1
|
Tek NA, Ayten Ş, Gövez NE, Ağagündüz D. Acute change in resting energy expenditure and vital signs in response to white tea consumption in females: a pilot study. Nutr Metab (Lond) 2024; 21:88. [PMID: 39511670 PMCID: PMC11546555 DOI: 10.1186/s12986-024-00867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND White tea, derived from the Camellia sinensis plant like other teas, uses tender buds and young leaves and undergoes minimal processing. This results in higher levels of antioxidants and bioactive substances, which may enhance thermogenesis more effectively than other teas. This first human study aimed to investigate the acute effects of white tea consumption on resting energy expenditure (REE) and some vital signs, including blood pressure (BP), heart rate (HR), and body temperature (BT). METHODS Thirty-two healthy female volunteers with normal initial BP and whose caffeine intakes were < 300 mg/d were enrolled in the study. The caffeine and total phenolic content of white tea samples were determined by the high-performance liquid chromatography method and the Folin-Ciocalteu colorimetric method, respectively. After baseline measurements, participants consumed white tea containing 6 mg of caffeine per kilogram of lean body mass, and the white tea was prepared with bottled drinking water at 80 °C and brewed for 3 min. REE, BP, and BT were assessed at various intervals (baseline, 30 min, 120 min, and 180 min) post-consumption of the white tea. RESULTS The results revealed a significant increase in REE by 8.7% at 180 min after the consumption. In particular, there was a substantial difference in both values between the intervals of 30 min to 180 min and baseline to 180 min for REE (p < 0.05). Maximal oxygen consumption and BT also increased significantly over time (p < 0.05) and the observed increment in BT suggests a thermogenic effect associated with white tea consumption. However, systolic BP, diastolic BP, and heart rate showed no significant difference. CONCLUSIONS These findings suggest white tea consumption may acutely enhance REE and maximal oxygen consumption, so the results are promising for body weight management. This study is the first human study in the literature about the effects of white tea on energy expenditure and vital signs.
Collapse
Affiliation(s)
- Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey
| | - Şerife Ayten
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, 06490, Turkey.
| |
Collapse
|
2
|
Liu Y, Wang D, Li J, Zhang Z, Wang Y, Qiu C, Sun Y, Pan C. Research progress on the functions and biosynthesis of theaflavins. Food Chem 2024; 450:139285. [PMID: 38631203 DOI: 10.1016/j.foodchem.2024.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Theaflavins are beneficial to human health due to various bioactivities. Biosynthesis of theaflavins using polyphenol oxidase (PPO) is advantageous due to cost effectiveness and environmental friendliness. In this review, studies on the mechanism of theaflavins formation, the procedures to screen and prepare PPOs, optimization of reaction systems and immobilization of PPOs were described. The challenges associated with the mass biosynthesis of theaflavins, such as poor enzyme activity, undesirable subproducts and inclusion bodies of recombinant PPOs were presented. Further strategies to solve these challenges and improve theaflavins production, including enzyme engineering, immobilization enzyme technology, water-immiscible solvent-water biphasic systems and recombinant enzyme technology, were proposed.
Collapse
Affiliation(s)
- Yufeng Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Dongyang Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jing Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Zhang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yali Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chenxi Qiu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yujiao Sun
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Abiri B, Amini S, Hejazi M, Hosseinpanah F, Zarghi A, Abbaspour F, Valizadeh M. Tea's anti-obesity properties, cardiometabolic health-promoting potentials, bioactive compounds, and adverse effects: A review focusing on white and green teas. Food Sci Nutr 2023; 11:5818-5836. [PMID: 37823174 PMCID: PMC10563719 DOI: 10.1002/fsn3.3595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Tea is one of the most commonly consumed beverages in the world. Morocco, Japan, and China have consumed green tea for centuries. White tea, which is a variety of green teas, is very popular in China and is highly revered for its taste. Presently, both teas are consumed in other countries around the world, even as functional ingredients, and novel research is constantly being conducted in these areas. We provide an update on the health benefits of white and green teas in this review, based on recent research done to present. After a general introduction, we focused on tea's anti-obesity and human health-promoting potential, adverse effects, and new approaches to tea and its bioactive compounds. It has been found that the health benefits of tea are due to its bioactive components, mainly phenolic compounds. Of these, catechins are the most abundant. This beverage (or its extracts) has potential anti-inflammatory and antioxidant properties, which could contribute to body weight control and the improvement of several chronic diseases. However, some studies have mentioned the possibility of toxic effects; therefore, reducing tea consumption is a good idea, especially during the last trimester of pregnancy. Additionally, new evidence will provide insight into the possible effects of tea on the human gut microbiota, and even on the viruses responsible for SARS-CoV-2. A beverage such as this may favor beneficial gut microbes, which may have important implications due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Shirin Amini
- Department of NutritionShoushtar Faculty of Medical SciencesShoushtarIran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Faeze Abbaspour
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Weerawatanakorn M, He S, Chang CH, Koh YC, Yang MJ, Pan MH. High Gamma-Aminobutyric Acid (GABA) Oolong Tea Alleviates High-Fat Diet-Induced Metabolic Disorders in Mice. ACS OMEGA 2023; 8:33997-34007. [PMID: 37744823 PMCID: PMC10515172 DOI: 10.1021/acsomega.3c04874] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Obesity and overweight are associated with an increasing risk of developing health conditions and chronic non-communicable diseases, including cardiovascular diseases, cancer, musculoskeletal problems, respiratory problems, and mental health, and its prevalence is rising. Diet is one of three primary lifestyle interventions. Many bioactive components in tea especially oolong tea, including flavonoids, gamma-aminobutyric acid (GABA), and caffeine were reported to show related effects in reducing the risk of obesity. However, the effects of GABA oolong tea extracts (OTEs) on high-fat diet (HFD)-induced obesity are still unclear. Therefore, this study aims to explore whether the intervention of GABA OTEs can prevent HFD-induced obesity and decipher its underlying mechanisms using male C57BL/6 J mice. The result indicated that GABA OTEs reduced leptin expression in epididymal adipose tissue and showed a protective effect on nonalcoholic fatty liver disease. It promoted thermogenesis-related protein of uncoupling protein-1 and peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), boosted lipid metabolism, and promoted fatty acid oxidation. It also reduced lipogenesis-related protein levels of sterol regulatory element binding protein, acetyl-CoA carboxylase, and fatty acid synthase and inhibited hepatic triglyceride (TG) levels. These data suggest that regular drinking of GABA oolong tea has the potential to reduce the risk of being overweight, preventing obesity development through thermogenesis, lipogenesis, and lipolysis.
Collapse
Affiliation(s)
- Monthana Weerawatanakorn
- Department
of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Sang He
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chun-Han Chang
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Meei-Ju Yang
- Taiwan
Tea Research and Extension Station, Taoyuan 326011, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 41354, Taiwan
| |
Collapse
|
5
|
Fang WW, Wang KF, Zhou F, Ou-Yang J, Zhang ZY, Liu CW, Zeng HZ, Huang JA, Liu ZH. Oolong tea of different years protects high-fat diet-fed mice against obesity by regulating lipid metabolism and modulating the gut microbiota. Food Funct 2023; 14:2668-2683. [PMID: 36883322 DOI: 10.1039/d2fo03577d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Long-term stored oolong tea has recently attracted considerable attention concerning its salutary effect. In this study, the anti-obesity effect of different years' oolong tea on high-fat diet-fed mice was compared. Wuyi rock tea of 2001, 2011, and 2020 were chosen to be the representative samples of oolong tea. The results showed that eight-week administration of 2001 Wuyi rock tea (WRT01), 2011 Wuyi rock tea (WRT11), and 2020 Wuyi rock tea (WRT20) extracts (400 mg per kg per d) significantly decreased the body weight and attenuated the obesity in high-fat diet-fed mice. 2001 and 2011 Wuyi rock teas reduced obesity mainly through regulating lipid metabolism and activating the AMPK/SREBP-1 pathway, downregulating the expression of SREBP-1, FAS, and ACC and upregulating CPT-1a expression; while the 2011 and 2020 Wuyi rock teas by moderating the gut microbiota dysbiosis, reshaping the gut microbiota, and promoting the growth of beneficial bacteria, especially Akkermansia. 2011 Wuyi rock tea was proven to be more effective in reducing body weight gain and liver oxidative stress than the others. Collectively, all three Wuyi rock teas of different years alleviated high-fat diet-induced obesity by regulating lipid metabolism and modulating gut microbiota, whereas the emphasis of their internal mechanism is different with different storage ages.
Collapse
Affiliation(s)
- Wen-Wen Fang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Kuo-Fei Wang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jie Ou-Yang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zi-Ying Zhang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Chang-Wei Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Hong-Zhe Zeng
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Zhou T, Yang K, Huang J, Fu W, Yan C, Wang Y. Effect of Short-Chain Fatty Acids and Polyunsaturated Fatty Acids on Metabolites in H460 Lung Cancer Cells. Molecules 2023; 28:molecules28052357. [PMID: 36903601 PMCID: PMC10005177 DOI: 10.3390/molecules28052357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Lung cancer is the most common primary malignant lung tumor. However, the etiology of lung cancer is still unclear. Fatty acids include short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs) as essential components of lipids. SCFAs can enter the nucleus of cancer cells, inhibit histone deacetylase activity, and upregulate histone acetylation and crotonylation. Meanwhile, PUFAs can inhibit lung cancer cells. Moreover, they also play an essential role in inhibiting migration and invasion. However, the mechanisms and different effects of SCFAs and PUFAs on lung cancer remain unclear. Sodium acetate, butyrate, linoleic acid, and linolenic acid were selected to treat H460 lung cancer cells. Through untargeted metabonomics, it was observed that the differential metabolites were concentrated in energy metabolites, phospholipids, and bile acids. Then, targeted metabonomics was conducted for these three target types. Three LC-MS/MS methods were established for 71 compounds, including energy metabolites, phospholipids, and bile acids. The subsequent methodology validation results were used to verify the validity of the method. The targeted metabonomics results show that, in H460 lung cancer cells incubated with linolenic acid and linoleic acid, while the content of PCs increased significantly, the content of Lyso PCs decreased significantly. This demonstrates that there are significant changes in LCAT content before and after administration. Through subsequent WB and RT-PCR experiments, the result was verified. We demonstrated a substantial metabolic disparity between the dosing and control groups, further verifying the reliability of the method.
Collapse
Affiliation(s)
| | | | | | | | - Chao Yan
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| | - Yan Wang
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| |
Collapse
|
7
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
8
|
Research progress on the lipid-lowering and weight loss effects of tea and the mechanism of its functional components. J Nutr Biochem 2023; 112:109210. [PMID: 36395969 DOI: 10.1016/j.jnutbio.2022.109210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Obesity caused by poor eating habits has become a great challenge faced by public health organizations worldwide. Optimizing dietary intake and ingesting special foods containing biologically active substances (such as polyphenols, alkaloids, and terpenes) is a safe and effective dietary intervention to prevent the occurrence and development of obesity. Tea contains several active dietary factors, and daily tea consumption has been shown to have various health benefits, especially in regulating human metabolic diseases. Here, we reviewed recent advances in research on tea and its functional components in improving obesity-related metabolic dysfunction, and gut microbiota homeostasis and related clinical research. Furthermore, the potential mechanisms by which the functional components of tea could promote lipid-lowering and weight-loss effects by regulating fat synthesis/metabolism, glucose metabolism, gut microbial homeostasis, and liver function were summarized. The research results showing a "positive effect" or "no effect" objectively evaluates the lipid-lowering and weight-loss effects of the functional components of tea. This review provides a new scientific basis for further research on the functional ingredients of tea for lipid lowering and weight loss and the development of lipid-lowering and weight-loss functional foods and beverages derived from tea.
Collapse
|
9
|
Li A, Wang J, Zhang X, Kou R, Chen M, Zhang B, Liu J, Peng B, Zhang Y, Wang S. Cold-Brewed Jasmine Tea Attenuates High-Fat Diet-Induced Obesity and Gut Microbial Dysbiosis. Nutrients 2022; 14:nu14245359. [PMID: 36558518 PMCID: PMC9784320 DOI: 10.3390/nu14245359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cold-brewed jasmine tea (CB-JT) is regarded to possess characteristic flavors and health benefits as a novel resource of functional tea beverages. To investigate the molecular mechanisms underlying CB-JT-mediated protective effects on obesity, we evaluated the serum biochemistry, histological condition, glucose tolerance, gene expression profile and intestinal microbial diversity in high-fat diet (HFD)-fed mice. Our results demonstrate that cold-brewed jasmine tea can significantly attenuate HFD-induced body weight gain, abnormal serum lipid levels, fat deposition, hepatic injury, inflammatory processes as well as metabolic endotoxemia. CB-JT also modified the microbial community composition in HFD-fed mice and altered the balance to one closely resembled that of the control group. The differential abundance of core microbes in obese mice was reversed by CB-JT treatment, including an increment in the abundance of Blautia, Mucispirillum, and Bilophila as well as a decrease in the abundance of Alloprevotella. CB-JT was proved to regulate the mRNA expression levels of lipid metabolism-related genes such as Leptin, Pgc1a Il6, and Il1b in the adipose tissue coupled with Cyp7a1, Lxra, Srebp1c, and Atgl in the liver. These findings indicate that cold-brewed jasmine tea might be served as a potential functional tea beverage to prevent obesity and gut microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuo Wang
- Correspondence: ; Tel.: +86-22-8535-8445
| |
Collapse
|
10
|
Duyun compound green tea extracts regulate bile acid metabolism on mice induced by high-fat diet. Br J Nutr 2022:1-9. [DOI: 10.1017/s0007114522003166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Duyun compound green tea (DCGT) is a healthy beverage with lipid-lowering effect commonly consumed by local people, but its mechanism is not very clear. We evaluated the effect of DCGT treatment on bile acids (BA) metabolism of mice with high-fat diet (HFD) – induced hyperlipidaemia by biochemical indexes and metabolomics and preliminarily determined the potential biomarkers and metabolic pathways of hyperlipidaemia mice treated with DCGT as well as investigated its lipid-lowering mechanism. The results showed that DCGT treatment could reduce HFD – induced gain in weight and improve dyslipidaemia. In addition, a total of ten types of BA were detected, of which seven changed BA metabolites were observed in HFD group mice. After DCGT treatment, glycocholic acid, tauroursodeoxycholic acid and taurochenodeoxycholic acid were significantly down-regulated, while hyodeoxycholic acid, deoxycholic acid and chenodeoxycholic acid were markedly up-regulated. These results demonstrated that DCGT treatment was able to make the BA metabolites in the liver of hyperlipidaemia mice normal and alleviate hyperlipidaemia by regulating the metabolites such as glycocholic acid, tauroursodeoxycholic acid and taurochenodeoxycholic, as well as the BA metabolic pathway and cholesterol metabolic pathway involved.
Collapse
|
11
|
Wang P, Ma XM, Geng K, Jiang ZZ, Yan PY, Xu Y. Effects of Camellia tea and herbal tea on cardiometabolic risk in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:4051-4062. [PMID: 36197117 DOI: 10.1002/ptr.7572] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/07/2022]
Abstract
Evidence for the anti-diabetic actions of camellia and herbal tea in diabetic patients has not been summarized. Several data sources were searched for randomized trials assessing the effect of different teas on cardiometabolic risk factors in T2D subjects. Two independent reviewers extracted relevant data and assessed the risk of bias. Results were summarized using mean differences (MDs) based on a random model. Sixteen studies (19 trials, N = 832) fulfilled the eligibility criteria. Mean differences were measured for body weight, body mass index, fasting blood glucose, glycosylated hemoglobin, a homeostatic model for insulin resistance, high and low-density lipoproteins, triglycerides, and systolic and diastolic blood pressure. No effects on total cholesterol and waist circumference were observed when either camellia or herbal tea was consumed. Tea produced moderate regulatory effects on adipose, glycemic control, lipid profiles, and blood pressure. In terms of efficacy, camellia and herbal teas yield different benefits in regulating metabolism. This discovery has some implications for clinical research and drug development. However, more high-quality trials are needed to improve the certainty of our estimates.
Collapse
Affiliation(s)
- Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Xiu Mei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zong Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pei Yu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Shi M, Lu Y, Wu J, Zheng Z, Lv C, Ye J, Qin S, Zeng C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int J Mol Sci 2022; 23:7595. [PMID: 35886943 PMCID: PMC9317877 DOI: 10.3390/ijms23147595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor. TFs have the marvelous ability to alleviate MetS through antiobesity and lipid-lowering (AMPK-FoxO3A-MnSOD, PPAR, AMPK, PI3K/Akt), hypoglycemic (IRS-1/Akt/GLUT4, Ca2+/CaMKK2-AMPK, SGLT1), and uric-acid-lowering (XO, GLUT9, OAT) effects, and the modulation of the gut microbiota (increasing beneficial gut microbiota such as Akkermansia and Prevotella). This paper summarizes and updates the bioavailability of TFs, and the available signaling pathways and molecular evidence on the functionalities of TFs against metabolic abnormalities in vitro and in vivo, representing a promising opportunity to prevent MetS in the future with the utilization of TFs.
Collapse
Affiliation(s)
- Meng Shi
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Yuting Lu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Junling Wu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Zhibing Zheng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chenghao Lv
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chaoxi Zeng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| |
Collapse
|
13
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
14
|
Zhou B, Ma B, Xu C, Wang J, Wang Z, Huang Y, Ma C. Impact of enzymatic fermentation on taste, chemical compositions and in vitro antioxidant activities in Chinese teas using E-tongue, HPLC and amino acid analyzer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Effects of Tea Treatments against High-Fat Diet-Induced Disorder by Regulating Lipid Metabolism and the Gut Microbiota. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9336080. [PMID: 35677179 PMCID: PMC9168190 DOI: 10.1155/2022/9336080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
High-fat diet (HFD) may induce changes of metabolism and gut microbiota changes, and these changes are susceptible to diet adjustments such as tea treatment. However, the treatment effects may vary among different types of tea. In this study, we evaluated the effects of six types of tea on glucose and lipid metabolism and gut microbiota in HFD mice. We established HFD mouse model by 12 weeks feed with 60% fat diet, then treated with teas for six weeks. Here, we showed that treatment with different types of tea can inhibit weight gain and insulin resistance though different ways. Green tea regulated lipid metabolism by regulating the expression of adenosine 5′-monophosphate-activated protein kinase (AMPK) and carnitine palmitoyltransferase-I (CPT-1). The effect of dark tea and white tea in reducing liver weight seemed to be related to activities of acetyl-CoA carboxylase (ACC). Yellow tea exhibited the best anti-inflammatory and antioxidant effects and effects of recovering the disorder of model mouse microbiota. The decrease in blood sugar and the upregulation of gluconeogenesis-related enzymes seemed to be related to the decrement of unclassified Lachnospiraceae. These different effects may result from the unique chemical compositions contained by different types of tea, which can regulate different lipid and glucose metabolism-related proteins. Despite variations in its compositions and metabolic reactions, tea is a potent antiobesity and hypoglycemic agent.
Collapse
|
16
|
Black Tea Reduces Diet-Induced Obesity in Mice via Modulation of Gut Microbiota and Gene Expression in Host Tissues. Nutrients 2022; 14:nu14081635. [PMID: 35458198 PMCID: PMC9027533 DOI: 10.3390/nu14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022] Open
Abstract
Black tea was reported to alter the microbiome populations and metabolites in diet-induced obese mice and displays properties that prevent obesity, but the underlying mechanism of the preventative effect of black tea on high-fat diet (HFD) induced obesity has not been elucidated. Epigenetic studies are a useful tool for determining the relationship between obesity and environment. Here, we show that the water extract of black tea (Lapsang souchong, LS) reverses HFD-induced gut dysbiosis, alters the tissue gene expression, changes the level of a major epigenetic modification (DNA methylation), and prevents obesity in HFD feeding mice. The anti-obesity properties of black tea are due to alkaloids, which are the principal active components. Our data indicate that the anti-obesity benefits of black tea are transmitted via fecal transplantation, and the change of tissue gene expression and the preventative effects on HFD-induced obesity in mice of black tea are dependent on the gut microbiota. We further show that black tea could regulate the DNA methylation of imprinted genes in the spermatozoa of high-fat diet mice. Our results show a mechanistic link between black tea, changes in the gut microbiota, epigenetic processes, and tissue gene expression in the modulation of diet-induced metabolic dysfunction.
Collapse
|
17
|
Rastogi YR, Thakur R, Thakur P, Mittal A, Chakrabarti S, Siwal SS, Thakur VK, Saini RV, Saini AK. Food fermentation – Significance to public health and sustainability challenges of modern diet and food systems. Int J Food Microbiol 2022; 371:109666. [DOI: 10.1016/j.ijfoodmicro.2022.109666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
|
18
|
Hu S, Luo L, Zeng L. Tea combats circadian rhythm disorder syndrome via the gut-liver-brain axis: potential mechanisms speculated. Crit Rev Food Sci Nutr 2022; 63:7126-7147. [PMID: 35187990 DOI: 10.1080/10408398.2022.2040945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm is an intrinsic mechanism developed by organisms to adapt to external environmental signals. Nowadays, owing to the job and after-work entertainment, staying up late - Circadian rhythm disorders (CRD) are common. CRD is linked to the development of fatty liver, type 2 diabetes, and chronic gastroenteritis, which affecting the body's metabolic and inflammatory responses via multi-organ crosstalk (gut-liver-brain axis, etc.). However, studies on the mechanisms of multi-organ interactions by CRD are still weak. Current studies on therapeutic agents for CRD remain inadequate, and phytochemicals have been shown to alleviate CRD-induced syndromes that may be used for CRD-therapy in the future. Tea, a popular phytochemical-rich beverage, reduces glucolipid metabolism and inflammation. But it is immature and unclear in the mechanisms of alleviation of CRD-mediated syndrome. Here, we have analyzed the threat of CRD to hosts and their offspring' health from the perspective of the "gut-liver-brain" axis. The potential mechanisms of tea in alleviating CRD were further explored. It might be by interfering with bile acid metabolism, tryptophan metabolism, and G protein-coupled receptors, with FXR, AHR, and GPCR as potential targets. We hope to provide new perspectives on the role of tea in the prevention and mitigation of CRD.HighlightsThe review highlights the health challenges of CRD via the gut-liver-brain axis.CRD research should focus on the health effects on healthy models and its offspring.Tea may prevent CRD by regulating bile acid, tryptophan, and GPCR.Potential targets for tea prevention and mitigation of CRD include FXR, AHR and GPCR.A comprehensive assessment mechanism for tea in improving CRD should be established.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| |
Collapse
|
19
|
Zhou B, Wang Z, Yin P, Ma B, Ma C, Xu C, Wang J, Wang Z, Yin D, Xia T. Impact of prolonged withering on phenolic compounds and antioxidant capability in white tea using LC-MS-based metabolomics and HPLC analysis: Comparison with green tea. Food Chem 2022; 368:130855. [PMID: 34496334 DOI: 10.1016/j.foodchem.2021.130855] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics analysis. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component analysis, hierarchical cluster analysis and orthonormal partial least squares-discriminant analysis (R2Y = 0.996 and Q2 = 0.982, respectively). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Additionally, kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea.
Collapse
Affiliation(s)
- Binxing Zhou
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Zihao Wang
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
| | - Peng Yin
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China; Key Laboratory of Tea Science of Education of Ministry, College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Bingsong Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Cunqiang Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Chengcheng Xu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiacai Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ziyu Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dingfang Yin
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
20
|
Huang Y, Yu H, Wang L, Shen D, Ni Z, Ren S, Lu Y, Chen X, Yang J, Hong Y. Research progress on cosmetic microneedle systems: Preparation, property and application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Berilli P, Fanaro GB, Santos JP, Reyes Reyes FG, Iglesias AH, Reis M, Cazarin CBB, Maróstica Junior MR. White tea modulates antioxidant defense of endurance-trained rats. Curr Res Physiol 2022; 5:256-264. [PMID: 35800140 PMCID: PMC9253650 DOI: 10.1016/j.crphys.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The interest in nutritional strategies that may counteract the deleterious oxidative effects induced by strenuous exercises is remarkable. Herein, the impact of white tea (Camellia sinensis) (WT), a polyphenol-rich beverage, on antioxidant status in endurance-trained rats after one session of exhaustive exercise were evaluated. Male Wistar rats were divided into groups, which received: control groups - water, and testing groups - WT1 (0.25%; w/v) or WT2 (0.5%; w/v). Drinks were consumed, ad libitum, for 5 or 10 weeks, concomitantly with the running training. Exhaustive running tests were applied before and after the experimental periods. WT intake increased the serum antioxidant capacity of rats in a dose-dependent manner (P < 0.001), which was unaccompanied by the activity of endogenous antioxidant enzymes SOD, GPx, and GR, and GSH content. Inflammatory markers in serum [IL-1β (P = 0.004) and IL-6 (P = 0.001)] could be downregulated by tea intake. In liver tissue, lower levels of lipid oxidation (P < 0.05) and improved antioxidant defenses (SOD, GPx, GR, and GSH, P < 0.05) were related to the consumption of 10.13039/100010269WT in both doses, supporting protective effects in this responsible metabolic organ. In conclusion, long-term consumption of WT could be a promising adjuvant to exercise-stress management, emphasizing its ability to regulate antioxidant responses and prevent oxidative tissue damage. White tea intake improved antioxidant status of blood and liver of runner rats. White tea intake promoted protective effect against liver lipid peroxidation after an exhaustive exercise. Long term white tea intake did not enhance physical performance.
Collapse
|
22
|
Gonçalves Bortolini D, Windson Isidoro Haminiuk C, Cristina Pedro A, de Andrade Arruda Fernandes I, Maria Maciel G. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chem X 2021; 12:100160. [PMID: 34825170 PMCID: PMC8605308 DOI: 10.1016/j.fochx.2021.100160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023] Open
Abstract
The plant Camellia sinensis is the source of different teas (white, green, yellow, oolong, black, and pu-ehr) consumed worldwide, which are classified by the oxidation degree of their bioactive compounds. The sensory (taste, aroma, and body of the drink) and functional properties of teas are affected by the amount of methylxanthines (caffeine and theobromine), amino acids (l-theanine) and reducing sugars in their composition. Additionally, flavan-3-ols, mainly characterized by epicatechins, catechins, and their derivatives, represent on average, 60% of the bioactive compounds in teas. These secondary metabolites from teas are widely recognized for their antioxidant, anti-cancer, and anti-inflammatory properties. Thus, Camellia sinensis extracts and their isolated compounds have been increasingly used by the food industry. However, bioactive compounds are very susceptible to the oxidation caused by processing and degradation under physiological conditions of gastrointestinal digestion. In this context, new approaches/technologies have been developed for the preservation of these compounds. This review presents the main stages involved in production of Camellia sinensis teas following a description of their main bioactive compounds, biological properties, stability and bioaccessibility. Besides, and updated view of Camellia sinensis teas in the field of food science and technology was provided by focusing on novel findings and innovations published in scientific literature over the last five years.
Collapse
Affiliation(s)
- Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | | | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| |
Collapse
|
23
|
Anaeigoudari A, Safari H, Khazdair MR. Effects of Nigella sativa, Camellia sinensis, and Allium sativum as Food Additives on Metabolic Disorders, a Literature Review. Front Pharmacol 2021; 12:762182. [PMID: 34867384 PMCID: PMC8637837 DOI: 10.3389/fphar.2021.762182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: Metabolic disorders (MD) can disturb intracellular metabolic processes. A metabolic disorder can be resulted from enzyme deficits or disturbances in function of various organs including the liver, kidneys, pancreas, cardiovascular system, and endocrine system. Some herbs were used traditionally for spices, food additives, dietary, and medicinal purposes. Medicinal plants possess biological active compounds that enhance human health. We aimed to provide evidence about therapeutic effects of some medicinal herbs on MD. Data Sources: PubMed, Scopus, and Google Scholar were explored for publications linked to MD until February 2021. The most literature reports that were published in the last 10 years were used. All types of studies such as animal studies, clinical trials, and in vitro studies were included. The keywords included “Metabolic disorders,” “Nigella sativa L.,” “Thymoquinone,” “White tea”OR “Camellia sinensis L.” “catechin,” and “Allium sativum L.” OR “garlic” were searched. Results: Based on the results of scientific studies, the considered medicinal plants and their active components in this review have been able to exert the beneficial therapeutic effects on obesity, diabetes mellitus and non-alcoholic fatty liver disease. Conclusions: These effects are obvious by inhibition of lipid peroxidation, suppression of inflammatory reactions, adjustment of lipid profile, reduction of adipogenesis and regulation of blood glucose level.
Collapse
Affiliation(s)
- Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Science, Jiroft, Iran
| | | | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Hu S, Chen Y, Zhao S, Sun K, Luo L, Zeng L. Ripened Pu-Erh Tea Improved the Enterohepatic Circulation in a Circadian Rhythm Disorder Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13533-13545. [PMID: 34726418 DOI: 10.1021/acs.jafc.1c05338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucolipid metabolism, nitrogen metabolism, and inflammation are closely related to circadian rhythm disorder (CRD). Ripened Pu-erh tea (RPT) shows significant antidyslipidemic, antihyperurecemic, and anti-inflammatory effects. However, it is unclear whether healthy population are affected by CRD and whether long-term consumption of RPT can alleviate it. To investigate this problem, healthy mice were pretreated with RPT (0.25%, w/v) for 60 days and then subjected to CRD for 40 days. Our results indicated that healthy mice showed obesity, and the intestinal and liver inflammation increased after CRD, which were associated with the development of a metabolic disorder syndrome. RPT effectively reversed this trend by increasing the production and excretion rates of bile acid. RPT reshaped the disorder of gut microbiota caused by CRD and promoted the change of archaeal intestinal types from Firmicutes-dominant type to Bacteroidota-dominant type. In addition, by repairing the intestinal barrier function, RPT inhibited the infiltration of harmful microorganisms or metabolites through enterohepatic circulation, thus reducing the risk of chronic liver inflammation. In conclusion, RPT may reduce the risk of CRD-induced obesity in mice by increasing bile acid metabolism. The change of bile acid pool contributes to the reshaping of gut microflora, thus reducing intestinal inflammation and oxidative stress induced by CRD. Therefore, we speculated that the weakening of CRD damage caused by RPT is due to the improvement of bile acid-mediated enterohepatic circulation. It was found that 0.25% RPT (a human equivalent dose of 7 g/60 kg/day) has potential for regulating CRD.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
25
|
Yan H, Wei W, Hu L, Zhang Y, Zhang H, Liu J. Reduced Feeding Frequency Improves Feed Efficiency Associated With Altered Fecal Microbiota and Bile Acid Composition in Pigs. Front Microbiol 2021; 12:761210. [PMID: 34712219 PMCID: PMC8546368 DOI: 10.3389/fmicb.2021.761210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
A biphasic feeding regimen exerts an improvement effect on feed efficiency of pigs. While gut microbiome and metabolome are known to affect the host phenotype, so far the effects of reduced feeding frequency on fecal microbiota and their metabolism in pigs remain unclear. Here, the combination of 16S rRNA sequencing technique as well as untargeted and targeted metabolome analyses was adopted to investigate the fecal microbiome and metabolome of growing–finishing pigs in response to a biphasic feeding [two meals per day (M2)] pattern. Sixty crossbred barrows were randomly assigned into two groups with 10 replicates (three pigs/pen), namely, the free-access feeding group (FA) and the M2 group. Pigs in the FA group were fed free access while those in the M2 group were fed ad libitum twice daily for 1 h at 8:00 and 18:00. Results showed that pigs fed biphasically exhibited increased feed efficiency compared to FA pigs. The Shannon and Simpson indexes were significantly increased by reducing the feeding frequency. In the biphasic-fed pigs, the relative abundances of Subdoligranulum, Roseburia, Mitsuokella, and Terrisporobacter were significantly increased while the relative abundances of unidentified_Spirochaetaceae, Methanobrevibacter, unidentified_Bacteroidales, Alloprevotella, Parabacteroides, and Bacteroides were significantly decreased compared to FA pigs. Partial least-square discriminant analysis (PLS-DA) analysis revealed an obvious variation between the FA and M2 groups; the differential features were mainly involved in arginine, proline, glycine, serine, threonine, and tryptophan metabolism as well as primary bile acid (BA) biosynthesis. In addition, the changes in the microbial genera were correlated with the differential fecal metabolites. A biphasic feeding regimen significantly increased the abundances of primary BAs and secondary BAs in feces of pigs, and the differentially enriched BAs were positively correlated with some specific genera. Taken together, these results suggest that the improvement effect of a reduced feeding frequency on feed efficiency of pigs might be associated with the altered fecal microbial composition and fecal metabolite profile in particular the enlarged stool BA pool.
Collapse
Affiliation(s)
- Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wenzhuo Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Luga Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yong Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
26
|
Dardashti Pour E, Yaghobian F, Dehghan F, Azarbayjani MA. Forecast of ameliorating effect of dietary flavonol consumption in white tea with or without aerobic training on type 2 diabetes (T2D) in females. Clin Nutr ESPEN 2021; 45:134-140. [PMID: 34620309 DOI: 10.1016/j.clnesp.2021.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Diabetes Mellitus (D.M.) is a chronic metabolic disease characterized by hyperglycemia due to insufficient or inefficient insulin secretory response that has become a widespread epidemic primarily due to the increasing prevalence and incidence of type 2 diabetes. Phytochemicals such as flavonoids and regular physical activity have recently attracted attention to developing new anti-diabetic drugs or alternative therapy to control diabetes. The aim of this study was to compare effects of dietary Flavonol consumption in white tea, with or without aerobic training, among patients with type 2 diabetes mellitus as a randomized trial. METHODS 49 women with T2D were randomly assigned into groups including control, white tea, aerobic training, and aerobic training + white tea. The interventions were carried out for six months. Weight, Body Mass Index (BMI), body Fat, peak oxygen consumption (VO2Max), and Blood Pressure were evaluated at both the first and last days of the research period. Blood samples were withdrawn on the same days via venipuncture to test blood glucose, insulin, low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, and triglycerides (T.G.). RESULTS Characteristics analysis showed significant improvements in treated groups. In addition, glucose, insulin, LDL, Cholesterol, and T.G. were significantly reduced while HDL was remarkably increased in treated groups compared to pre-experiment values or the diabetic control group. CONCLUSION Collectively, white tea combined with aerobic training favorably affects glycemic parameters, lipid profile, blood pressure, and VO2Max in six months in women with T2D. Registered under Clinical Trials.gov Identifier no. NCT00123456.
Collapse
Affiliation(s)
- Elnaz Dardashti Pour
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnaz Yaghobian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Firouzeh Dehghan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Bobková A, Demianová A, Belej Ľ, Harangozo Ľ, Bobko M, Jurčaga L, Poláková K, Božiková M, Bilčík M, Árvay J. Detection of Changes in Total Antioxidant Capacity, the Content of Polyphenols, Caffeine, and Heavy Metals of Teas in Relation to Their Origin and Fermentation. Foods 2021; 10:foods10081821. [PMID: 34441598 PMCID: PMC8394337 DOI: 10.3390/foods10081821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
Tea (Camellia sinensis) is widely sought for beverages worldwide. Heavy metals are often the main aims of the survey of teas, given that the use of agricultural fertilization is very frequent. Some of these may affect the content of bioactive compounds. Therefore, in this study, we analyzed fermented and non-fermented teas of a single plant origin from Japan, Nepal, Korea, and China, and described mutual correlations and changes in the total antioxidant capacity (TAC), and the content of polyphenols (TPC), caffeine, and heavy metals in tea leaves, in relation to the origin and fermentation process. Using UV-VIS spectrophotometry and HPLC-DAD, we determined variations in bioactive compounds’ content in relation to the fermentation process and origin and observed negative correlations between TAC and TPC. Heavy metal content followed this order: Mn > Fe > Cu > Zn > Ni > Cr > Pb > Co > Cd > Hg. Given the homogenous content of these elements in relation to fermentation, this paper also describes the possibility of using heavy metals as determinants of geographical origin. Linear Discriminant Analysis showed an accuracy of 75% for Ni, Co, Cd, Hg, and Pb, explaining 95.19% of the variability between geographical regions.
Collapse
Affiliation(s)
- Alica Bobková
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (Ľ.B.); (K.P.)
| | - Alžbeta Demianová
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (Ľ.B.); (K.P.)
- Correspondence:
| | - Ľubomír Belej
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (Ľ.B.); (K.P.)
| | - Ľuboš Harangozo
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (Ľ.H.); (J.Á.)
| | - Marek Bobko
- Department of Technology and the Quality of Animal Products, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (L.J.)
| | - Lukáš Jurčaga
- Department of Technology and the Quality of Animal Products, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (L.J.)
| | - Katarína Poláková
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (Ľ.B.); (K.P.)
| | - Monika Božiková
- Department of Physics, Faculty of Engineering, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (M.B.)
| | - Matúš Bilčík
- Department of Physics, Faculty of Engineering, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (M.B.)
| | - Július Árvay
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (Ľ.H.); (J.Á.)
| |
Collapse
|
28
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
29
|
Hinojosa-Nogueira D, Pérez-Burillo S, Pastoriza de la Cueva S, Rufián-Henares JÁ. Green and white teas as health-promoting foods. Food Funct 2021; 12:3799-3819. [PMID: 33977999 DOI: 10.1039/d1fo00261a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tea is one of the most consumed beverages around the world and as such, it is constantly the object of novel research. This review focuses on the research performed during the last five years to provide an updated view of the current position of tea regarding human health. According to most authors, tea health benefits can be traced back to its bioactive components, mostly phenolic compounds. Among them, catechins are the most abundant. Tea has an important antioxidant capacity and anti-inflammatory properties, which make this beverage (or its extracts) a potential aid in the fight against several chronic diseases. On the other hand, some studies report the possibility of toxic effects and it is advisable to reduce tea consumption, such as in the last trimester of pregnancy. Additionally, new technologies are increasing researchers' possibilities to study the effect of tea on human gut microbiota and even against SARS CoV-2. This beverage favours some beneficial gut microbes, which could have important repercussions due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|
30
|
Machado APDF, Geraldi MV, do Nascimento RDP, Moya AMTM, Vezza T, Diez-Echave P, Gálvez JJ, Cazarin CBB, Maróstica Júnior MR. Polyphenols from food by-products: An alternative or complementary therapy to IBD conventional treatments. Food Res Int 2021; 140:110018. [PMID: 33648249 DOI: 10.1016/j.foodres.2020.110018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) are illnesses characterized by chronic intestinal inflammation and microbial dysbiosis that have emerged as a public health challenge worldwide. It comprises two main conditions: Crohn's disease and ulcerative colitis. Currently, conventional therapy to treat IBD are not free from side effects, such as liver and kidney toxicity, drug resistance, and allergic reactions. In view of this, there is growing research for alternative and complementary therapies that, in addition to acting in the prevention or the control of the disease, do not compromise the quality of life and health of individuals. In this sense, a growing body of evidence has confirmed the benefits of natural phenolic compounds in intestinal health. Phenolic compounds or polyphenols are molecules widely distributed throughout the plant kingdom (flowers, vegetables, leaves, and fruits), including plant materials remaining of the handling and food industrial processing, referred to in the scientific literature as by-products, food waste, or bagasse. Since by-products are low-cost, abundant, easily accessible, safe, and rich in bioactive compounds, it becomes an exciting option to extract, concentrate or isolate phenolic compounds to be posteriorly applied in the therapeutic approach of IBD. In this article, we have reviewed the main phenolic compounds present in various plants and by-products that have shown beneficial and/or promising effects in experimental pre-clinical, clinical, and in vitro research with IBD. In addition, we have mentioned and suggested several plants and by-products originated and produced in Latin America that could be part of future research as good sources of specific phenolic compounds to be applied in the prevention and development of alternative treatments for IBD. This review may offer a valuable reference for studies related to IBD administering phenolic compounds from natural, cheap, and easily accessible raw and undervalued materials.
Collapse
Affiliation(s)
| | - Marina Vilar Geraldi
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | | | | - Teresa Vezza
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Patricia Diez-Echave
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Julio Juan Gálvez
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Cinthia Bau Betim Cazarin
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | |
Collapse
|
31
|
Lin Q, Ni H, Wu L, Weng SY, Li L, Chen F. Analysis of aroma-active volatiles in an SDE extract of white tea. Food Sci Nutr 2021; 9:605-615. [PMID: 33598146 PMCID: PMC7866617 DOI: 10.1002/fsn3.1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
White tea is a famous Chinese tea that is cooked at boiling point before drinking. The simultaneous distillation-extraction (SDE) was used to collect volatile compounds during tea cooking. The SDE extract was dominated with green, floral, roasted and woody notes, and weak sweet note. There were 32 volatile compounds identified via gas chromatography-mass spectrometry analysis, and 19 of them had strong fragrance based on the gas chromatography-olfactometry analyzed results. Hexanal, 2-hexenal, cis-3-hexen-1-ol, and camphene were the main contributors to the green note. The floral note was mainly contributed by 2-hexanone, benzeneacetaldehyde, trans-linalool oxide, and linalool, and the sweet note was induced by trans-β-damascenone. The roasted note was mainly contributed by 2-pentyl-furan. The woody note was mainly contributed by trans-α-ionone and trans-β-ionone. Four putative reaction pathways, including amino acid degradation, carotene degradation, Maillard reaction, and glycosides hydrolysis, were figured out to explain the generation of aromatic-active volatiles at high temperatures. This study added our knowledge on tea aroma under cooking as well as other thermal treatments.
Collapse
Affiliation(s)
- Qi Lin
- College of Food and BioengineeringJimei UniversityXiamenChina
| | - Hui Ni
- College of Food and BioengineeringJimei UniversityXiamenChina
- Key Laboratory of Food Microbiology and Enzyme Engineering TechnologyXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
| | - Ling Wu
- College of Food and BioengineeringJimei UniversityXiamenChina
- Key Laboratory of Food Microbiology and Enzyme Engineering TechnologyXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
| | - Shu Yi Weng
- DAMIN Foodstuff (Zhangzhou) Co., LtdZhangzhouChina
| | - Lijun Li
- College of Food and BioengineeringJimei UniversityXiamenChina
- Key Laboratory of Food Microbiology and Enzyme Engineering TechnologyXiamenChina
- Research Center of Food Biotechnology of Xiamen CityXiamenChina
| | - Feng Chen
- College of Food and BioengineeringJimei UniversityXiamenChina
- Department of Food, Nutrition and Packaging SciencesClemson UniversityClemsonSCUSA
| |
Collapse
|
32
|
Gaikwad NW. Bileome: The bile acid metabolome of rat. Biochem Biophys Res Commun 2020; 533:458-466. [PMID: 32977942 DOI: 10.1016/j.bbrc.2020.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
Bile acids (BA) play a vital physiological role in vivo. They are not only detergent of dietary lipids and nutrients, but also important hormones or nutrient signaling molecules in metabolic regulation process. Recent studies have also shown BA involvement in various cancers and diseases such as Parkinson's and Alzheimer's and liver diseases. However, majority of the reported literature about BA is restricted to enterohepatic circulation. Hitherto, there has been no comprehensive study of the BA profile in all the major tissue and biofluids in rat has been reported. In this first bileomics study, BA profile of 14 different rat biological specimens (liver, serum, kidney, heart, stomach, ovary, mammary, uterus, small intestine, big intestine, spleen, brain, feces and urine) were studied by ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). Here I report the comprehensive identification and measurements of bile acids, the bileome, in rat. PCA analysis show distinct separate clusters of tissues as well as biofluids based on BA composition profile. Furthermore, we found that BA profiles of the organs that are involved in enterohepatic circulation were different than the other organs. Most of BA in brain, spleen, heart, ovary, urine, feces and uterus were in the unamidated form, and LCA and MOCA are the most abundant BAs in these organs. Whereas, most of BAs in liver, serum, mammary, large intestine, small intestine, stomach and kidney existed in amidated form, and TCA and T-β-MCA are primary BAs. Finally, first time, BAs are found and measured in kidney, heart, stomach, ovary, mammary, uterus, and spleen of rats.
Collapse
|
33
|
Hong G, Wu H, Ma ST, Su Z. Catechins from oolong tea improve uterine defects by inhibiting STAT3 signaling in polycystic ovary syndrome mice. Chin Med 2020; 15:125. [PMID: 33292347 PMCID: PMC7708239 DOI: 10.1186/s13020-020-00405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background It is showed that inflammation is causative factor for PCOS, leading to a decline in ovarian fertility. Previous studies have reported that tea consumption can reduce the incidence of ovarian cancer. We speculate that catechins from oolong tea (Camellia sinensis (L.) O. Kuntze) may have a potential therapeutic effect on PCOS. This study aims to investigate the effects of oolong tea catechins on the uterus of polycystic ovary syndrome (PCOS) mice induced by insulin combined with human chorionic gonadotropin (hCG). Methods Sixty female mice were divided into 6 groups (n = 10): model, model + Metformin 200 mg/kg, model + catechins 25 mg/kg, model + catechins 50 mg/kg, and model + catechins 100 mg/kg. Another forty female mice were divided into 4 groups (n = 10): control, control + catechins 100 mg/kg, model, and model + catechins 100 mg/kg. Ovarian and uterine weight coefficients, sex hormone levels, glucose metabolism and insulin resistance, and ovarian and uterine pathology were examined. Changes in NF-κB-mediated inflammation, MMP2 and MMP9 expressions, and STAT3 signaling were evaluated in the uterus of mice. Results Catechins could effectively reduce the ovarian and uterine organ coefficients, reduce the levels of E2, FSH and LH in the blood and the ratio of LH/FSH, and improve glucose metabolism and insulin resistance in PCOS mice induced by insulin combined with hCG. In addition, catechins could significantly down-regulated the expression of p-NF-κB p65 in the uterus and the protein expressions of the pro-inflammatory factors (IL-1β, IL-6, and TNF-α). The expressions of mmp2 and mmp9 associated with matrix degradation in uterine tissue were also significantly down-regulated by catechins. Further, catechins significantly reduced the expression of p-STAT3 and increased the expression of p-IRS1 and p-PI3K in the uterus of PCOS mice. Conclusion Catechins from oolong tea can alleviate ovarian dysfunction and insulin resistance in PCOS mice by inhibiting uterine inflammation and matrix degradation via inhibiting p-STAT3 signaling.
Collapse
Affiliation(s)
- Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, 300192, China.,Life and Health College, Anhui Science and Technology University, Fengyang, 233100, China
| | - Hao Wu
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 200192, China
| | - Shi-Tang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang, 233100, China.
| | - Zhe Su
- Tianjin Institute for Drug Control, Tianjin, 300000, China
| |
Collapse
|
34
|
Yang J, Luo F, Zhou L, Sun H, Yu H, Wang X, Zhang X, Yang M, Lou Z, Chen Z. Residue reduction and risk evaluation of chlorfenapyr residue in tea planting, tea processing, and tea brewing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139613. [PMID: 32534281 DOI: 10.1016/j.scitotenv.2020.139613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The chlorfenapyr residues in the entire tea chain, i.e., in tea planting, tea processing, and tea brewing, were systematically investigated. The degradation rate constants of chlorfenapyr in the tea plants ranged from 0.2460 to 0.2870 with the half-life of 2.4-3.0 days, and 87.5-89.9% of the chlorfenapyr in tea shoots dissipated in the interval of 7 days. In the processing process of both black tea and green tea, the chlorfenapyr residue decreased by 59.1-67.6% compared with the residue in tea shoots due to high vapor pressure (1.2 × 10-2 mPa 25 °C), and drying was the key step that dissipated the chlorfenapyr. A low leaching efficiency of 2.2-3.4% from tea leaves to tea infusion, resulted in low water solubility (0.14 mg L-1 25 °C), indicated that >90% of the residual chlorfenapyr was eliminated before the intake of tea infusion. On the basis of these results, an extremely large proportion of the chlorfenapyr deposited on tea shoots was degraded during tea planting, tea processing, and tea brewing, and the health risk was reduced primarily in the first and the last step rather than during tea processing. The remaining 0.2% chlorfenapyr sprayed on the tea shoots represents a negligible health risk based on the RQ assessment. The pesticides with high vapor pressure and low water solubility were more recommended in tea garden for pest control.
Collapse
Affiliation(s)
- Jie Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China.
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Huan Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agricultural, Hangzhou 310008, China
| |
Collapse
|
35
|
Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103621] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|