193. However, S. segobiensis DSM 27193 did not exert toxic effects in mice. Administration of S. segobiensis DSM 27193 led to substantial weight reduction by diminishing food intake in an obesity mouse model. Additionally, it reversed hepatic steatosis and adipose tissue hypertrophy, and improved abnormalities in serum biochemical profiles such as triglyceride, total cholesterol, low-density lipoprotein cholesterol, lipopolysaccharide, tumor necrosis factor-α, interleukin-1β, and interleukin-6. CONCLUSION This study is the first to illustrate the safety and effects of S. segobiensis DSM 27193 against obesity and offers a scientific rationale for its application in functional food supplements. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujia Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lili Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xinhui Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
3
|
Moreira LDPD, Corich V, Jørgensen EG, Devold TG, Nadai C, Giacomini A, Porcellato D. Potential bioactive peptides obtained after in vitro gastrointestinal digestion of wine lees from sequential fermentations. Food Res Int 2024; 176:113833. [PMID: 38163727 DOI: 10.1016/j.foodres.2023.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
The biotechnological reuse of winery by-products has great potential to increase the value and sustainability of the wine industry. Recent studies revealed that yeast biomass can be an exciting source of bioactive peptides with possible benefits for human health, and its incorporation in plant-based foods is considered innovative and sustainable. In this study, we aimed to identify, through in silico analyses, potential bioactive peptides from yeast extracts after in vitro digestion. Wine lees from a non-Saccharomyces oenological yeast, Starmerella bacillaris FRI751, Saccharomyces cerevisiae EC1118, and sequential fermentation performed with both strains (SEQ) were recovered in a synthetic must. Cellular pellets were enzymatically treated with zymolyase, and the yeast extracts were submitted to in vitro gastrointestinal digestions. LC-MS/MS sequenced the hydrolyzed peptides, and their potential bioactivity was inferred. S. bacillaris FRI751 fermentation showed 132 peptide sequences, S. cerevisiae EC1118 60, SEQ 89. A total of 243 unique peptide sequences were identified across the groups. Furthermore, based on the peptide sequence, the FRI751 extract showed the highest potential antihypertensive with 275 bioactive fragments. Other bioactivities, such as antimicrobial and immunomodulatory, were also identified in all yeast extracts. A potential antiobesity bioactive peptide VVP was identified only in the yeast extract from S. bacillaris single strain. The wine lees from S. bacillaris single strain and SEQ fermentation are a richer source of potential bioactive peptides than those from S. cerevisiae fermentation. This study opens new possibilities in the valorization of winemaking by-products.
Collapse
Affiliation(s)
- Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy.
| | - Emilie Gullberg Jørgensen
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Tove Gulbrandsen Devold
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Chiara Nadai
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy; Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, PD, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
4
|
Kim N, Ahn Y, Ko K, Kim B, Han K, Suh HJ, Jung J, Hong KB. Yeast Hydrolysate Inhibits Lipid Accumulation via Regulation of Lipid Accumulation-Related Genes in a Drosophila Model of High-Sugar Diet-Induced Obesity. Int J Mol Sci 2023; 24:16302. [PMID: 38003491 PMCID: PMC10671767 DOI: 10.3390/ijms242216302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
The increasing frequency of processed food consumption has led to the higher ingestion of sugar, increasing the risk of chronic diseases, such as obesity. Yeast hydrolysates (YHs) inhibit body fat accumulation. However, the action mechanism of YH in relation to high-sugar diet-induced obesity is still unclear. Therefore, this study aimed to evaluate the biological effects of YH on lipid accumulation and verify behavioral changes and carbohydrate metabolic gene regulation in high-sugar diet-fed fruit flies. Adult male flies (Drosophila melanogaster; 2-5 days old) were exposed to 20% sucrose for obesity induction. In high-sugar-fed Drosophila, the effect of YH was compared with that of yeast extract. The effects of YH on body conditions and lipid droplet size were quantified and analyzed. Behavioral factors were evaluated by analyzing circadian rhythm patterns and neurotransmitter content, and a molecular approach was used to analyze the expression of metabolism-related genes. Dietary supplementation with YH did not reduce total sugar content, but significantly decreased the triglyceride (TG) levels in Drosophila. A behavioral analysis showed that the total number of night-time activities increased significantly with YH treatment in a dose-dependent manner. In addition, YH effectively regulated the gene expression of insulin-like peptides related to carbohydrate metabolism as well as genes related to lipogenesis. The TG content was significantly reduced at a YH concentration of 0.5%, confirming that the active compound in YH effectively suppresses fat accumulation. These findings support that YH is a potential anti-obesity food material via regulating carbohydrate metabolism in Drosophila.
Collapse
Affiliation(s)
- Nari Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (K.H.); (H.J.S.)
| | - Yejin Ahn
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Kayoung Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea;
| | - Boyun Kim
- Department of SmartBio, Kyungsung University, Busan 48434, Republic of Korea;
| | - Kisoo Han
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (K.H.); (H.J.S.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (K.H.); (H.J.S.)
| | - Jewon Jung
- Department of SmartBio, Kyungsung University, Busan 48434, Republic of Korea;
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
5
|
Kim N, Lee S, Jung EJ, Jung EY, Chang UJ, Jin CM, Suh HJ, Choi HS. Yeast-Hydrolysate-Derived 1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic Acid Inhibits Fat Accumulation during Adipocyte Differentiation. Foods 2023; 12:3466. [PMID: 37761175 PMCID: PMC10528377 DOI: 10.3390/foods12183466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the impact of yeast hydrolysate (YH) on lipogenesis, elucidate its mechanistic action, and identify the active compounds responsible for its anti-adipogenic effects. YH (2 mg/mL) significantly reduced Oil Red O-stained lipids. YH (2 mg/mL) also downregulated C/EBPβ and upregulated KLF2, both of which are early adipogenic factors. Moreover, YH (2 mg/mL) decreased C/EBPα, PPARγ, FABP4, FAS, ACC, and HMGCR mRNA expression. Additionally, YH significantly downregulated SEBP1c and SREBP2 and their target genes, which govern fatty acid and cholesterol metabolism; however, 2 mg/mL YH had a greater suppressive effect on SREBP1c than on SREBP2. YH (2 mg/mL) also significantly reduced the mRNA level of G6PD and malic enzyme, which are enzymes that synthesize NADPH for lipid synthesis, compared with the control. Furthermore, 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA) was identified as the active compound with anti-adipogenic effects using solvent fractionation and chromatographic analysis of YH, and 1.1 μg/mL MTCA significantly downregulated SREBP1c/SREBP2 mRNAs by 47.8% and 69.2%, respectively, along with the target genes FAS, ACC, and HMGCR by 79.0%, 77.0%, and 40.9%, respectively. Collectively, YH effectively suppressed adipogenic lipid storage by downregulating SREBP- and NADPH-synthesizing genes. These findings suggest that YH containing MTCA has the potential to act as an anti-obesity agent.
Collapse
Affiliation(s)
- Nari Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (S.L.)
| | - Sekyung Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (S.L.)
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Jin Jung
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| | - Eun Young Jung
- Department of Home Economic Education, Jeonju University, Jeonju 55069, Republic of Korea;
| | - Un-Jae Chang
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea;
| | - Cheng-Min Jin
- Analysis and Research Department, NeuroVIS, Inc., Hwaseong-si 18469, Republic of Korea;
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (S.L.)
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul 03016, Republic of Korea
| |
Collapse
|
6
|
Rahimnejad S, Leclercq E, Malinovskyi O, Pěnka T, Kolářová J, Policar T. Effects of yeast hydrolysate supplementation in low-fish meal diets for pikeperch. Animal 2023; 17:100870. [PMID: 37379608 DOI: 10.1016/j.animal.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Plant proteins have been increasingly used as sustainable substitutes for fish meal (FM) in aquafeeds; however, their high inclusion level compromises fish performance. The objective of this study was to examine whether yeast hydrolysate (YH) supplementation can improve the utilisation of high soybean meal (SM) diet and ameliorate its potential deteriorating impacts in pikeperch (Sander lucioperca). A basal diet was formulated using 44% FM, and four additional diets were produced by replacing 30 or 60% of FM with SM with or without the addition of 2% YH (FM, SM30, SM60, SM30 + YH, and SM60 + YH diets). Each diet was fed to three groups of fish (35.3 ± 0.10 g, 150 fish per group) to visual satiety four times daily for 70 days. Fish growth was not impacted by FM replacement level or YH application. However, SM60 group exhibited markedly higher feed conversion ratio and lower survival rate than those fed the FM- and YH-supplemented diets (P < 0.05). The highest and the lowest protein efficiency ratio values were obtained for the SM30 + YH and SM60 groups, respectively. Whole-body lipid content decreased in SM60 and SM60 + YH groups, and muscle lipid decreased in all the replacement groups. Serum triglyceride and glucose concentrations tended to decrease as FM replacement level increased. The highest alanine aminotransferase, aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities were detected in the SM60 group, and YH addition significantly decreased the AST and LDH activities. Serum lysozyme activity decreased in SM30, SM60 and SM60 + YH groups. Serum myeloperoxidase and antiprotease activities decreased in SM60 group, and YH supplementation improved their activities. No effects of diets were observed on serum antioxidant parameters such as catalase activity and malondialdehyde concentration, and gut morphological indices. Number of goblet cells in midgut decreased by increasing the SM inclusion level and a slight improvement was observed by YH application. These findings suggest that YH supplementation has the potential to support the replacement of up to 60% FM with defatted SM in pikeperch feed without deteriorating growth, feed utilisation, and survival rate. Further, YH incorporation mitigated the damaging impacts of high SM diet on liver function and non-specific immune response.
Collapse
Affiliation(s)
- S Rahimnejad
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic; Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - E Leclercq
- Lallemand SAS, 19 rue des Briquettiers, 31702 Blagnac Cedex, France
| | - O Malinovskyi
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - T Pěnka
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - J Kolářová
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - T Policar
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| |
Collapse
|
7
|
Fu R, Liang C, Chen D, Tian G, Zheng P, He J, Yu J, Mao X, Luo Y, Luo J, Yu B. Yeast hydrolysate attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage in weaned piglets. J Anim Sci Biotechnol 2023; 14:44. [PMID: 36932457 PMCID: PMC10021991 DOI: 10.1186/s40104-023-00835-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/04/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Intestinal inflammation is the main risk factor causing intestinal barrier dysfunction and lipopolysaccharide (LPS) can trigger inflammatory responses in various eukaryotic species. Yeast hydrolysate (YH) possesses multi-biological effects and is received remarkable attention as a functional ingredient for improving growth performance and promoting health in animals. However, there is still inconclusive on the protective effects of dietary YH supplementation on intestinal barrier of piglets. This study was conducted to investigate the attenuate effects of YH supplementation on inflammatory responses and intestinal barrier injury in piglets challenged with LPS. METHODS Twenty-four piglets (with an average body weight of 7.42 ± 0.34 kg) weaned at 21 days of age were randomly assigned to one of two dietary treatments (12 replications with one pig per pen): a basal diet or a basal diet containing YH (5 g/kg). On the 22nd d, 6 piglets in each treatment were intraperitoneally injected with LPS at 150 μg/kg BW, and the others were injected with the same amount of sterile normal saline. Four hours later, blood samples of each piglet were collected and then piglets were euthanized. RESULTS Dietary YH supplementation increased average daily feed intake and average daily gain (P < 0.01), decreased the ratio of feed intake to gain of piglets (P = 0.048). Lipopolysaccharide (LPS) injection induced systemic inflammatory response, evidenced by the increase of serum concentrations of haptoglobin (HP), adrenocorticotropic hormone (ACTH), cortisol, and interleukin-1β (IL-1β). Furthermore, LPS challenge resulted in inflammatory intestinal damage, by up-regulation of the protein or mRNA abundances of tumor necrosis factor-α (TNF-α), IL-1β, toll-like receptors 4 (TLR4) and phosphor-nuclear factor-κB-p65 (p-NFκB-p65) (P < 0.01), and down-regulation of the jejunal villus height, the protein and mRNA abundances of zonula occludens-1 (ZO-1) and occludin (OCC; P < 0.05) in jejunal mucosa. Dietary YH supplementation decreased the impaired effects of ACTH, cortisol, HP, IL-1β and diamine oxidase in serum (P < 0.05). Moreover, YH supplementation also up-regulated the jejunal villus height, protein and mRNA abundances of ZO-1 and OCC (P < 0.05), down-regulated the mRNA expressions of TNF-α and IL-1β and the protein abundances of TNF-α, IL-1β, TLR4 and p-NFκB-p65 in jejunal mucosa in LPS-challenged pigs (P < 0.01). CONCLUSION Yeast hydrolysate could attenuate inflammatory response and intestinal barrier injury in weaned piglets challenged with LPS, which was associated with the inhibition of TLR4/NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Runqi Fu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chan Liang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China. .,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Peptide-rich extracts from spent yeast waste streams as a source of bioactive compounds for the nutraceutical market. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
El-Bab AFF, Saghir SAM, El-Naser IAA, El-Kheir SMMA, Abdel-Kader MF, Alruhaimi RS, Alqhtani HA, Mahmoud AM, Naiel MAE, El-Raghi AA. The Effect of Dietary Saccharomyces cerevisiae on Growth Performance, Oxidative Status, and Immune Response of Sea Bream ( Sparus aurata). Life (Basel) 2022; 12:life12071013. [PMID: 35888101 PMCID: PMC9325271 DOI: 10.3390/life12071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the beneficial effect of Saccharomyces cerevisiae (SC) on growth, intestinal morphometric characteristics, blood indices, redox balance, expression of immune-related genes, and their involvement in disease resistance in sea bream (Sparus aurata). Three hundred healthy sea bream fingerlings were allocated into equal four groups (15 fish per hapa). The first group was served as a control and received a basal diet, while the other three groups were fed diets containing 1, 2, and 4 g/kg diet SC, respectively. At the end of week 16, the daily weight gain, specific growth rate, and feed utilization were significantly higher in the SC2 and SC4 groups than the control (p < 0.05). SC dose-dependently improved intestinal morphology, and the 4 g/kg diet significantly increased dry matter, crude fat, and crude protein percentage of body composition when compared with the control group. The 4 g/kg SC boosted innate immune response and phagocytic activity, and all SC-supplemented diets improved total protein, glucose, triglycerides, and urea concentrations, as well as intestinal digestive enzymatic activities. All estimated oxidative markers were significantly enhanced in the group that received 4 g/kg SC when compared with the control and other SC groups (p < 0.05). Feeding the fish a diet supplemented with 4 g/kg SC markedly regulated the expression of HSP70, IGF1, and IL-1β genes. In addition, the 4 g/kg SC-supplemented diet was the most effective in protecting the fish against Vibrio parahaemolyticus challenge. In conclusion, SC-enriched diet improved growth performance, intestinal morphology, redox homeostasis, and immune response of S. aurata with the 4 g/kg concentration as the most effective.
Collapse
Affiliation(s)
- Ahmed F. Fath El-Bab
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| | - Sultan A. M. Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan;
| | - Ibrahim Atta Abu El-Naser
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| | - Salwa M. M. Abo El-Kheir
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| | - Marwa F. Abdel-Kader
- Central Laboratory for Aquaculture Research, Sakha Aquaculture Research Unit, Department of Fish Diseases and Management, A.R.C., Giza 12411, Egypt;
| | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; or
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| | - Ali Ali El-Raghi
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt; (A.F.F.E.-B.); (I.A.A.E.-N.); (S.M.M.A.E.-K.); (A.A.E.-R.)
| |
Collapse
|
10
|
Bioactive peptides from yeast: A comparative review on production methods, bioactivity, structure-function relationship, and stability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Altered intestinal epithelial nutrient transport: an underappreciated factor in obesity modulated by diet and microbiota. Biochem J 2021; 478:975-995. [PMID: 33661278 DOI: 10.1042/bcj20200902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Dietary nutrients absorbed in the proximal small intestine and assimilated in different tissues have a profound effect on overall energy homeostasis, determined by a balance between body's energy intake and expenditure. In obesity, altered intestinal absorption and consequently tissue assimilation of nutrients may disturb the energy balance leading to metabolic abnormalities at the cellular level. The absorption of nutrients such as sugars, amino acids and fatty acids released from food digestion require high-capacity transporter proteins expressed in the intestinal epithelial absorptive cells. Furthermore, nutrient sensing by specific transporters/receptors expressed in the epithelial enteroendocrine cells triggers release of gut hormones involved in regulating energy homeostasis via their effects on appetite and food intake. Therefore, the intestinal epithelial cells play a pivotal role in the pathophysiology of obesity and associated complications. Over the past decade, gut microbiota has emerged as a key factor contributing to obesity via its effects on digestion and absorption of nutrients in the small intestine, and energy harvest from dietary fiber, undigested component of food, in the large intestine. Various mechanisms of microbiota effects on obesity have been implicated. However, the impact of obesity-associated microbiota on the intestinal nutrient transporters needs extensive investigation. This review marshals the limited studies addressing the altered structure and function of the gut epithelium in obesity with special emphasis on nutrient transporters and role of diet and microbiota. The review also discusses the thoughts and controversies and research gaps in this field.
Collapse
|
12
|
Vollet Marson G, Belleville MP, Lacour S, Dupas Hubinger M. Membrane Fractionation of Protein Hydrolysates from By-Products: Recovery of Valuable Compounds from Spent Yeasts. MEMBRANES 2020; 11:membranes11010023. [PMID: 33383662 PMCID: PMC7823831 DOI: 10.3390/membranes11010023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
Spent brewer’s yeast (Saccharomyces sp.), the second most generated by-product from the brewing industry, contains bioactive and nutritional compounds with high added value such as proteins (40–50%), polysaccharides, fibers and vitamins. Molecules of interest from agro-industrial by-products need to be extracted, separated, concentrated, and/or purified so that a minimum purity level is achieved, allowing its application. Enzymatic hydrolysis has been successfully used in the production of peptides and protein hydrolysates. The obtained hydrolysates require efficient downstream processes such as membrane technology, which is an important tool for the recovery of thermolabile and sensitive compounds from complex mixtures, with low energy consumption and high specificity. The integration of membrane techniques that promote the separation through sieving and charge-based mechanisms is of great interest to improve the purity of the recovered fractions. This review is specifically addressed to the application of membrane technologies for the recovery of peptides from yeast protein hydrolysates. Fundamental concepts and practical aspects relative to the ultrafiltration of agro-industrial protein hydrolysates will be described. Challenges and perspectives involving the recovery of peptides from yeast protein hydrolysates will be presented and thoroughly discussed.
Collapse
Affiliation(s)
- Gabriela Vollet Marson
- Institut Européen des Membranes, IEM—UMR 5635, ENSCM, CNRS, Université de Montpellier, CC 047, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France; (M.-P.B.); (S.L.)
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil;
- Correspondence:
| | - Marie-Pierre Belleville
- Institut Européen des Membranes, IEM—UMR 5635, ENSCM, CNRS, Université de Montpellier, CC 047, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France; (M.-P.B.); (S.L.)
| | - Stella Lacour
- Institut Européen des Membranes, IEM—UMR 5635, ENSCM, CNRS, Université de Montpellier, CC 047, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France; (M.-P.B.); (S.L.)
| | - Miriam Dupas Hubinger
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil;
| |
Collapse
|
13
|
Valero-Pérez M, Bermejo LM, López-Plaza B, García MA, Palma-Milla S, Gómez-Candela C. Regular Consumption of Lipigo ® Promotes the Reduction of Body Weight and Improves the Rebound Effect of Obese People Undergo a Comprehensive Weight Loss Program. Nutrients 2020; 12:nu12071960. [PMID: 32630079 PMCID: PMC7399819 DOI: 10.3390/nu12071960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/23/2022] Open
Abstract
Obesity is a global public health problem. Objective: To evaluate the effect of the regular consumption of the product Lipigo® on body weight and rebound effect on overweight/obese subjects undergoing a comprehensive weight loss program. Methods: A randomized, parallel, double-blind, placebo-controlled clinical trial was conducted with male and female subjects presenting a BMI 25–39.9 kg/m2. All subjects underwent a comprehensive weight loss program (WLP) for 12 weeks, which included an individualized hypocaloric diet, physical activity recommendations, nutritional education seminars, and three times a day consumption of the product Lipigo® or Placebo. After-WLP, subjects continued the treatment for 9 months to assess rebound effect. Body weight (BW), BMI, and body composition were measured at the beginning and the end of the WLP, and in the follow-up. Results: A total of 120 subjects (85% women) 49.0 ± 9.5 years old and with a BW of 81.57 ± 13.26 kg (BMI 31.19 ± 3.44 kg/m2) were randomized and 73 subjects finished the study. At the end of the WLP, there was a tendency toward reduced BW (p = 0.093), BMI (p = 0.063), and WC (p = 0.059) in the treated group. However, subjects with obesity type 1 (OB1) from the treated group significantly reduced body weight (−5.27 ± 2.75 vs. −3.08 ± 1.73 kg; p = 0.017) and BMI (−1.99 ± 1.08 vs. −1.09 ± 0.55 kg/m2; p = 0.01) compared with placebo. They also presented a minor rebound effect after 9 months with product consumption (−4.19 ± 3.61 vs. −1.44 ± 2.51 kg; p = 0.026), minor BMI (−1.61 ± 1.43 vs. −0.52 ± 0.96 kg/m2; p = 0.025) and tended to have less fat-mass (−3.44 ± 2.46 vs. −1.44 ± 3.29 kg; p = 0.080) compared with placebo. Conclusions: The regular consumption of the product Lipigo® promotes the reduction of body weight and reduces the rebound effect of obese people after 52 weeks (12 months), mainly in obesity type 1, who undergo a comprehensive weight loss program.
Collapse
Affiliation(s)
- Marlhyn Valero-Pérez
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 2804 Madrid, Spain; (M.V.-P.); (B.L.-P.)
| | - Laura M. Bermejo
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-917-277-000 (ext. 42199)
| | - Bricia López-Plaza
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 2804 Madrid, Spain; (M.V.-P.); (B.L.-P.)
| | | | - Samara Palma-Milla
- Nutrition Department, La Paz University Hospital, Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, 28046 Madrid, Spain; (S.P.-M.); (C.G.-C.)
| | - Carmen Gómez-Candela
- Nutrition Department, La Paz University Hospital, Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, 28046 Madrid, Spain; (S.P.-M.); (C.G.-C.)
| |
Collapse
|
14
|
Marson GV, de Castro RJS, Belleville MP, Hubinger MD. Spent brewer's yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World J Microbiol Biotechnol 2020; 36:95. [PMID: 32583032 DOI: 10.1007/s11274-020-02866-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023]
Abstract
Development of new strategies to add-value to agro-industrial by-products are of environmental and economical importance. Innovative and low-cost sources of protein and bioactive peptides have been explored worldwide. Spent brewer's yeast (SBY) is the second most relevant by-product from the brewing industry, and despite its nutritional (about 50% protein, dry weight) and technological potential, it is still underused or needs to be disposed of. SBY cells need to be disrupted to release intracellular and cell wall proteins. This procedure has been performed using autolysis, glass bead milling, enzymatic hydrolysis and ultrasound processing. Enzymatic treatment is usually performed without prior purification and is a challenging process, which involves multiple factors, but has been successfully used as a strategy to add value to agro-industrial by-products. Scope and approach: in this review, we particularly focused on enzymatic hydrolysis as a strategy to promote SBY valorisation, illustrating the state-of-the-art processes used to produce protein extracts from this material as well as exploring fundamental concepts related to the particularities of yeast cell disruption and protein hydrolysis. Furthermore, innovative applications of value-added yeast by-products in food, biotechnological and pharmaceutical industries are presented and discussed. Key findings and conclusions: the discovery of valuable compounds found in spent yeasts as well as the development of new processing methodologies have been widening the possibilities of reuse and transformation of SBY as an ingredient and innovative matrix. Once released, yeast proteins and peptides may be applied as an innovative non-animal protein source or a functional and bioactive ingredient.
Collapse
Affiliation(s)
- Gabriela Vollet Marson
- Institut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, UM, CC 047, 2 Place Eugène Bataillon, 34095, Montpellier, France. .,Laboratory of Process Engineering, Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - Marie-Pierre Belleville
- Institut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, UM, CC 047, 2 Place Eugène Bataillon, 34095, Montpellier, France
| | - Miriam Dupas Hubinger
- Laboratory of Process Engineering, Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
15
|
Asgary S, Soltani R, Barzegar N, Sarrafzadegan N. Evaluation on the Effects of Tamarindus Indica L. Fruit on Body Weight and Several Cardiometabolic Risk Factors in Obese and Overweight Adult Patients: A Randomized Controlled Clinical Trial. Int J Prev Med 2020; 11:24. [PMID: 32175064 PMCID: PMC7050219 DOI: 10.4103/ijpvm.ijpvm_558_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 10/14/2019] [Indexed: 11/14/2022] Open
Abstract
Background: Animal studies have shown the anti-obesity effects of Tamarindus indica L. (tamarind) fruit pulp. This study aimed to evaluate the weight-reducing effects of T. indica L. fruit as well as its blood pressure- and lipid-lowering effects in a clinical trial. Methods: In a randomized controlled clinical trial, obese and overweight patients were randomly and equally assigned to tamarind and control groups. Both groups were instructed proper diet and maintaining physical activity for 6 weeks. Furthermore, the participants of tamarind group were instructed to consume 10 grams of tamarind fruit pulp twice daily with meals for the same period. Body mass index (BMI), waist circumference, systolic blood pressure (SBP) and diastolic blood pressure (DBP), fasting serum levels of glucose (fasting plasma glucose, FPG), total cholesterol, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined and recorded for all patients pre- and post-intervention. Results: Twenty patients in each group completed the study. Tamarind significantly reduced BMI, WC, LDL-C, SBP, and DBP compared to baseline. However, none of these effects were statistically significant compared to control group. Conclusions: Consumption of tamarind fruit pulp with daily dose of 20 g has no significant effects on body weight, waist circumference, serum lipid profile, blood glucose, and blood pressure.
Collapse
Affiliation(s)
- Sedigheh Asgary
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najmeh Barzegar
- Student Research Committee, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Santas J, Lázaro E, Cuñé J. Effect of a polysaccharide-rich hydrolysate from Saccharomyces cerevisiae (LipiGo®) in body weight loss: randomised, double-blind, placebo-controlled clinical trial in overweight and obese adults. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4250-4257. [PMID: 28251654 DOI: 10.1002/jsfa.8301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND In the present study we evaluated the weight loss effect of a polysaccharide-rich food supplement, LipiGo®, comprising a specific β-glucan-chitin-chitosan fraction (BGCC) obtained from the chemical hydrolysis of Saccharomyces cerevisiae, resulting as a by-product of the brewing process. RESULTS A randomised, double-blind, placebo-controlled clinical trial was performed enrolling 56 overweight and obese subjects (body mass index, BMI, 25-35 kg m-2 ) who were not following any specific diet, and were given placebo or BGCC (3 g d-1 ) for 12 weeks. Results were analysed by intention-to-treat (ITT) and per-protocol (PP) methods. Body weight increased in the placebo group compared to baseline (ITT: 1.0 kg, P < 0.001; PP: 1.5 kg, P = 0.003), while it was slightly lowered in the BGCC group (ITT: -0.8 kg, P = 0.210; PP: -1.1 kg, P = 0.182). BGCC, but not the consumption of placebo, also resulted in a reduction of waist circumference and body fat compared to baseline. CONCLUSIONS Results suggest that daily supplementation of BGCC may be useful for improving body weight and waist circumference in overweight and obese subjects, without relevant adverse effects. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Jordi Cuñé
- AB-Biotics, Sant Cugat del Vallès, Barcelona, Spain
| |
Collapse
|
17
|
Peckmezian T, Hay P. A systematic review and narrative synthesis of interventions for uncomplicated obesity: weight loss, well-being and impact on eating disorders. J Eat Disord 2017; 5:15. [PMID: 28469914 PMCID: PMC5410702 DOI: 10.1186/s40337-017-0143-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/22/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Most weight loss research focuses on weight as the primary outcome, often to the exclusion of other physiological or psychological measures. This study aims to provide a holistic evaluation of the effects from weight loss interventions for individuals with obesity by examining the physiological, psychological and eating disorders outcomes from these interventions. METHODS Databases Medline, PsycInfo and Cochrane Library (2011-2016) were searched for randomised controlled trials and systematic reviews of obesity treatments (dietary, exercise, behavioural, psychological, pharmacological or surgical). Data extracted included study features, risk of bias, study outcomes, and an assessment of treatment impacts on physical, psychological or eating disorder outcomes. RESULTS From 3628 novel records, 134 studies met all inclusion criteria and were evaluated in this review. Lifestyle interventions had the strongest evidence base as a first-line approach, with escalation to pharmacotherapy and bariatric surgery in more severe or complicated cases. Quality of life was the most common psychological outcome measure, and improved in all cases where it was assessed, across all intervention types. Behavioural, psychological and lifestyle interventions for weight loss led to improvements in cognitive restraint, control over eating and binge eating, while bariatric surgery led to improvements in eating behaviour and body image that were not sustained over the long-term. DISCUSSION Numerous treatment strategies have been trialled to assist people to lose weight and many of these are effective over the short-term. Quality of life, and to a lesser degree depression, anxiety and psychosocial function, often improve alongside weight loss. Weight loss is also associated with improvements in eating disorder psychopathology and related measures, although overall, eating disorder outcomes are rarely assessed. Further research and between-sector collaboration is required to address the significant overlap in risk factors, diagnoses and treatment outcomes between obesity and eating disorders.
Collapse
Affiliation(s)
| | - Phillipa Hay
- Foundation Chair of Mental Health and Centre for Health Research, School of Medicine, Western Sydney University, Parramatta, Australia
| |
Collapse
|
18
|
Jung EY, Lee JW, Hong YH, Chang UJ, Suh HJ. Low Dose Yeast Hydrolysate in Treatment of Obesity and Weight Loss. Prev Nutr Food Sci 2017; 22:45-49. [PMID: 28401087 PMCID: PMC5383141 DOI: 10.3746/pnf.2017.22.1.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/10/2017] [Indexed: 11/28/2022] Open
Abstract
The anti-obesity effects of yeast hydrolysate (YH) supplementation (1.0 g/d) have already been demonstrated. We investigated whether a low dose of YH (0.5 g/d, YH-500) also has the anti-obesity effects. Thirty obese women were randomly assigned to the control or YH-500 groups. After 8 weeks, weight and body mass index were significantly reduced by the YH treatment (0.5 g/d) (P<0.05). The YH-500 group lost a significant amount of body fat after the 8-week treatment: fat mass 25.9 kg (baseline) versus 23.8 kg (8th week), P<0.01; fat mass ratio 38.8% (baseline) versus 36.5% (8th week), P<0.05. The YH-500 group showed a significant reduction in calorie intake during the 8-week treatment (P<0.001). The control group wanted to eat much more food (P<0.05) and sometimes thought about eating more often compared with the YH-500 group (P<0.05). Whereas the control group showed a slightly increased sweet preference, the YH-500 group showed a significant reduction in sweet preference (P<0.05). In conclusion, low dose YH supplementation (0.5 g/d) may induce a reductions in weight and body fat in obese women via the reduction of calorie intake.
Collapse
Affiliation(s)
- Eun Young Jung
- Department of Home Economic Education, Jeonju University, Jeonbuk 55069, Korea
| | - Jong Woo Lee
- Department of Health Management, Jeonju University, Jeonbuk 55069, Korea
| | - Yang Hee Hong
- Department of Beauty Art, Suwon Women's University, Gyeonggi 16632, Korea
| | - Un Jae Chang
- Department of Food and Nutrition, Dongduk Women's University, Seoul 02748, Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|