1
|
Khallouki F, Zennouhi W, Hajji L, Bourhia M, Benbacer L, El Bouhali B, Rezig L, Poirot M, Lizard G. Current advances in phytosterol free forms and esters: Classification, biosynthesis, chemistry, and detection. Steroids 2024; 212:109520. [PMID: 39378976 DOI: 10.1016/j.steroids.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol. These molecules are composed of a sterane ring, also known as perhydrocyclopentanophenanthrene, along with a methyl or ethyl group at C-24 in their side chains, a hydroxyl group at C-3 on ring A, and one or two double bonds in the B ring. Phytosterols display different oxidation degrees at the sterane ring and at the side chain as well as varying numbers of carbons with complex stereochemistries. Fats and water solubilities of phytosterols have been achieved by physical, chemical and enzymatic esterifications to favor their bioavailability and to improve the sensory quality of food, and the efficiency of pharmaceutic and cosmetic products. This review aims to provide comprehensive information starting from the definition and structural classification of phytosterols, and exposes an update of their biogenic relationships. Next, the synthesis of phytosterol esters and their applications as well as their effective roles as hormone precursors are discussed. Finally, a concise exploration of the latest advancements in phytosterol / oxyphytosterols analysis techniques is provided, with a particular focus on modern hyphenated techniques.
Collapse
Affiliation(s)
- Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco.
| | - Wafa Zennouhi
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco
| | - Lhoussain Hajji
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Mohamed Bourhia
- Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000 Laayoune, Morocco
| | - Laila Benbacer
- Unité de Biologie et Recherches Moléculaires Département Sciences du Vivant, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Bachir El Bouhali
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia; High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse III, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
| | - Gérard Lizard
- Laboratoiry Bio-PeroxIL / EA7270, Université de Bourgogne / Inserm, 21000 Dijon, France; PHYNOHA Consulting, 21121 Fontaine-lès-Dijon, France.
| |
Collapse
|
2
|
Yalcinkaya A, Öztaş YE, Sabuncuoğlu S. Sterols in Inflammatory Diseases: Implications and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:261-275. [PMID: 38036884 DOI: 10.1007/978-3-031-43883-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The characteristic steroid skeleton, with its 4-ringed 17-carbon structure, is one of the most recognizable organic compounds in biochemistry. In the presence of a hydroxyl ion bound to the third carbon, this structure is defined as a "sterol" (chemical formula: C17H28O). The hydroxyl group provides a hydrophilic site for the otherwise hydrophobic molecule, yielding an amphipathic lipid, which is a vital property for cellular function. It is crucial to remark that the term "steroid" describes a larger group of compounds that often retain the hydroxyl group but are primarily characterized by methyl groups, double bonds in the rings, and an aliphatic side-chain extending from the 17th carbon. In addition to serving various structural roles in the cellular membrane, sterols and steroids contribute to cellular and systemic functions as messengers, hormones, and regulators of several critical metabolic pathways.Sterol nomenclature is often confusing, partly due to structural complexity and partly due to the sheer number of different compounds that fall under the definition. Fortunately, the foremost sterols of interest in biochemistry are much fewer, and therefore, these lipids have been defined and studied vigorously. With the renaissance of lipid research during the 1990s and 2000s, many different metabolites of sterols, and more specifically phytosterols, were found to be associated with various diseases and conditions, including cardiovascular disease, hypercholesterolemia, cancer, obesity, inflammation, diabetes, and inborn errors of metabolism; thus, it is evident that the ever-evolving research in this field has been, and will continue to be, exceedingly productive.With respect to inflammation and inflammatory diseases, plant-based sterols (i.e., phytosterols) have gained considerable fame due to their anti-inflammatory and cholesterol-lowering effects demonstrated by experimental and clinical research. Besides, the exceptional pharmacological benefits of these sterols, which operate as antioxidant, antidiabetic, and anti-atherosclerotic agents, have been the subject of various investigations. While the underlying mechanisms necessitate further research, the possible function of phytosterols in improving health outcomes is an important topic to explore.In this regard, the current review aims to offer comprehensive information on the therapeutic potential of plant-based sterols in the context of human health, with a focus on preclinical effects, bioavailability, and clinical use.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yeşim Er Öztaş
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Kühn J, Brandsch C, Kiourtzidis M, Nier A, Bieler S, Matthäus B, Griehl C, Stangl GI. Microalgae-derived sterols do not reduce the bioavailability of oral vitamin D 3 in mice. INT J VITAM NUTR RES 2023; 93:507-517. [PMID: 36124519 DOI: 10.1024/0300-9831/a000766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microalgae have drawn increasing attention as sustainable food sources, also because of their lipid-lowering phytosterols. As phytosterols are also discussed critically regarding their effect on the availability of fat-soluble vitamins, this study aimed to investigate microalgae-derived phytosterols and their effect on vitamin D status. GC-MS analysis showed large variations in the phytosterol profiles of microalgal species. The most frequent sterols were β-sitosterol and stigmasterol. To investigate their effects on vitamin D status, 40 mice were randomized to four groups and fed a vitamin D3-adequate (25 μg/kg) Western-style diet with 0% phytosterols (control) or 1% ergosterol (a fungal sterol not typical for microalgae), β-sitosterol or stigmasterol for four weeks. Contrary to the hypothesis that phytosterols adversely affect vitamin D uptake, mice fed β-sitosterol had significantly higher concentrations of vitamin D3 in plasma (3.15-fold, p<0.01), liver (3.15-fold, p<0.05), and skin (4.12-fold, p<0.005) than the control group. Small increases in vitamin D3 in plasma and skin were also observed in mice fed stigmasterol. In contrast, vitamin D3 levels in the ergosterol and control groups did not differ. The increased tissue levels of vitamin D3 in mice fed β-sitosterol and stigmasterol were not attributable to the observed reduction in liver triglycerides in these groups. The data rather suggest that changes in bile acid profiles were responsible for the beneficial effect of microalgae sterols on the bioavailability of vitamin D3. In conclusion, consumption of microalgae might not adversely affect vitamin D status.
Collapse
Affiliation(s)
- Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mikis Kiourtzidis
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anika Nier
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simone Bieler
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, Koethen, Germany
| | - Bertrand Matthäus
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Cereals, Detmold, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, Koethen, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
4
|
Góñez KV, García JS, Sardina FJ, Pazos Y, Saá Á, Martín Pastor M. J-filter: An experiment to simplify and isolate specific signals in 1 H NMR spectra of complex mixtures based on scalar coupling constants. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:615-622. [PMID: 37727038 DOI: 10.1002/mrc.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
One-dimensional selective NMR experiments relying on a J-filter element are proposed to isolate specific signals in crowded 1 H spectral regions. The J-filter allows the edition or filtering of signals in a region of interest of the spectrum by exploiting the specific values of their 1 H-1 H coupling constants and certain parameters of protons coupled to them that appear in less congested parts of the spectrum (chemical shifts and coupling constants). The new experiments permitted the isolation of specific peaks of phytosterol components in a sample obtained from a liquid nutraceutical recommended for lowering blood cholesterol levels in regions with complete overlap in the 1 H spectrum.
Collapse
Affiliation(s)
- Karen V Góñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, (CIQUS), Universidade de Santiago de Compostela, A Coruña, Spain
| | - Juan Suárez García
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, (CIQUS), Universidade de Santiago de Compostela, A Coruña, Spain
| | - F Javier Sardina
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, (CIQUS), Universidade de Santiago de Compostela, A Coruña, Spain
| | - Yolanda Pazos
- Grupo de Investigación Traslacional en Enfermedades del Aparato Digestivo, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), A Coruña, Spain
| | - Ángela Saá
- Mestrelab Research S.L., A Coruña, Santiago de Compostela, Spain
| | - Manuel Martín Pastor
- Unidade de Resonancia Magnética, Área de Infraestructuras de Investigación, CACTUS, Universidade de Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
5
|
Gao Y, Xun R, Xia J, Xia H, Sun G. Effects of phytosterol supplementation on lipid profiles in patients with hypercholesterolemia: a systematic review and meta-analysis of randomized controlled trials. Food Funct 2023; 14:2969-2997. [PMID: 36891733 DOI: 10.1039/d2fo03663k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Phytosterols (PSs) have been reported to improve blood lipids in patients with hypercholesterolemia for many years. However, meta-analyses of the effects of phytosterols on lipid profiles are limited and incomplete. A systematic search of randomized controlled trials (RCTs) published in PubMed, Embase, Cochrane Library, and Web of Science from inception to March 2022 was conducted according to the 2020 preferred reporting items of the guidelines for systematic reviews and meta-analysis (PRISMA) statement. These included studies of people with hypercholesterolemia, comparing foods or preparations containing PSs with controls. Mean differences with 95% confidence intervals were used to estimate continuous outcomes for individual studies. The results showed that in patients with hypercholesterolemia, taking a diet containing a certain dose of plant sterol significantly reduced total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) (TC: Weight Mean Difference (WMD) [95% CI] = -0.37 [-0.41, -0.34], p < 0.001; LDL-C: WMD [95% CI] = -0.34 [-0.37, -0.30], p < 0.001). In contrast, PSs had no effect on high density lipoprotein cholesterol (HDL-C) or triglycerides (TGs) (HDL-C: WMD [95% CI] = 0.00 [-0.01, 0.02], p = 0.742; TG: WMD [95% CI] = -0.01 [-0.04, 0.01], p = 0.233). Also, a significant effect of supplemental dose on LDL-C levels was observed in a nonlinear dose-response analysis (p-nonlinearity = 0.024). Our findings suggest that dietary phytosterols can help reduce TC and LDL-C concentrations in hypercholesterolemia patients without affecting HDL-C and TG concentrations. And the effect may be affected by the food substrate, dose, esterification, intervention cycle and region. The dose of phytosterol is an important factor affecting the level of LDL-C.
Collapse
Affiliation(s)
- Yusi Gao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ruilong Xun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China. .,China-DRIs Expert Committee on Other Dietary Ingredients, Beijing 100052, China
| |
Collapse
|
6
|
Ma R, Yang P, Jing C, Fu B, Teng X, Zhao D, Sun L. Comparison of the metabolomic and proteomic profiles associated with triterpene and phytosterol accumulation between wild and cultivated ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:288-299. [PMID: 36652850 DOI: 10.1016/j.plaphy.2023.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Wild ginseng is thought to be superior in its medicinal quality to cultivated ginseng, potentially owing to the differences in active components. This study was designed accordingly to assess the differences in secondary metabolite components and their synthesis in wild and cultivated ginseng by using quantitative proteomics combined with secondary metabolomics approaches. A total of 72 secondary metabolites were found to be differentially abundant, of which dominant abundant in wild ginseng primarily included triterpenoid saponins (ginsenosides) and phytosterols. Ginsenoside diversity was increased in wild ginseng, particularly with respect to rare ginsenosides. Ginsenoside Rk1, F1, Rg5, Rh1, PPT, Rh2, and CK enriched in wild ginseng were validated by HPLC. In addition to ginsenosides, stigmasterol and β-sitosterol were accumulated in wild ginseng. 102 differentially expressed proteins between wild and cultivated ginseng were identified using iTRAQ labeling technique. Among them, 25 were related to secondary metabolism, mainly involved in sesquiterpene and triterpene biosynthesis, which was consistent with metabolomics results. Consistently, the activity levels of HMGR, FDPS, SS, SE, DS, CYP450, GT and CAS, which are key enzymes related to ginsenoside and phytosterol biosynthesis, were confirmed to be elevated in wild ginseng.The biosynthesis of ginsenosides and phytosterols in wild ginseng is higher than that in cultivated ginseng, which may be related to natural growth without artificial domestication. To some extent, this study explained the accumulation of pharmacodynamic components and overall quality of ginseng, which could provide reference for the germplasm improvement and planting of ginseng.
Collapse
Affiliation(s)
- Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Pengdi Yang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, Beihua University, 15 Jilin Street, Jilin, Jilin Province, 132013, China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Baoyu Fu
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Xiaoyu Teng
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, Beihua University, 15 Jilin Street, Jilin, Jilin Province, 132013, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
7
|
Chen Z, Shen N, Wu X, Jia J, Wu Y, Chiba H, Hui S. Extraction and Quantitation of Phytosterols from Edible Brown Seaweeds: Optimization, Validation, and Application. Foods 2023; 12:244. [PMID: 36673338 PMCID: PMC9858231 DOI: 10.3390/foods12020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Brown seaweeds are known as important marine food sources, from which phytosterols have been recognized as functional food components with multiple health-beneficial effects. However, studies on phytosterol extraction and quantitation from edible brown seaweeds are limited. In the present work, extraction methods for seaweed phytosterols were compared and optimized by one-factor-at-one-time method and response surface methodology. Moreover, the quantitation method of total sterols and major sterol components, including fucosterol, saringosterol, and ostreasterol, was established and validated using 1H NMR. Furthermore, the developed extraction and determination methods were applied to investigate three common edible seaweeds from Japan (Hijiki, Wakame, and Kombu). As a result, the finally optimized conditions were ultrasound-assisted extraction with CHCl3-MeOH 2:3 for 15 min followed by saponification with 1.65 mL of 1.85 M KOH for 14.5 h. Based on the developed methods, phytosterols in three seaweeds were compared, and Hijiki showed an abundant total sterol amount (2.601 ± 0.171 mg/g DW), significantly higher than Wakame (1.845 ± 0.137 mg/g DW) and Kombu (1.171 ± 0.243 mg/g DW). Notably, the composition of the sterol components varied in different seaweeds. These findings might help the nutritional investigation and functional food development concerning phytosterols from seaweeds.
Collapse
Affiliation(s)
- Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Nianqiu Shen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Xunzhi Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Jiaping Jia
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo 007-0894, Japan
| | - Shuping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Xie T, Liu W, Chen Y, Zhou Y. An evaluation of graded levels of beta-sitosterol supplementation on growth performance, antioxidant status, and intestinal permeability-related parameters and morphology in broiler chickens at an early age. Poult Sci 2022; 101:102108. [PMID: 36099659 PMCID: PMC9472065 DOI: 10.1016/j.psj.2022.102108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed to examine the effects of different levels of beta-sitosterol (BS) supplementation on growth performance, serum biochemical indices, redox status, and intestinal permeability-related parameters and morphology of young broilers. Two hundred and forty male Arbor Acres broiler chicks were allocated into 5 groups of 6 replicates with 8 birds each, and fed a basal diet supplemented with 0, 25, 50, 75, and 100 mg/kg BS for 21-d, respectively. The BS quadratically decreased feed conversion ratio during 1 to 14 d and 1 to 21 d, with its effect being more prominent at 25 or 50 mg/kg (P < 0.05). The BS linearly and quadratically reduced 14-d plasma diamine oxidase activity and D-lactate level, and this effect was more pronounced when its supplemental level was 25 or 50 mg/kg (P < 0.05). The BS linearly increased duodenal villus height (VH) and quadratically increased jejunal VH and ratio of VH and crypt depth (CD) at 14 d, and these effects in 25 mg/kg group were more remarkable (P < 0.05). Similarly, BS linearly or quadratically increased VH and ratio of VH and CD, but decreased CD in the jejunum and ileum at 21 d, with these effects being more pronounced at 50 mg/kg (P < 0.05). The BS supplementation especially at 50 or 75 mg/kg linearly or quadratically reduced 14-d serum and 21-d hepatic malondialdehyde concentration, and increased serum glutathione peroxidase and catalase activities at 14 and 21 d (P < 0.05). Moreover, the BS administration linearly and/or quadratically increased glutathione peroxidase, catalase, and superoxide dismutase activities and glutathione level, and reduced malondialdehyde accumulation in the intestinal mucosa at 14 and/or 21 d, and these consequences were more significant in 50 to 100 mg/kg BS-supplemented groups (P < 0.05). The results demonstrated that BS administration could improve growth performance, intestinal barrier function, and antioxidant status of broilers at an early age, with these effects being more pronounced at a level of 50 mg/kg.
Collapse
Affiliation(s)
- Ting Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
10
|
Evaluation of the economic characteristics of the fruit of 45 superior Camellia weiningensis Y.K. Li. trees. PLoS One 2022; 17:e0268802. [PMID: 35617353 PMCID: PMC9135248 DOI: 10.1371/journal.pone.0268802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/07/2022] [Indexed: 11/24/2022] Open
Abstract
Reports related to Camellia weiningensis Y.K. Li. are rare. We evaluated the economic characteristics of the mature fruit of 45 superior C. weiningensis trees using principal component analysis (PCA) and gray correlation analysis, and identified excellent germplasms according to performance. PCA was employed to reduce the dimensions. PCA was performed for the original 15 indices of fruit diameter, fruit length, fruit shape, single-fruit weight, pericarp thickness, oil yield, fresh seed rate, dry seed rate, dry kernel rate and palmitic acid, stearic acid, linolenic acid, oleic acid, linoleic acid and arachidonic acid contents. According to the requirements of a cumulative contribution rate ≥ 80% and an eigenvector value > 1, six principle components were selected. These indices underwent weighted summation to establish a function model for comprehensive evaluation. Finally, the comprehensive rankings of the cultivars according to PCA were compared with those according to gray correlation analysis. The genetic variation coefficients of the 15 parameters ranged from 2.24% (oleic acid content) to 22.70% (single-fruit weight, with a range of 21.34 g). The top ten excellent cultivars with the highest comprehensive scores according to PCA and those according to gray correlation analysis were compared. According to PCA, oleic acid content, fruit diameter, fruit length, pericarp thickness, arachidonic acid content and dry seed rate can serve as representative evaluation indicators of C. weiningensis. The outcomes obtained based on PCA were basically consistent with those obtained based on gray correlation analysis. Finally, nine excellent cultivars were finally determined, i.e., WY-1, WY-6, WY-8, WY-25, WY-27, WY-30, WY-33, WY-35, WY-38 and WY-44. The results obtained in terms of crown yield were basically consistent with the outcomes of the comprehensive assessments, which indicates the reliability of the assessment methods used in this study.
Collapse
|
11
|
Abstract
Lipases are versatile enzymes widely used in the pharmaceutical, cosmetic, and food industries. They are green biocatalysts with a high potential for industrial use compared to traditional chemical methods. In recent years, lipases have been used to synthesize a wide variety of molecules of industrial interest, and extraordinary results have been reported. In this sense, this review describes the important role of lipases in the synthesis of phytosterol esters, which have attracted the scientific community’s attention due to their beneficial effects on health. A systematic search for articles and patents published in the last 20 years with the terms “phytosterol AND esters AND lipase” was carried out using the Scopus, Web of Science, Scielo, and Google Scholar databases, and the results showed that Candida rugosa lipases are the most relevant biocatalysts for the production of phytosterol esters, being used in more than 50% of the studies. The optimal temperature and time for the enzymatic synthesis of phytosterol esters mainly ranged from 30 to 101 °C and from 1 to 72 h. The esterification yield was greater than 90% for most analyzed studies. Therefore, this manuscript presents the new technological approaches and the gaps that need to be filled by future studies so that the enzymatic synthesis of phytosterol esters is widely developed.
Collapse
|
12
|
PRESTES AA, VARGAS MO, HELM CV, ESMERINO EA, SILVA R, PRUDENCIO ES. How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Morgan LV, Petry F, Scatolin M, de Oliveira PV, Alves BO, Zilli GAL, Volfe CRB, Oltramari AR, de Oliveira D, Scapinello J, Müller LG. Investigation of the anti-inflammatory effects of stigmasterol in mice: insight into its mechanism of action. Behav Pharmacol 2021; 32:640-651. [PMID: 34657071 DOI: 10.1097/fbp.0000000000000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stigmasterol is a phytosterol that presents pharmacologic properties. However, its anti-inflammatory mechanism and antinociceptive effect are not yet elucidated. Thus, the present study aimed to investigate the anti-inflammatory and antinociceptive activities of stigmasterol and its mechanism of action in mice. The antinociceptive activity was assessed by the acetic acid-induced writhing test, formalin test, and hot plate test. The anti-inflammatory activity was investigated by carrageenan-induced peritonitis and paw edema induced by arachidonic acid. The involvement of glucocorticoid receptors in the mechanism of stigmasterol anti-inflammatory action was investigated by molecular docking, also by pretreating mice with RU-486 (glucocorticoid receptor antagonist) in the acetic acid-induced writhing test. Mice motor coordination was evaluated by the rota-rod test and the locomotor activity by the open field test. The lowest effective dose of stigmasterol was standardized at 10 mg/kg (p.o.). It prevented abdominal writhes and paw licking, but it did not increase the latency time in the hot plate test, suggesting that stigmasterol does not show an antinociceptive effect in response to a thermal stimulus. Stigmasterol decreased leukocyte infiltration in peritonitis assay and reduced paw edema elicited by arachidonic acid. Molecular docking suggested that stigmasterol interacts with the glucocorticoid receptor. Also, RU-486 prevented the effect of stigmasterol in the acetic-acid abdominal writhing test, which might indicate the contribution of glucocorticoid receptors in the mechanism of stigmasterol action. Stigmasterol reduced the number of crossings but did not impair mice's motor coordination. Our results show that stigmasterol presents anti-inflammatory effects probably mediated by glucocorticoid receptors.
Collapse
Affiliation(s)
| | - Fernanda Petry
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina
| | - Mikaela Scatolin
- Area of Health Sciences, Community University of Chapecó Region (Unochapecó)
| | | | | | | | | | - Amanda Rebonatto Oltramari
- Area of Environmental and Exact Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis
| | - Jaqueline Scapinello
- Area of Environmental and Exact Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina, Brazil
| | - Liz Girardi Müller
- Area of Health Sciences, Community University of Chapecó Region (Unochapecó)
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Chapecó, Santa Catarina
| |
Collapse
|
14
|
Sharma N, Tan MA, An SSA. Phytosterols: Potential Metabolic Modulators in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms222212255. [PMID: 34830148 PMCID: PMC8618769 DOI: 10.3390/ijms222212255] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols constitute a class of natural products that are an important component of diet and have vast applications in foods, cosmetics, and herbal medicines. With many and diverse isolated structures in nature, they exhibit a broad range of biological and pharmacological activities. Among over 200 types of phytosterols, stigmasterol and β-sitosterol were ubiquitous in many plant species, exhibiting important aspects of activities related to neurodegenerative diseases. Hence, this mini-review presented an overview of the reported studies on selected phytosterols related to neurodegenerative diseases. It covered the major phytosterols based on biosynthetic considerations, including other phytosterols with significant in vitro and in vivo biological activities.
Collapse
Affiliation(s)
- Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
| | - Mario A. Tan
- Research Center for the Natural and Applied Sciences, College of Science, University of Santo Tomas, Manila 1015, Philippines;
| | - Seong Soo A. An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-750-8755
| |
Collapse
|
15
|
Goyal A, Tanwar B, Kumar Sihag M, Sharma V. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chem 2021; 373:131459. [PMID: 34731811 DOI: 10.1016/j.foodchem.2021.131459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Sacha inchi (Plukenetia volubilis) (SI) is an oleaginous plant producing oil and protein-rich seeds. It has been cultivated for centuries and is native to the tropical rainforest of the Amazon region of South America including parts of Peru and northwestern Brazil. At present, SI seeds are emerging as a potential source of macro- and micronutrients, α-linolenic acid and phytochemicals. This review attempts to elucidate the nutrients, phytonutrients, safety, toxicity, health benefits and food applications of SI seed. Recent scientific studies have associated the consumption of SI seed/oil with reduced risk of chronic inflammatory diseases. However, lack of awareness and in-depth understanding has resulted in it being neglected both at the consumer and industrial level. In all, SI is an underutilized and undervalued oleaginous crop which not only has the potential to mitigate food and nutritional insecurity but also offers humongous opportunities for the development of novel value-added food products.
Collapse
Affiliation(s)
- Ankit Goyal
- Department of Dairy Chemistry, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Beenu Tanwar
- Department of Dairy Technology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India.
| | - Vivek Sharma
- Dairy Chemistry Division, National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, India.
| |
Collapse
|
16
|
Tang JJ, Zhao N, Gao YQ, Han R, Wang XY, Tian JM, Gao JM. Phytosterol profiles and iridoids of the edible Eucommia ulmoides Oliver seeds and their anti-inflammatory potential. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Islam MA, Jeong BG, Kerr WL, Chun J. Validation of phytosterol analysis by alkaline hydrolysis and trimethylsilyl derivatization coupled with gas chromatography for rice products. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Prevention and Reversal of Morbidity in Today's Cardiovascular Patient: Role of Lifestyle Modification and Nutrition in the Current Era. Curr Cardiol Rep 2021; 23:143. [PMID: 34410533 DOI: 10.1007/s11886-021-01577-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The prevalence of cardiovascular disease despite good medical therapy is on the rise, driven by risk factors such as hypertension, diabetes, hypercholesterolemia, and obesity. As healthcare providers, we must seek to better advise patients on preventative strategies through lifestyle changes. RECENT FINDINGS Guideline recommendations have been published by professional societies on the prevention of heart disease through lifestyle changes; however, limited education and experience with these lifestyle-modifying methods hinders appropriate counseling and treatment of patients. Robust data support the use of lifestyle medicine to reduce cardiovascular morbidity and risk. These include, a more plant-based whole food diet, regular exercise, stress relief, connectedness, and other lifestyle approaches. This review will help further the understanding of the front-line clinician in cardiovascular prevention.
Collapse
|
19
|
Borin-Crivellenti S, Crivellenti LZ, de Oliveira FR, Costa PB, Alvarenga AWO, Rezende LR, Gouvêa FN, Assef ND, Branco LDO. Effect of phytosterols on reducing low-density lipoprotein cholesterol in dogs. Domest Anim Endocrinol 2021; 76:106610. [PMID: 33607308 DOI: 10.1016/j.domaniend.2021.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Hyperlipidemia is described as an increase in serum and/or plasma levels of triglycerides, cholesterol, or both. This disturbance can be primary in some cases, or combined with other comorbidities such as endocrinopathies, liver diseases, or specific drug use. Among the various ways to control dyslipidemia are specific diets, omega-3 fatty acid supplementation, or hypolipemiant treatment. Herbal medicine has been used in the human clinical routine to reduce cholesterol circulation. With an aim to expand its application in veterinary medicine, we analyzed the use of phytosterols in dogs as a potential alternative to control hypercholesterolemia. We performed lipidogram analysis in healthy dogs to examine the possible adverse effects during the treatment. Eight Beagle dogs received orally two 650 mg capsules of phytosterols (Collestra, Aché), for 15 consecutive d, along with the 2 usual meals. All animals remained clinically stable during the trial. There were significant alterations in low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels during the trial. LDL was reduced (86.8 ± 29.89 mg/dL [D0], 74.45 ± 31.58 mg/dL [D8], and 58.91 ± 18.65 mg/dL [D15]; P = 0.0442) and HDL was elevated (83.40 ± 12.05 mg/dL [D0], 86.46 ± 13.05 mg/dL [D8], and 101.5 ± 10.52 [D15]; P = 0.0141), while total cholesterol and triglyceride concentrations remained constant and within the normal range for canine species. Thus, a 1300 mg dose of phytosterols, administrated orally and fractionated along with the 2 usual meals, was capable of reducing LDL and increasing HDL concentration in healthy nondyslipidemic dogs, which makes them candidates to be included on the list of hypolipemiant drugs for clinical use in dogs with hypercholesterolemia.
Collapse
Affiliation(s)
- Sofia Borin-Crivellenti
- Professor at College of Veterinary Medicine (FAMEV) and Graduate Program in Veterinary Science (PPGCVET), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Leandro Z Crivellenti
- Professor at College of Veterinary Medicine (FAMEV) and Graduate Program in Veterinary Science (PPGCVET), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Paula B Costa
- Graduate student of Graduate Program in Veterinary Science (PPGCVET), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Luara R Rezende
- Practicing Veterinary Clinician, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda N Gouvêa
- Graduate student of Graduate Program in Veterinary Science (PPGCVET), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Najla D Assef
- Practicing Veterinary Clinician, Campos do Jordão, São Paulo, Brazil
| | - Luana de O Branco
- Graduate student of Graduate Program in Veterinary Science (PPGCVET), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
20
|
Acosta-Estrada BA, Reyes A, Rosell CM, Rodrigo D, Ibarra-Herrera CC. Benefits and Challenges in the Incorporation of Insects in Food Products. Front Nutr 2021; 8:687712. [PMID: 34277684 PMCID: PMC8277915 DOI: 10.3389/fnut.2021.687712] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Edible insects are being accepted by a growing number of consumers in recent years not only as a snack but also as a side dish or an ingredient to produce other foods. Most of the edible insects belong to one of these groups of insects such as caterpillars, butterflies, moths, wasps, beetles, crickets, grasshoppers, bees, and ants. Insect properties are analyzed and reported in the articles reviewed here, and one common feature is nutrimental content, which is one of the most important characteristics mentioned, especially proteins, lipids, fiber, and minerals. On the other hand, insects can be used as a substitute for flour of cereals for the enrichment of snacks because of their high content of proteins, lipids, and fiber. Technological properties are not altered when these insects-derived ingredients are added and sensorial analysis is satisfactory, and only in some cases, change in color takes place. Insects can be used as substitute ingredients in meat products; the products obtained have higher mineral content than traditional ones, and some texture properties (like elasticity) can be improved. In extruded products, insects are an alternative source of proteins to feed livestock, showing desirable characteristics. Isolates of proteins of insects have demonstrated bioactive activity, and these can be used to improve food formulations. Bioactive compounds, as antioxidant agents, insulin regulators, and anti-inflammatory peptides, are high-value products that can be obtained from insects. Fatty acids that play a significant role in human health and lipids from insects have showed positive impacts on coronary disease, inflammation, and cancer. Insects can be a vector for foodborne microbial contamination, but the application of good manufacturing practices and effective preservation techniques jointly with the development of appropriate safety regulations will decrease the appearance of such risks. However, allergens presented in some insects are a hazard that must be analyzed and taken into account. Despite all the favorable health-promoting characteristics present in insects and insects-derived ingredients, willingness to consume them has yet to be generalized.
Collapse
Affiliation(s)
- Beatriz A. Acosta-Estrada
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Alicia Reyes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Puebla, Mexico
| | - Cristina M. Rosell
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA-CSIC), Valencia, Spain
| | - Dolores Rodrigo
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA-CSIC), Valencia, Spain
| | - Celeste C. Ibarra-Herrera
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Puebla, Mexico
| |
Collapse
|
21
|
Tilia sp. Seed Oil—Composition, Antioxidant Activity and Potential Use. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research on new, untapped seed oil sources is receiving increased attention. In this study, 18 different seed samples of Tilia cordata and Tilia platyphyllos from various locations in Slovenia were collected and oil was extracted. The compositions of triglyceride fatty acids and unsaponifiable compounds were determined using GC-MS, while antioxidant activity was evaluated using the DPPH method. The oil content in the seeds varied significantly, from 9.1% to 21.7%. Linoleic acid (50–60%) was found to be the predominant fatty acid, followed by oleic acid (18–22%) and palmitic acid (8–9%). Characteristic cyclopropene fatty acids (sterculic, dihydrosterculic and malvalic acids) were present in the average range of 4–8.4%. Antioxidant activity ranged from 8.9% to 65.5%, and was higher, on average, for T. platyphyllos. Higher antioxidant activity was closely correlated with higher γ-tocopherol contents. Statistically significant correlations were confirmed between antioxidant activity and γ-tocopherol, between Δ-tocopherol and phytol, between stigmasterol and β-sitosterol and between squalene and malvalic acid. Tilia oil may be of great interest for cosmetic and dermal preparations. It is, however, not considered a good source of dietary fatty acids due to the undesired, significant content of omega-6 fatty acids.
Collapse
|
22
|
Comparing the stability of retinol in liposomes with cholesterol, β-sitosterol, and stigmasterol. Food Sci Biotechnol 2021; 30:389-394. [PMID: 33868749 DOI: 10.1007/s10068-020-00871-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 10/21/2022] Open
Abstract
In this study, cholesterol (CH), β-sitosterol (SI), and stigmasterol (ST) were explored to improve the stability of retinol in the liposome bilayer. Retinol was incorporated into liposomes composed of soybean-derived L-α-phosphatidylcholine (PC) and 10% sterol (w/w), which were prepared as multilamellar vesicles. Under all conditions, the efficiency of retinol incorporation into liposomes was higher than 99%, and the average particle size of liposomes was similar to that of PC alone. Liposomes were stored at 4 and 25 °C, with and without light, respectively, for 10 days. It was found that during the storage, CH and SI were effective in stabilizing the retinol in liposomes. These results indicate that an appropriate phytosterol could improve the stability of retinol in liposomes.
Collapse
|
23
|
Pacheco D, Araújo GS, Cotas J, Gaspar R, Neto JM, Pereira L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar Drugs 2020; 18:E560. [PMID: 33207613 PMCID: PMC7697577 DOI: 10.3390/md18110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.
Collapse
Affiliation(s)
- Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Glacio Souza Araújo
- Federal Institute of Education, Science and Technology of Ceará–IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceará, Brazil;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Rui Gaspar
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - João M. Neto
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| |
Collapse
|
24
|
Castellano JM, Espinosa JM, Perona JS. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front Cell Dev Biol 2020; 8:555359. [PMID: 33163484 PMCID: PMC7591460 DOI: 10.3389/fcell.2020.555359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Small lipophilic molecules present in foods of plant origin have relevant biological activities at rather low concentrations. Evidence suggests that phytosterols, carotenoids, terpenoids, and tocopherols can interact with different metabolic pathways, exerting beneficial effects against a number of metabolic diseases. These small molecules can modulate triacylglycerol absorption in the intestine and the biosynthesis of chylomicrons, the lipid carriers in the blood. Once in the bloodstream, they can impact lipoprotein clearance from blood, thereby affecting fatty acid release, incorporation into adipocytes and triglyceride reassembling and deposit. Consequently, some of these molecules can regulate pathophysiological processes associated to obesity and its related conditions, such as insulin resistance, metabolic syndrome and type-2 diabetes. The protective capacity of some lipophilic small molecules on oxidative and chemotoxic stress, can modify the expression of key genes in the adaptive cellular response, such as transcription factors, contributing to prevent the inflammatory status of adipose tissue. These small lipophilic compounds can be incorporated into diet as natural parts of food but they can also be employed to supplement other dietary and pharmacologic products as nutraceuticals, exerting protective effects against the development of metabolic diseases in which inflammation is involved. The aim of this review is to summarize the current knowledge of the influence of dietary lipophilic small biomolecules (phytosterols, carotenoids, tocopherols, and triterpenes) on lipid transport, as well as on the effects they may have on pathophysiological metabolic states, related to obesity, insulin resistance and inflammation, providing an evidence-based summary of their main beneficial effects on human health.
Collapse
Affiliation(s)
- José M Castellano
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Juan M Espinosa
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Javier S Perona
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
25
|
Michels B, Franke K, Weiglein A, Sultani H, Gerber B, Wessjohann LA. Rewarding compounds identified from the medicinal plant Rhodiola rosea. ACTA ACUST UNITED AC 2020; 223:223/16/jeb223982. [PMID: 32848044 DOI: 10.1242/jeb.223982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Preparations of Rhodiola rosea root are widely used in traditional medicine. They can increase life span in worms and flies, and have various effects related to nervous system function in different animal species and humans. However, which of the compounds in R. rosea is mediating any one of these effects has remained unknown in most cases. Here, an analysis of the volatile and non-volatile low-molecular-weight constituents of R. rosea root samples was accompanied by an investigation of their behavioral impact on Drosophila melanogaster larvae. Rhodiola rosea root samples have an attractive smell and taste to the larvae, and exert a rewarding effect. This rewarding effect was also observed for R. rosea root extracts, and did not require activity of dopamine neurons that mediate known rewards such as sugar. Based on the chemical profiles of R. rosea root extracts and resultant fractions, a bioactivity-correlation analysis (AcorA) was performed to identify candidate rewarding compounds. This suggested positive correlations for - among related compounds - ferulic acid eicosyl ester (FAE-20) and β-sitosterol glucoside. A validation using these as pure compounds confirmed that the correlations were causal. Their rewarding effects can be observed even at low micromolar concentrations and thus at remarkably lower doses than for any known taste reward in the larva. We discuss whether similar rewarding effects, should they be observed in humans, would indicate a habit-forming or addictive potential.
Collapse
Affiliation(s)
- Birgit Michels
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Katrin Franke
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Haider Sultani
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany .,Otto von Guericke University, Institute of Biology, 39106 Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Ludger A Wessjohann
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| |
Collapse
|
26
|
Dima C, Assadpour E, Dima S, Jafari SM. Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Crit Rev Food Sci Nutr 2020; 61:3031-3065. [PMID: 32691612 DOI: 10.1080/10408398.2020.1792409] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanofoods is a current concept that is based on the application of nanotechnologies in the preparation of safe foods, with superior nutritional and sensory characteristics, and capable of providing multiple health benefits. In line with the principles of this concept, food scientists have focused on developing new types of nano biosystems that can contribute to increasing the bioavailability of bioactive compounds used in food fortification. Numerous research teams have investigated the main factors limiting oral bioavailability including: bioaccessibility, absorption and transformation of bioactive compounds and bioactive-loaded nanocarriers. The physicochemical processes involved in the factors limiting oral bioavailability have been extensively studied, such asthe release, solubility and interaction of bioactive compounds and nanocarriers during food digestion, transport mechanisms of bioactive compounds and nanoparticles through intestinal epithelial cells as well as the chemical and biochemical transformations in phase I and phase II reactions. In this comprehensive review, the physicochemical processes involved in the bioaccessibility/bioavailability of different encapsulated bioactive compounds, that play an important role in human health, will be explained including polyphenols, phytosterols, carotenoids, vitamins and minerals. In particular, the mechanisms involved in the cellular uptake of bioactive-loaded nanocarriers including transcellular transport (diffusion, endocytosis, pinocytosis, transcytosis, phagocytosis), paracellular transport (through the "tight junctions" between epithelial cells), and the active transport of bioactive compounds under the action of membrane transporters are highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
27
|
Aydar EF, Tutuncu S, Ozcelik B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103975] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
28
|
Vergallo C. Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1232. [PMID: 32599957 PMCID: PMC7353093 DOI: 10.3390/nano10061232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The scientific community is becoming increasingly interested in identifying, characterizing, and delivering nutraceuticals, which constitutes a multi-billion-dollar business. These bioactive agents are claimed to exhibit several health benefits, including the prevention and treatment of diseases such as arthritis, cancer, osteoporosis, cataracts, Alzheimer's, and Huntington's diseases, heart, brain and metabolic disorders, etc. Nutraceuticals are typically consumed as part of a regular human diet and are usually present within foods, comprising vegetable oil, although at low levels and variable composition. Thus, it is difficult to control the type, amount and frequency of their ingestion by individuals. Nanoformulations about vegetable oil-based bioactive compounds with nutraceutical properties are useful for overcoming these issues, while improving the uptake, absorption, and bioavailability in the body. The purpose of this current study is to review papers on such nanoformulations, particularly those relevant for health benefits and the prevention and management of diseases, as well as bioactives extracted from vegetable oils enhancing the drug effectiveness, retrieved through bibliographic databases by setting a timespan from January 2000 to April 2020 (about 1758 records).
Collapse
Affiliation(s)
- Cristian Vergallo
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73010 Lecce, Italy
| |
Collapse
|
29
|
Chikwendu JN, Udenta EA, Nwakaeme TC. Avocado Pear Pulp ( Persea americana)-Supplemented Cake Improved Some Serum Lipid Profile and Plasma Protein in Rats. J Med Food 2020; 24:267-272. [PMID: 32584623 DOI: 10.1089/jmf.2020.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Avocado pear pulp (Persea americana) is indigenous to Mexico. It is widely cultivated and consumed all over the world. Its oil is rich in monounsaturated fatty acids (SFAs) and can be used to replace SFAs in a diet to lower low-density lipoprotein (LDL) and raise high-density lipoprotein (HDL). Consumers seek healthy foods that aid in reducing metabolic syndrome. The aim of this study is to evaluate the effects of the best acceptable cakes supplemented with 0%, 10%, 30%, and 50% avocado on the serum lipid profile and plasma protein in rats. Twenty-five rats separated into five groups of four test groups and one control group were fed individually for 14 days, after which blood samples were withdrawn and subjected to biochemical analysis. Intake of cake supplemented with avocado pear pulp resulted in significant (P < .05) increment in the body weight, total cholesterol, triglycerides and HDL, and serum protein and decrement in LDL of the rats. The group fed 50% supplemented cake showed highest increase in HDL and least decrease in LDL. Cake supplemented with 50% avocado pear pulp proved to be a better supplementation in reducing serum LDL and increasing serum HDL and serum protein in rats, indicating to be a promising nutraceutical for the management of cardiovascular diseases and its associated complications.
Collapse
|
30
|
Feng S, Belwal T, Li L, Limwachiranon J, Liu X, Luo Z. Phytosterols and their derivatives: Potential health‐promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 2020; 19:1243-1267. [DOI: 10.1111/1541-4337.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- College of Food Science and TechnologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light IndustryZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Xingquan Liu
- School of Agriculture and Food SciencesZhejiang Agriculture and Forestry University Hangzhou 311300 People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Ningbo Research InstituteZhejiang University Ningbo 315100 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
31
|
Hossain A, Jayadeep A. Analysis of bioaccessibility of campesterol, stigmasterol, and β-sitosterol in maize by in vitro digestion method. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Santos KA, Klein EJ, Fiorese ML, Palú F, da Silva C, da Silva EA. Extraction of Morus alba leaves using supercritical CO2 and ultrasound-assisted solvent: Evaluation of β-sitosterol content. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
β-Sitosterol Loaded Nanostructured Lipid Carrier: Physical and Oxidative Stability, In Vitro Simulated Digestion and Hypocholesterolemic Activity. Pharmaceutics 2020; 12:pharmaceutics12040386. [PMID: 32331384 PMCID: PMC7237988 DOI: 10.3390/pharmaceutics12040386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/02/2023] Open
Abstract
The objective of the present study was to explore the potential of nanostructured lipid carriers (NLCs) for improving the oral delivery of β-sitosterol, a poorly water-soluble bioactive component with hypocholesterolemic activity. Two β-sitosterol formulations with different solid lipid compositions were prepared by melt emulsification, followed by the sonication technique, and the effect of storage conditions and simulated digestion on the physical, chemical and oxidative stability, bioaccessibility and release were extensively studied. Both NLC preparations remained relatively stable during the four weeks of storage at different conditions (4, 25 and 40 °C), with more superior stability at lower temperatures. The in vitro digestion experiment indicated a high physical stability after exposure to the simulated mouth and stomach stages and an improved overall β-sitosterol bioaccessibility at the end of the digestion. The NLCs presented an increased solubility and gradual release which could be justified by the remarkable affinity of β-sitosterol to the complex lipid mixture. An in vivo study demonstrated an improved reduction in the total cholesterol and low-density lipoprotein cholesterol plasma levels in mice compared with the drug suspension. These investigations evidenced the potential of the developed NLC formulations for the enhancement of solubility and in vivo performance of β-sitosterol.
Collapse
|
34
|
Sarkar M, Hossain S, Hussain J, Hasan M, Bhowmick S, Basunia MA, Hashimoto M. Cholesterol Lowering and Antioxidative Effect of Pregerminated Brown Rice in Hypercholesterolemic Rats. J Nutr Sci Vitaminol (Tokyo) 2020; 65:S93-S99. [PMID: 31619656 DOI: 10.3177/jnsv.65.s93] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pregerminated brown rice (GBR) is assumed to be more beneficial than polished white rice (WR), with regard to nutrition and cardiovascular health. To support this with scientific evidence, cholesterol-lowering and antioxidative effects of GBR were studied in the present investigation. The most popular rice variety in Bangladesh BIRI-29 was used to prepare GBR and WR. Initially, we analyzed the proximate composition, antioxidative phytochemicals, in vitro 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging ability and anti-hemolytic effects of GBR. To examine the dietary impact and possible benefits of the GBR, experimentally-induced hypercholesterolemic (HC, 1% cholesterol) rats were fed with GBR against WR for 12 wk. At the end, plasma total cholesterol (TC), low- and high-density lipoprotein-cholesterol (LDL-C and HDL-C), triglyceride (TG), fecal TC, and hepatic TC, lipid peroxide (LPO) and proinflammatory TNFα levels were determined. Relative to WR, GBR contained higher amounts of total polyphenols, total flavonoids, β-carotene and lycopene, and exhibited a stronger in vitro DPPH-free radical scavenging ability and antihemolytic potentials. Levels of plasma TC, LDL-C, TG, and hepatic TC and TG significantly decreased, while plasma HDL-C and fecal TC levels significantly increased in the GBR-fed HC-rats, indicating dietary GBR demonstrates a stronger antilipidemic effect than WR. The hepatic levels of LPO and TNFα also decreased (p<0.05) to a greater extent in GBR-fed HC-rats than those in the WR-fed rats. It is thus concluded that dietary GBR could be a natural treatment of hypercholesterolemia and related cardiovascular risk factors, and a source of antioxidants to reduce hemolysis and related anemia.
Collapse
Affiliation(s)
- Marzan Sarkar
- Laboratory of Alternative Medicine and Behavioral Neurosciences, Department of Biochemistry and Molecular Biology, Jahangirnagar University
| | - Shahdat Hossain
- Laboratory of Alternative Medicine and Behavioral Neurosciences, Department of Biochemistry and Molecular Biology, Jahangirnagar University
| | - Jakir Hussain
- Laboratory of Alternative Medicine and Behavioral Neurosciences, Department of Biochemistry and Molecular Biology, Jahangirnagar University
| | - Mahmudul Hasan
- Laboratory of Alternative Medicine and Behavioral Neurosciences, Department of Biochemistry and Molecular Biology, Jahangirnagar University
| | - Sujan Bhowmick
- Laboratory of Alternative Medicine and Behavioral Neurosciences, Department of Biochemistry and Molecular Biology, Jahangirnagar University
| | - Mafroz Ahmed Basunia
- Laboratory of Alternative Medicine and Behavioral Neurosciences, Department of Biochemistry and Molecular Biology, Jahangirnagar University
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University
| |
Collapse
|
35
|
Scolaro B, de Andrade LF, Castro IA. Cardiovascular Disease Prevention: The Earlier the Better? A Review of Plant Sterol Metabolism and Implications of Childhood Supplementation. Int J Mol Sci 2019; 21:ijms21010128. [PMID: 31878116 PMCID: PMC6981772 DOI: 10.3390/ijms21010128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the underlying cause of major cardiovascular events. The development of atherosclerotic plaques begins early in life, indicating that dietary interventions in childhood might be more effective at preventing cardiovascular disease (CVD) than treating established CVD in adulthood. Although plant sterols are considered safe and consistently effective in lowering plasma cholesterol, the health effects of early-life supplementation are unclear. Studies suggest there is an age-dependent effect on plant sterol metabolism: at a younger age, plant sterol absorption might be increased, while esterification and elimination might be decreased. Worryingly, the introduction of low-cholesterol diets in childhood may unintentionally favor a higher intake of plant sterols. Although CVD prevention should start as early as possible, more studies are needed to better elucidate the long-term effects of plant sterol accumulation and its implication on child development.
Collapse
|
36
|
Idowu AT, Olatunde OO, Adekoya AE, Idowu S. Germination: an alternative source to promote phytonutrients in edible seeds. FOOD QUALITY AND SAFETY 2019. [DOI: 10.1093/fqsafe/fyz043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Consumption of less phytonutrient foods has shown to cause different chronic diseases, despite over 50,000 edible plant breed available in various countries around the globe. These edible plants consist of seeds that can be consumed which possessed high health benefits. Moreover, nutritive values such as phytochemicals of edible seeds increased after germination. Therefore, germination has been reported to enhance various bioactive compounds such as γ-amino butyric acid, polyphenols, and vitamins which lead to greater bioactivity such as anti-diabetic, anti-bacteria, and anti-cancer effects when these seeds are consumed. Consequently, germination can be regarded as a cheap and effective way to enhance the nutritional value of edible seeds.
Collapse
Affiliation(s)
- Anthony Temitope Idowu
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, Hatyai, Songkhla Province, Thailand
| | - Oladipupo Odunayo Olatunde
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, Hatyai, Songkhla Province, Thailand
| | - Ademola Ezekiel Adekoya
- Department of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, Songkhla Province, Thailand
| | - Solomon Idowu
- Department of Community Health and Primary Healthcare, College of Medicine of the University of Lagos, Lagos state, Nigeria
| |
Collapse
|
37
|
CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Sci Rep 2019; 9:16888. [PMID: 31729437 PMCID: PMC6858459 DOI: 10.1038/s41598-019-53316-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023] Open
Abstract
The in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we investigate in vivo functions and in vivo functional redundancy of salmon fads2 using two CRISPR-mediated partial knockout salmon, Δ6abc/5Mt with mutations in Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2, and Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c. F0 fish displaying high degree of gene editing (50–100%) were fed low LC-PUFA and high LC-PUFA diets, the former containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of 18:2n-6 and 18:3n-3. The Δ6abc/5Mt showed reduced 22:6n-3 levels and accumulated Δ6-desaturation substrates (18:2n-6, 18:3n-3) and Δ5-desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared to wildtypes (WT). Δ6bcMt showed no effect on Δ6-desaturation compared to WT, suggesting Δ6 Fads2-a as having the predominant Δ6-desaturation activity in salmon, at least in the tissues analyzed. Both Δ6abc/5Mt and Δ6bcMt demonstrated significant accumulation of Δ8-desaturation substrates (20:2n-6, 20:3n-3) when fed low LC-PUFA diet. Additionally, Δ6abc/5Mt demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Δ8-desaturation activities for salmon Δ6 Fads2 enzymes.
Collapse
|
38
|
Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AUH, Adnan Ali Shah S, Wadood A, Nadhman A. β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmania tropica: Docking and molecular insights. Steroids 2019; 148:56-62. [PMID: 31085212 DOI: 10.1016/j.steroids.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 01/20/2023]
Abstract
The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
Collapse
Affiliation(s)
- Syed Majid Shah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan; Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan
| | - Sajid Hussain
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan; Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Azhar-Ul-Haq Ali Shah
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Abdul Wadood
- Department of Biochemistry, UCS, Shankar Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Akhtar Nadhman
- Institute of Integrative Biosciences IIB, CECOS University, Peshawar Pakistan
| |
Collapse
|
39
|
González Belo R, Velasco L, Nolasco SM, Izquierdo NG. Oil Phytosterol Concentration in Sunflower Presents a Dilution Response with Oil Weight per Grain. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Raúl González Belo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Ciudad Autónoma de Buenos Aires C1425FQB Argentina
- Instituto de Innovación para el Desarrollo Agroalimentario y Agroenergético Sostenible (IIDEAGROS)Facultad de Ciencias Agrarias, UNMdP, C.C.276 Balcarce 7620 Argentina
| | - Leonardo Velasco
- Department of Plant Breeding, Instituto de Agricultura Sostenible (IAS−CSIC), Alameda del Obispo s/n Córdoba 14004 Spain
| | - Susana M. Nolasco
- TECSE−Facultad de IngenieríaUNCPBA Av. Del Valle 5737, Olavarría 7400, Buenos Aires Argentina
- CIC, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires La Plata 1900 Argentina
| | - Natalia G. Izquierdo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Ciudad Autónoma de Buenos Aires C1425FQB Argentina
- Instituto de Innovación para el Desarrollo Agroalimentario y Agroenergético Sostenible (IIDEAGROS)Facultad de Ciencias Agrarias, UNMdP, C.C.276 Balcarce 7620 Argentina
| |
Collapse
|
40
|
Darand M, Darabi Z, Yari Z, Hedayati M, Shahrbaf MA, Khoncheh A, Hosseini-Ahangar B, Alavian SM, Hekmatdoost A. The effects of black seed supplementation on cardiovascular risk factors in patients with nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled clinical trial. Phytother Res 2019; 33:2369-2377. [PMID: 31293021 DOI: 10.1002/ptr.6424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly related to cardiovascular disorders risk factors. This study aimed to evaluate the effects of black seed (Nigella sativa) supplementation on cardiovascular disorders risk factors in patients with NAFLD. This randomized, double-blind, placebo-controlled clinical trial was conducted on 50 patients with NAFLD. Participants were assigned to receive a lifestyle modification plus 2 g/day of either N. sativa or placebo for 12 weeks. Compared with the placebo, N. sativa supplementation led to significant reductions in serum glucose (-7.95 vs. -1.22; p = .041), serum insulin (-3.87 vs. -1.07; p = .027), homeostatic model of assessment for insulin resistance (-1.02 vs. -0.28; p = .021), and a significant increase in quantitative insulin sensitivity check index (0.03 vs. 0.006; p = .002). All of these changes were remained significant after adjusting for known confounding variables; however, there was no significant difference in lipid profile changes between the two groups (p = .05). N. sativa supplementation significantly decreased hepatic steatosis percentage compared with the placebo after adjustment for confounding variables (p = .005). In conclusion, our results indicate that daily intake of 2-g N. sativa plus lifestyle modification is superior to lifestyle modification alone in amelioration of insulin resistance and hepatic steatosis in patients with NAFLD.
Collapse
Affiliation(s)
- Mina Darand
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Darabi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Shahrbaf
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behnam Hosseini-Ahangar
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Moayyed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Moazzami Farida SH, Radjabian T. Phytosterols in Salvia Seeds: Content and Composition and Correlation with Environmental Parameters. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2019. [DOI: 10.1007/s40995-019-00721-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Sánchez-Crisóstomo I, Fernández-Martínez E, Cariño-Cortés R, Betanzos-Cabrera G, Bobadilla-Lugo RA. Phytosterols and Triterpenoids for Prevention and Treatment of Metabolic-related Liver Diseases and Hepatocellular Carcinoma. Curr Pharm Biotechnol 2019; 20:197-214. [DOI: 10.2174/1389201020666190219122357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/10/2018] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
Background:
Liver ailments are among the leading causes of death; they originate from viral
infections, chronic alcoholism, and autoimmune illnesses, which may chronically be precursors of
cirrhosis; furthermore, metabolic syndrome may worsen those hepatopathies or cause Non-alcoholic
Fatty Liver Disease (NAFLD) that may advance to non-alcoholic steatohepatitis (NASH). Cirrhosis is
the late-stage liver disease and can proceed to hepatocellular carcinoma (HCC). Pharmacological
treatment options for liver diseases, cirrhosis, and HCC, are limited, expensive, and not wholly effective.
The use of medicinal herbs and functional foods is growing around the world as natural resources
of bioactive compounds that would set the basis for the development of new drugs.
Review and Conclusion:
Plant and food-derived sterols and triterpenoids (TTP) possess antioxidant,
metabolic-regulating, immunomodulatory, and anti-inflammatory activities, as well as they are recognized
as anticancer agents, suggesting their application strongly as an alternative therapy in some
chronic diseases. Thus, it is interesting to review current reports about them as hepatoprotective agents,
but also because they structurally resemble cholesterol, sexual hormones, corticosteroids and bile acids
due to the presence of the steroid nucleus, so they all can share pharmacological properties through activating
nuclear and membrane receptors. Therefore, sterols and TTP appear as a feasible option for the
prevention and treatment of chronic metabolic-related liver diseases, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Isabel Sánchez-Crisóstomo
- Center for Research on Reproductive Biology, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology, Department of Medicine, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Raquel Cariño-Cortés
- Center for Research on Reproductive Biology, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Gabriel Betanzos-Cabrera
- Laboratory of Medicinal Chemistry and Pharmacology, Department of Medicine, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | | |
Collapse
|
43
|
Heterologous expression and functional characterization of the ligand-binding domain of oxysterol-binding protein from Aspergillus oryzae. Braz J Microbiol 2019; 50:415-424. [PMID: 30848436 DOI: 10.1007/s42770-019-00060-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023] Open
Abstract
Oxysterol-binding proteins (OSBPs) comprise a family of sterol-binding proteins. In this study, we focused on AoOSBP1, one of the five OSBP proteins identified from the industrial fungus Aspergillus oryzae. The temporal expression pattern analysis showed that the expression of AoOSBP1, in both gene and protein levels, was stably expressed throughout the developmental stages, while was upregulated during the accelerated growth stage. The immunofluorescence observation revealed that AoOSBP1 protein was mainly distributed in the conidiophore, indicating its underlying role in spore formation. The ligand-binding domain of AoOSBP1, namely OSBP-related domain (ORD), was heterologously expressed in Escherichia coli and purified. The binding assay carried out using microscale thermophoresis showed that the recombinant AoORD protein exhibited binding affinity for ergosterol, and exhibited much higher affinity to oxysterols (25-hydroxycholesterol and 7-ketocholesterol) and phytosterols (β-sitosterol and stigmasterol). By contrast, MBP tag as the negative control showed no binding affinity for sterols. The present work demonstrates that AoORD domain in AoOSBP1 is capable of binding sterols, plays an underlying role in sterols transportation, and may participate in spore formation.
Collapse
|
44
|
Abd-Razak NH, Chew YJ, Bird MR. Membrane fouling during the fractionation of phytosterols isolated from orange juice. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Tolve R, Condelli N, Caruso MC, Genovese F, Di Renzo GC, Mauriello G, Galgano F. Preparation and characterization of microencapsulated phytosterols for the formulation of functional foods: Scale up from laboratory to semi-technical production. Food Res Int 2018; 116:1274-1281. [PMID: 30716916 DOI: 10.1016/j.foodres.2018.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/29/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
Phytosterols were microencapsulated by spray drying in a shell represented by WPI, inulin and chitosan at four different combinations through the formulation of aqueous suspensions. Moreover, two concentrations of Tween 80 (1.25% and 2.50% w/w) and two inlet temperatures (125 °C and 155 °C) were tested. The effect of the different experimental conditions on the process yield and on the microcapsules properties was evaluated. A significant effect of all variables on the microcapsule properties was found. Accordingly, the best performance, with the maximum loading capacity of 25%, was obtained by using only WPI as shell material, Tween 80 at 1.25% and inlet temperature of 155 °C. The process was successfully scaled-up from laboratory equipment to a semi-technical scale keeping the optimal shell formulation and process conditions.
Collapse
Affiliation(s)
- Roberta Tolve
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Nicola Condelli
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Marisa Carmela Caruso
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza 85100, Italy.
| | - Francesco Genovese
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Giovanni Carlo Di Renzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, via Università 100, Portici 80055, Italy
| | - Fernanda Galgano
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza 85100, Italy
| |
Collapse
|
46
|
Liland NS, Pittman K, Whatmore P, Torstensen BE, Sissener NH. Fucosterol Causes Small Changes in Lipid Storage and Brassicasterol Affects some Markers of Lipid Metabolism in Atlantic Salmon Hepatocytes. Lipids 2018; 53:737-747. [DOI: 10.1002/lipd.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Nina S. Liland
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Karin Pittman
- Department of Biology; University of Bergen, Thormøhlensgate 53B; 5020 Bergen Norway
| | - Paul Whatmore
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Bente E. Torstensen
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Nini H. Sissener
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| |
Collapse
|
47
|
Ahmadi K, Wulansari A, Subroto Y, Estiasih T. Lipid profile improvement of food products containing bioactive compounds from unsaponifiable matters of palm fatty acid distillate in hypercholesterolemia rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2018. [DOI: 10.3233/mnm-18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Unsaponifiable matters (USM) from palm fatty acid distillate (PFAD) contains vitamin E (mainly tocotrienols), phytosterols, and squalene that have ability to reduce blood cholesterol. Fortification of USM into food products is a way for hypercholesterolemia management. OBJECTIVE: This study evaluated effects of fortification of USM from PFAD into instant noodle, bread, and biscuit on lipid profile improvement of hypercholesterolemia rats. It was also aimed to compare the effects of different type of foods as USM carrier that represented different processing steps and nutritional composition. METHODS: Rats were divided into control-standard diet and atherogenic diet fed groups, and 6 hypercholesterolemia groups fed by instant noodle, plain bread, and biscuit with 1% USM fortification and without fortification for 8 weeks. Lipid profile (total cholesterol, triglyceride, LDL cholesterol, and HDL cholesterol) was analysed at week 0, 4, and 8. Hepatic and fecal cholesterol and bile acid were also examined at the end of experiment to elucidate some mechanism of cholesterol lowering due to USM fortified foods administration. RESULTS: Some bioactive compounds lost during USM fortified food preparation and the highest retention was found in biscuit. Lipid profile improvement was indicated by reduction of total cholesterol, triglyceride, and LDL cholesterol, meanwhile HDL cholesterol increased. Type of fortified foods affected the level of alteration of lipid profile. Degree of lipid profile improvement was affected by nutritional composition of fortified foods, food intake of the rats, and level of bioactive content. Bioactive compounds in USM fortified foods inhibited cholesterol absorption that indicated by higher fecal cholesterol and bile acid compared to atherogenic diet fed group. Modulation of cholesterol synthesis was likely to occur that indicated by lower hepatic cholesterol and higher bile acids. CONCLUSIONS: Feeding of USM fortified food products improved lipid profile of hypercholesterolemia rats.
Collapse
Affiliation(s)
- Kgs Ahmadi
- Department of Agroindustry Technology, Faculty of Agriculture, Tribhuwana Tunggadewi University, Indonesia
| | - Angela Wulansari
- Master Program of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Indonesia
| | - Yunianta Subroto
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Indonesia
| | - Teti Estiasih
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Indonesia
| |
Collapse
|
48
|
Feng S, Dai Z, Liu AB, Huang J, Narsipur N, Guo G, Kong B, Reuhl K, Lu W, Luo Z, Yang CS. Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1274-1284. [PMID: 30305244 DOI: 10.1016/j.bbalip.2018.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/28/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD). METHODS Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17 weeks. RESULTS Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides. CONCLUSION Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.
Collapse
Affiliation(s)
- Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhuqing Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Anna B Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinbao Huang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; State Key Laboratory of Tea Plant Biology and Utilization School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Nihal Narsipur
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenyun Lu
- Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zisheng Luo
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
49
|
Composition of unfermented, unroasted, roasted cocoa beans and cocoa shells from Peninsular Malaysia. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9875-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Yang F, Oyeyinka SA, Xu W, Ma Y, Zhou S. In vitro bioaccessibility and physicochemical properties of phytosterol linoleic ester synthesized from soybean sterol and linoleic acid. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|