1
|
Hosomi R. Health Benefits of Dietary Docosahexaenoic Acid- and Eicosapentaenoic Acid-enriched Glycerophospholipids from Marine Sources. J Oleo Sci 2025; 74:1-11. [PMID: 39756987 DOI: 10.5650/jos.ess24253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are widely used as supplements and pharmaceuticals because of their beneficial effects on human health. Triacylglycerols (TAG) and glycerophospholipids (GPL) comprise the primary chemical structures of DHA/EPA in marine sources. Furthermore, DHA/EPA-enriched glycerophospholipids (DHA/EPA-GPL) and lysoglycerophospholipids (DHA/EPA-LysoGPL) consumed through food and supplements are more effective than TAG in promoting health, which may be attributed to a specific underlying mechanism. However, the specific effects of DHA/EPA bound to GPL structure have been still unclear. The aim of this review is to clarify the significance of the binding of DHA/EPA to GPL in promoting the health benefits of DHA/EPA-GPL and DHA/EPA-LysoGPL. Additionally, the potential use of fishery by-products as sources of DHA/EPA-GPL and DHA/EPA-LysoGPL has been discussed.
Collapse
Affiliation(s)
- Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
2
|
Alijani S, Hahn A, Harris WS, Schuchardt JP. Bioavailability of EPA and DHA in humans - A comprehensive review. Prog Lipid Res 2024:101318. [PMID: 39736417 DOI: 10.1016/j.plipres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The bioavailability of long-chain omega-3 fatty acids is a critical yet often overlooked factor influencing their efficacy. This review evaluates the bioavailability of EPA/DHA from acute (single-dose) and chronic human studies, focusing on (a) chemical forms such as triacylglycerols (TAG, natural and re-esterified, rTAG), free fatty acids (FFA), and phospholipids (PL) from sources like fish, krill, and microalgae, and (b) delivery methods like microencapsulation and emulsification. Bioavailability for isolated chemically forms followed the order: FFA > PL > rTAG > unmodified TAG > ethyl esters (EE). However, varying oil compositions complicate conclusions about source-specific bioavailability. Significant differences observed in acute bioavailability studies (e.g., faster absorption) often did not translate into long-term impacts in chronic supplementation studies. This raises questions about the clinical relevance of acute findings, especially given that n-3 PUFA supplements are typically consumed long-term. Methodological limitations, such as inappropriate biomarkers, short sampling windows, and inadequate product characterization, hinder the reliability and comparability of studies. The review emphasizes the need for standardized protocols and robust chronic studies to clarify the clinical implications of bioavailability differences. Future research should prioritize biomarkers that reflect sustained n-3 PUFA status to better understand the health benefits of various EPA and DHA formulations.
Collapse
Affiliation(s)
- Sepideh Alijani
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Willian S Harris
- The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| | - Jan Philipp Schuchardt
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States.
| |
Collapse
|
3
|
Lee JY, Hong JB, Kim BK, Shim SB, Jang HW, Lee JB. Analysis of Fatty Acid Compositions and Acid Values of Krill Oil Supplementary Products from the Korean Market. J Microbiol Biotechnol 2024; 34:1988-1994. [PMID: 39233519 PMCID: PMC11540601 DOI: 10.4014/jmb.2406.06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
In order to provide the qualitative data for the 20 commercially available krill oil supplementary products, the levels of omega-3 polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), fatty acid compositions, and chemical indices, including acid values, of the supplements, were determined. The acid values ranged from 7.4 to 43.7 mg of potassium hydroxide (KOH)/ g of oil. The relative percentages of EPA and DHA in the oils ranged from 14.2 to 34.8 % (w/w). Although all 20 krill oil supplements used 100% krill oil as raw material, the fatty acid composition of 4 samples differed from typical krill oil in terms of the content of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), linoleic acid (C18:2, n-6), and eicosenoic acid (C20:1, n-9). Accordingly, the Ministry of Food and Drug Safety recently standardized linoleic acid (3% or less) and myristic acid (5-13%) as part of the fatty acid components of krill oil. This study provides a reference for analyzing the chemical and nutritional properties and evaluating the adulteration of krill oil supplements in the Korean market.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Food Science and Biotechnology, Sungshin Women’s University, 55, 76 ga-gil, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Jun-Bae Hong
- Korea Consumer A gency, 54 Yongdu-ro, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do, 27738, Republic of Korea
| | - Bo-Kyung Kim
- Korea Consumer A gency, 54 Yongdu-ro, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do, 27738, Republic of Korea
| | - Seong Bo Shim
- Korea Consumer A gency, 54 Yongdu-ro, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do, 27738, Republic of Korea
| | - Hae Won Jang
- Department of Food Science and Biotechnology, Sungshin Women’s University, 55, 76 ga-gil, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Jung-Bin Lee
- Korea Consumer A gency, 54 Yongdu-ro, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do, 27738, Republic of Korea
| |
Collapse
|
4
|
Sarıyer ET, Baş M, Çolak H, Özkan Yenal N, Unay Demirel Ö, Yüksel M. Comparison of Dietary Supplementation with Krill Oil, Fish Oil, and Astaxanthin on an Experimental Ethanol-Induced Gastric Ulcer Model: A Biochemical and Histological Study. Nutrients 2024; 16:3426. [PMID: 39458422 PMCID: PMC11510526 DOI: 10.3390/nu16203426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite advances in ulcer treatment research, the search for new, safe, and effective strategies for preventing and treating ulcer diseases persists. METHODS In this study, the protective effects of dietary supplementation with krill oil (KO), fish oil (FO), and astaxanthin (ASX) on an ethanol-induced gastric ulcer model were compared during biochemical and histological observations. Sprague-Dawley (n = 64) rats randomly divided into four groups-normal control (vehicle), KO, FO, and ASX groups-received the supplements via the orogastric route at a rate of 2.5% (v/w) of their daily feed consumption for 4 weeks. Then, ulcer induction was performed with ethanol. RESULTS The ulcer group showed increased levels of malondialdehyde (MDA), chemiluminescence (CL), and myeloperoxidase (MPO) activity and decreased levels of glutathione in the gastric tissues. While KO, FO, and ASX supplementation decreased chemiluminescence levels in the ulcer group, only ASX supplementation decreased MDA levels and MPO activity. CONCLUSIONS In conclusion, supplementation with KO or FO has a similar protective effect against ethanol-induced ulcer damage, as it inhibits ROS formation and reduces lipid peroxidation. However, ASX supplementation has a higher protective effect than KO or FO supplementations against experimental ethanol-induced gastric lesions in rats, as it inhibits ROS formation and reduces neutrophil infiltration and lipid peroxidation.
Collapse
Affiliation(s)
- Esra Tansu Sarıyer
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Nutrition and Dietetics, Faculty of Health Science, University of Health Sciences, 34668 Istanbul, Turkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Hatice Çolak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Üsküdar University, 34662 Istanbul, Turkey;
| | - Naziye Özkan Yenal
- Department of Pathology Laboratory Techniques, Vocational School of Health-Related Services, Marmara University, 34865 Istanbul, Turkey;
| | - Özlem Unay Demirel
- Department of Medical Biochemistry, Bahçeşehir University Göztepe Medical Park Hospital Central Laboratory, Faculty of Medicine, Bahçeşehir University, 34353 Istanbul, Turkey;
| | - Meral Yüksel
- Department of Medical Laboratory Techniques, Vocational School of Health-Related Services, Marmara University, 34865 Istanbul, Turkey;
| |
Collapse
|
5
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
6
|
Wallace TC, Montenegro‐Bethancourt G, Rohloff P, Jimenez EY, Proaño GV, McCabe GP, Steiber A, Ruosch A, Laessig I, Ladwig E, You H. Comparison of the nutrient composition of eggs produced in the Guatemalan highlands during the wet and dry seasons. Food Sci Nutr 2023; 11:8163-8173. [PMID: 38107147 PMCID: PMC10724625 DOI: 10.1002/fsn3.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023] Open
Abstract
The potential of chicken eggs as a nutritionally complete protein and source of key micronutrients during the first 1000 days post-conception has been progressively recognized across the globe, particularly in resource-poor settings. Fluctuation of egg nutrient content by season is relatively unknown, which may influence international food composition databases and outcomes in intervention studies using egg supplementation. To better interpret the findings of The Saqmolo' Project, we conducted comprehensive nutrient analyses on eggs produced during the wet and dry seasons in the highlands of central Guatemala. We randomly collected 36 shell eggs from a local farm during both seasons, hard-boiled, and prepared them for transport to the United States, where they were pooled and assessed for their nutrient composition. Methods of the Association of Official Analytical Chemists, the American Oil Chemists Society, and the American Association of Cereal Chemists were utilized to determine total energy, moisture, ash, total protein, total fat, fatty acids, total carbohydrates, 12 vitamins, 11 minerals, and carotenoids, by season, in some instances with modifications. Differences in nutrient composition between de-shelled hard-boiled eggs collected between seasons were assessed using an analysis of variance (ANOVA) and Tukey's family error rate comparison test. Most nutrients in eggs produced in the highlands of central Guatemala differed negligibly (but statistically significantly) based on seasonality. Only vitamins A and E, folate, choline, and calcium fluctuated at clinically significant levels relative to the AI/RDA for infants 7-12 months. Total energy, protein, trans fatty acids, moisture, and vitamin D3 levels did not differ between seasons (p > .05). Further multi-year sampling is needed to examine how seasonal variation affects the nutrient composition of eggs. These data may be used to supplement existing national and regional food composition databases.
Collapse
Affiliation(s)
- Taylor C. Wallace
- Think Healthy Group, LLCWashingtonDistrict of ColumbiaUSA
- School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and PolicyTufts UniversityMedfordMassachusettsUSA
| | | | - Peter Rohloff
- Wuqu' Kawoq/Maya Health AllianceTecpanGuatemala
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Elizabeth Yakes Jimenez
- Academy of Nutrition and DieteticsChicagoIllinoisUSA
- College of Population Health and Department of Pediatrics and Internal MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | | | - George P. McCabe
- Department of StatisticsPurdue UniversityWest LafayetteIndianaUSA
| | - Alison Steiber
- Academy of Nutrition and DieteticsChicagoIllinoisUSA
- Department of NutritionCase Western UniversityClevelandOhioUSA
| | - Andrew Ruosch
- Eurofins Food Chemistry Testing Madison, Inc.MadisonWisconsinUSA
- Eurofins U.S. FoodDes MoinesIowaUSA
| | - Ian Laessig
- Eurofins Food Chemistry Testing Madison, Inc.MadisonWisconsinUSA
- Eurofins U.S. FoodDes MoinesIowaUSA
| | - Edward Ladwig
- Eurofins Food Chemistry Testing Madison, Inc.MadisonWisconsinUSA
- Eurofins U.S. FoodDes MoinesIowaUSA
| | - Hong You
- Eurofins U.S. FoodDes MoinesIowaUSA
- Eurofins Botanical Testing US, Inc.BreaCaliforniaUSA
| |
Collapse
|
7
|
Huang H, Liao D, He B, Zhou G, Cui Y. Clinical effectiveness of krill oil supplementation on cardiovascular health in humans: An updated systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102909. [PMID: 38039646 DOI: 10.1016/j.dsx.2023.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The potential role of krill oil (KO) supplementation on cardiovascular health are inconsistent in several clinical trials. Therefore, our present meta-analysis aimed to systematically evaluate the impacts of supplementation of KO on cardiovascular disease risk factors (CVDRFs). METHODS Intervention trials assessing KO supplementation on cardiovascular disease (CVD) outcomes were systematically retrieved for pooling. The primary outcome was lipid profile. Secondary outcomes were consisted by blood pressure, glycemic indices, body composition together with inflammatory markers. We synthesized the effect sizes with 95% confidence intervals and weighted mean difference. To explore the heterogeneity source, we employed meta-regression and subgroup analysis. Quality assessment, publication bias, sensitivity-analysis and the certainty of evidence were also carried out. RESULTS We included 14 trials (18 treatment arms) with 1458 participants. KO supplementation had beneficial effects on total cholesterol (P = 0.01), low-density lipoprotein cholesterol (P = 0.006), and triglycerides (P = 0.0005). However, no effects were found for other CVDRFs, such as blood pressure, glycemic control, body composition as well as inflammatory markers. Subgroup analyses indicated that these notably favorable effects were observed in trials with a parallel design, treatment duration <8 weeks and subjects with baseline body mass index <28 kg/m2. The above findings remained consistent in the sensitivity analysis, without obvious publication bias detected. CONCLUSIONS The current evidence demonstrated that daily KO supplementation may as a candidate for lipid management strategies. In future, studies should pay attention to the relationships of KO intake with the incidence of CVD events or all-cause mortality.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Medical and Pharmacy Research Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.
| | - Dan Liao
- Department of Gynaecology, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- Medical and Pharmacy Research Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of Rehabilitation Medicine, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
8
|
Guarneiri LL, Wilcox ML, Maki KC. Comparison of the effects of a phospholipid-enhanced fish oil versus krill oil product on plasma levels of eicosapentaenoic and docosahexaenoic acids after acute administration: A randomized, double-blind, crossover study. Nutrition 2023; 114:112090. [PMID: 37413768 DOI: 10.1016/j.nut.2023.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE This randomized, double-blind, crossover study evaluated the bioavailability of eicosapentaenoic and docosahexaenoic acids (EPA+DHA) in a phospholipid-enhanced fish oil (PEFO) product versus a krill oil (KO) product (337 versus 206 mg EPA+DHA/1 g capsule) in healthy adults (N = 24). The aim of this study was to assess the plasma levels of EPA, DHA, and EPA+DHA following a single capsule of PEFO versus KO products in healthy adult men and women. METHODS Participants consumed a single dose of the assigned product, and plasma was obtained at baseline and periodically for 24 h after dosing. RESULTS The geometric mean ratio (GMR; 90% confidence interval) of incremental areas under the curve over 24 h PEFO:KO was 319/385 = 0.83 (0.60, 1.15 nmol/L*h), indicating a similar average increment for EPA+DHA with PEFO compared with KO across the 24-h period. The baseline-adjusted maximum concentration of EPA+DHA was greater for PEFO than KO (GMR: 1.25; 90% CI, 1.03-1.51). Finally, the geometric mean for the time to maximum concentration for EPA+DHA was lower for PEFO versus KO (P < 0.05). CONCLUSION Absorption of EPA+DHA from the two products was similar, but the absorption profiles differed (higher and earlier peak for PEFO).
Collapse
Affiliation(s)
| | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, Illinois, USA; Indiana Department of Applied Health Science, University School of Public Health-Bloomington, Bloomington, Indiana, USA.
| |
Collapse
|
9
|
Zhang H, Liu X, Li B, Zhang Y, Gao H, Zhao X, Leng K, Song Z. Krill oil treatment ameliorates lipid metabolism imbalance in chronic unpredicted mild stress-induced depression-like behavior in mice. Front Cell Dev Biol 2023; 11:1180483. [PMID: 37564375 PMCID: PMC10411196 DOI: 10.3389/fcell.2023.1180483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
The pathology of depression involves various factors including the interaction between genes and the environment. The deficiency of n-3 polyunsaturated fatty acids (n-3 PUFAs) in the brain and depressive symptoms are closely related. Krill oil contains abundant amounts of n-3 PUFAs incorporated in phosphatidylcholine. However, the effect of krill oil treatment on depression-like behaviors induced by chronic stress and its molecular mechanism in the brain remain poorly understood. Here, we used a chronic unpredictable mild stress (CUMS) model to evaluate the effect of krill oil on depression-like behaviors and explored its molecular mechanism through lipid metabolomics and mRNA profiles in the whole brain. We observed that CUMS-induced depression-like behaviors were ameliorated by krill oil supplementation in mice. The metabolism of glycerophospholipids and sphingolipids was disrupted by CUMS treatment, which were ameliorated after krill oil supplementation. Further analysis found that differently expressed genes after krill oil supplementation were mainly enriched in the membrane structures and neuroactive ligand-receptor interaction pathway, which may be responsible for the amelioration of CUMS-induced depression-like behaviors. Altogether, our results uncovered the relationship between lipid metabolism and CUMS, and provided new strategies for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Xiaofang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Bo Li
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yi Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Hua Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Xianyong Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhenhua Song
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
10
|
Tremblay MÈ, Almsherqi ZA, Deng Y. Plasmalogens and platelet-activating factor roles in chronic inflammatory diseases. Biofactors 2022; 48:1203-1216. [PMID: 36370412 DOI: 10.1002/biof.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Fatty acids and phospholipid molecules are essential for determining the structure and function of cell membranes, and they hence participate in many biological processes. Platelet activating factor (PAF) and its precursor plasmalogen, which represent two subclasses of ether phospholipids, have attracted increasing research attention recently due to their association with multiple chronic inflammatory, neurodegenerative, and metabolic disorders. These pathophysiological conditions commonly involve inflammatory processes linked to an excess presence of PAF and/or decreased levels of plasmalogens. However, the molecular mechanisms underlying the roles of plasmalogens in inflammation have remained largely elusive. While anti-inflammatory responses most likely involve the plasmalogen signal pathway; pro-inflammatory responses recruit arachidonic acid, a precursor of pro-inflammatory lipid mediators which is released from membrane phospholipids, notably derived from the hydrolysis of plasmalogens. Plasmalogens per se are vital membrane phospholipids in humans. Changes in their homeostatic levels may alter cell membrane properties, thus affecting key signaling pathways that mediate inflammatory cascades and immune responses. The plasmalogen analogs of PAF are also potentially important, considering that anti-PAF activity has strong anti-inflammatory effects. Plasmalogen replacement therapy was further identified as a promising anti-inflammatory strategy allowing for the relief of pathological hallmarks in patients affected by chronic diseases with an inflammatory component. The aim of this Short Review is to highlight the emerging roles and implications of plasmalogens in chronic inflammatory disorders, along with the promising outcomes of plasmalogen replacement therapy for the treatment of various PAF-related chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
- Department of Molecular Medicine, Université de Laval, Québec City, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Zakaria A Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
11
|
Wang J, Ossemond J, Jardin J, Briard-Bion V, Henry G, Le Gouar Y, Ménard O, Lê S, Madadlou A, Dupont D, Pédrono F. Encapsulation of DHA oil with heat-denatured whey protein in Pickering emulsion improves its bioaccessibility. Food Res Int 2022; 162:112112. [DOI: 10.1016/j.foodres.2022.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
12
|
Song JG, Noh HM, Lee SH, Han HK. Lipid/Clay-Based Solid Dispersion Formulation for Improving the Oral Bioavailability of Curcumin. Pharmaceutics 2022; 14:pharmaceutics14112269. [PMID: 36365088 PMCID: PMC9697399 DOI: 10.3390/pharmaceutics14112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to develop a lipid/clay-based solid dispersion (LSD) formulation to enhance the dissolution and oral bioavailability of poorly soluble curcumin. Krill oil and aminoclay were used as a lipid and a stabilizer, respectively, and LSD formulations of curcumin were prepared by an antisolvent precipitation method combined with freeze-drying process. Based on the dissolution profiles, the optimal composition of LSD was determined at the weight ratio of curcumin: krill oil: aminoclay of 1:5:5 in the presence of 0.5% of D-α-tocopherol polyethylene glycol succinate. The structural and morphological characteristics of the LSD formulation were determined using X-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy. Crystalline curcumin was changed to an amorphous form in the LSD formulation. At the pH of acidic to neutral, the LSD formulation showed almost complete drug dissolution (>90%) within 1 h, while pure curcumin exhibited minimal dissolution of less than 10%. Furthermore, the LSD formulation had significantly improved oral absorption of curcumin in rats, where Cmax and AUC of curcumin were 13- and 23-fold higher for the LSD formulation than for the pure drug. Taken together, these findings suggest that the krill oil-based solid dispersion formulation of curcumin effectively improves the dissolution and oral bioavailability of curcumin.
Collapse
Affiliation(s)
| | | | | | - Hyo-Kyung Han
- Correspondence: ; Tel.: +82-31-961-5217; Fax: +82-31-961-5206
| |
Collapse
|
13
|
Song L, Leng K, Xiao K, Zhang S. Administration of krill oil extends lifespan of fish Nothobranchius guentheri via enhancement of antioxidant system and suppression of NF-κB pathway. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1057-1073. [PMID: 35834112 DOI: 10.1007/s10695-022-01102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Krill oil (KO) extracted from Antarctic krill (Euphausia superba) mainly comprises phospholipids and triglycerides. KO has been shown to prolong the median lifespan of the nematode Caenorhabditis elegans, but to shorten the lifespan of long-lived F1 mice; therefore, it remains controversial over the life-extending property of KO. In this study, we clearly demonstrated that dietary intake of KO extended both the mean and maximum lifespans of aged male Nothobranchius guentheri (p < 0.05), reduced the accumulation of lipofuscin (LF) (p < 0.05) in the gills and senescence-associated β-galactosidase (SA-β-Gal) (p < 0.05) in the caudal fins, and lowered the levels of protein oxidation (p < 0.05), lipid peroxidation (p < 0.01), and reactive oxygen species (ROS) (p < 0.01) in the muscles and livers, indicating that KO possesses rejuvenation and anti-aging activity. We also showed that KO enhanced the activities of antioxidant enzymes catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05), and glutathione peroxidase (GPX) (p < 0.05) in aged male N. guentheri. In addition, KO administration effectively reversed histological lesions including inflammatory cell infiltration and structural collapse in the muscles and livers of aged N. guentheri and suppressed the nuclear factor kappa-B (NF-κB) signaling pathway (p < 0.05), a master regulator of inflammation. Altogether, our study indicates that KO has anti-aging and rejuvenation property. It also suggests that KO exerts its anti-aging and rejuvenation effects via enhancement of the antioxidant system and suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, 266071, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China
| | - Kun Xiao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
14
|
Hwang SM, Kim YU, Kim JK, Chun YS, Kwon YS, Ku SK, Song CH. Preventive and Therapeutic Effects of Krill Oil on Obesity and Obesity-Induced Metabolic Syndromes in High-Fat Diet-Fed Mice. Mar Drugs 2022; 20:md20080483. [PMID: 36005486 PMCID: PMC9410137 DOI: 10.3390/md20080483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity increases the risks of metabolic syndromes including nonalcoholic fatty liver disease (NAFLD), diabetic dyslipidemia, and chronic kidney disease. Dietary krill oil (KO) has shown antioxidant and anti-inflammatory properties, thereby being a therapeutic potential for obesity-induced metabolic syndromes. Thus, the effects of KO on lipid metabolic alteration were examined in a high-fat diet (HFD)-fed mice model. The HFD model (n = 10 per group) received an oral gavage with distilled water as a control, metformin at 250 mg/kg, and KO at 400, 200, and 100 mg/kg for 12 weeks. The HFD-induced weight gain and fat deposition were significantly reduced in the KO treatments compared with the control. Blood levels were lower in parameters for NAFLD (e.g., alanine aminotransferase, and triglyceride), type 2 diabetes (e.g., glucose and insulin), and renal dysfunction (e.g., blood urea nitrogen and creatinine) by the KO treatments. The KO inhibited lipid synthesis through the modification of gene expressions in the liver and adipose tissues and adipokine-mediated pathways. Furthermore, KO showed hepatic antioxidant activities and glucose lowering effects. Histopathological analyses revealed that the KO ameliorated the hepatic steatosis, pancreatic endocrine/exocrine alteration, adipose tissue hypertrophy, and renal steatosis. These analyses suggest that KO may be promising for inhibiting obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Seung-Min Hwang
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (S.-M.H.); (Y.-S.K.)
| | - Yeong Uk Kim
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jong-Kyu Kim
- AriBnC Co., Ltd., Yongin 16914, Korea; (J.-K.K.); (Y.-S.C.)
| | - Yoon-Seok Chun
- AriBnC Co., Ltd., Yongin 16914, Korea; (J.-K.K.); (Y.-S.C.)
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (S.-M.H.); (Y.-S.K.)
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (S.-K.K.); (C.-H.S.); Tel.: +82-53-819-1549 (S.-K.K.); +82-53-819-1822 (C.-H.S.)
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (S.-K.K.); (C.-H.S.); Tel.: +82-53-819-1549 (S.-K.K.); +82-53-819-1822 (C.-H.S.)
| |
Collapse
|
15
|
Stonehouse W, Benassi-Evans B, Bednarz J, Vincent AD, Hall S, Hill CL. Krill oil improved osteoarthritic knee pain in adults with mild to moderate knee osteoarthritis: a 6-month multicenter, randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 2022; 116:672-685. [PMID: 35880828 PMCID: PMC9437987 DOI: 10.1093/ajcn/nqac125] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a major cause of chronic pain and disability worldwide. Treatment generally focuses on symptom relief through nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics, which may incur side effects. Krill oil, rich in anti-inflammatory long-chain (LC) omega-3 ( ω-3) PUFAs and astaxanthin, may be a safe and effective alternative treatment. OBJECTIVES This study sought to investigate the effects of a commercially available krill oil supplement on knee pain in adults with mild to moderate knee OA. Secondary outcomes were knee stiffness; physical function; NSAID use; Omega-3 Index; and lipid, inflammatory, and safety markers. METHODS Healthy adults (n = 235, 40-65 y old, BMI >18.5 to <35 kg/m2), clinically diagnosed with mild to moderate knee OA, regular knee pain, and consuming <0.5 g/d LC ω-3 PUFAs, participated in a 6-mo double-blind, randomized, placebo-controlled, multicenter trial. Participants consumed either 4 g krill oil/d (0.60 g EPA/d, 0.28 g DHA/d, 0.45 g astaxanthin/d) or placebo (mixed vegetable oil). Knee outcomes were assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) numeric scale (normalized to scores of 0-100). Outcomes were assessed at baseline, 3 mo, and 6 mo. RESULTS Omega-3 Index increased with the krill oil supplement compared with placebo (from 6.0% to 8.9% compared with from 5.5% to 5.4%, P < 0.001). Knee pain score improved in both groups with greater improvements for krill oil than for placebo (difference in adjusted mean change between groups at 6 mo: -5.18; 95% CI: -10.0, -0.32; P = 0.04). Knee stiffness and physical function also had greater improvements with krill oil than with placebo (difference in adjusted mean change between groups at 6 mo: -6.45; 95% CI: -12.1, -0.9 and -4.67; 95% CI: -9.26, -0.05, respectively; P < 0.05). NSAID use, serum lipids, and inflammatory and safety markers did not differ between groups. CONCLUSIONS Krill oil was safe to consume and resulted in modest improvements in knee pain, stiffness, and physical function in adults with mild to moderate knee OA.This trial was registered at clinicaltrials.gov as NCT03483090.
Collapse
Affiliation(s)
| | - Bianca Benassi-Evans
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Jana Bednarz
- Adelaide Health Technology Assessment, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Vincent
- Freemasons Centre for Male Health & Wellbeing, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen Hall
- Emeritus Research Pty Ltd, Camberwell, Victoria, Australia,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Catherine L Hill
- Rheumatology Unit, The Queen Elizabeth and Royal Adelaide Hospitals, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Zhang X, Ritonja JA, Zhou N, Chen BE, Li X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2022; 11:e025071. [PMID: 35647665 PMCID: PMC9238708 DOI: 10.1161/jaha.121.025071] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
Background Current evidence might support the use of omega-3 fatty acids (preferably docosahexaenoic acid and eicosapentaenoic acid) for lowering blood pressure (BP), but the strength and shape of the dose-response relationship remains unclear. Methods and Results This study included randomized controlled trials published before May 7, 2021, that involved participants aged ≥18 years, and examined an association between omega-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, or both) and BP. A random-effects 1-stage cubic spline regression model was used to predict the average dose-response association between daily omega-3 fatty acid intake and changes in BP. We also conducted stratified analyses to examine differences by prespecified subgroups. Seventy-one trials were included, involving 4973 individuals with a combined docosahexaenoic acid+eicosapentaenoic acid dose of 2.8 g/d (interquartile range, 1.3 g/d to 3.6 g/d). A nonlinear association was found overall or in most subgroups, depicted as J-shaped dose-response curves. The optimal intake in both systolic BP and diastolic BP reductions (mm Hg) were obtained by moderate doses between 2 g/d (systolic BP, -2.61 [95% CI, -3.57 to -1.65]; diastolic BP, -1.64 [95% CI, -2.29 to -0.99]) and 3 g/d (systolic BP, -2.61 [95% CI, -3.52 to -1.69]; diastolic BP, -1.80 [95% CI, -2.38 to -1.23]). Subgroup studies revealed stronger and approximately linear dose-response relations among hypertensive, hyperlipidemic, and older populations. Conclusions This dose-response meta-analysis demonstrates that the optimal combined intake of omega-3 fatty acids for BP lowering is likely between 2 g/d and 3 g/d. Doses of omega-3 fatty acid intake above the recommended 3 g/d may be associated with additional benefits in lowering BP among groups at high risk for cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Jennifer A. Ritonja
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Na Zhou
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Bingshu E. Chen
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
17
|
Schooneveldt YL, Paul S, Calkin AC, Meikle PJ. Ether Lipids in Obesity: From Cells to Population Studies. Front Physiol 2022; 13:841278. [PMID: 35309067 PMCID: PMC8927733 DOI: 10.3389/fphys.2022.841278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Ether lipids are a unique class of glycero- and glycerophospho-lipid that carry an ether or vinyl ether linked fatty alcohol at the sn-1 position of the glycerol backbone. These specialised lipids are important endogenous anti-oxidants with additional roles in regulating membrane fluidity and dynamics, intracellular signalling, immunomodulation and cholesterol metabolism. Lipidomic profiling of human population cohorts has identified new associations between reduced circulatory plasmalogen levels, an abundant and biologically active sub-class of ether lipids, with obesity and body-mass index. These findings align with the growing body of work exploring novel roles for ether lipids within adipose tissue. In this regard, ether lipids have now been linked to facilitating lipid droplet formation, regulating thermogenesis and mediating beiging of white adipose tissue in early life. This review will assess recent findings in both population studies and studies using cell and animal models to delineate the functional and protective roles of ether lipids in the setting of obesity. We will also discuss the therapeutic potential of ether lipid supplementation to attenuate diet-induced obesity.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Anna C. Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Anna C. Calkin,
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Peter J. Meikle,
| |
Collapse
|
18
|
Mitrovic M, Sistilli G, Horakova O, Rossmeisl M. Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives. Eur J Clin Invest 2022; 52:e13650. [PMID: 34291454 DOI: 10.1111/eci.13650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.
Collapse
Affiliation(s)
- Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
19
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|
20
|
Sung HH, Sinclair AJ, Su XQ. Enrichment of n-3 containing ether phospholipids in plasma after 30 days of krill oil compared with fish oil supplementation. Lipids 2022; 57:115-124. [PMID: 34981516 DOI: 10.1002/lipd.12335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
There are conflicting findings over the bioavailability of long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) from krill oil (KO) compared with fish oil (FO) in short- and long-term studies. The aim of this study was to compare the effects of KO versus FO on the enrichment of molecular species of plasma phospholipids in young women following a 30-day consumption of the n-3 oils. Eleven healthy women aged 18-45 years consumed seven capsules of KO per day (containing a total of 1.27 g n-3 PUFA) or five capsules of FO per day (total of 1.44 g n-3 PUFA) for 30 days in a randomized crossover study, separated by at least a 30-day washout period. Fasting blood samples were collected at day zero (baseline), day 15 and day 30 and analyzed by HPLC-MS/MS for molecular species of phospholipids. Supplementation increased n-3 PUFA in main phospholipids classes in both groups. After 30 days of supplementation, 35 out of 70 molecular species containing eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-3) had a significantly greater concentration in KO group compared with the FO treated group. The majority (89%) of the differentiated molecular species were choline and ethanolamine ether-phospholipids. These data reveal that analysis of plasma phospholipids following 30 days of consumption of KO (a marine oil rich in phospholipids, including ether phospholipids) resulted in an enrichment of n-3 PUFA in molecular species of ether-phospholipids compared with FO (a triacylglycerol-rich marine oil).
Collapse
Affiliation(s)
- Hyunsin Hedy Sung
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Xiao Q Su
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Sánchez CO, Zavaleta EB, García GU, Solano GL, Díaz MR. Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Kim JH, Seo HJ, Pang QQ, Kwon YR, Kim JH, Cho EJ. Protective effects of krill oil on high fat diet-induced cognitive impairment by regulation of oxidative stress. Free Radic Res 2021; 55:799-809. [PMID: 34181501 DOI: 10.1080/10715762.2021.1944623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Consumption of high fat diet (HFD) increases risk of cognitive impairment and memory deficit by elevation of oxidative stress in the brain. In this study, we investigated the protective effects of krill oil (KO) against HFD-induced cognitive impairment in mice. The mice were fed with HFD for 10 weeks, and then KO was orally administered at doses of 100, 200, or 500 mg/kg/d for 4 weeks. To evaluate the cognitive abilities, we carried out the behavior tests, such as T-maze, novel object recognition test, and Morris water maze test. The HFD-induced cognitive impairment mice showed impairments in both spatial memory and novel object cognitive abilities. However, administration of KO at doses of 100, 200, or 500 mg/kg/d improved spatial memory ability and novel object cognition by increase of the exploration of new route and novel object. In addition, KO-administered group improved learning and memory abilities, showing shorter latency to reach hidden platform compared with control group. Furthermore, levels of reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) were significantly elevated by consumption of HFD, indicating that consumption of HFD induces oxidative stress in the brain. However, administration of KO attenuated oxidative stress by decrease of the ROS levels, lipid peroxidation, and NO. This study suggests that KO improves HFD-induced cognitive impairment by attenuation of oxidative stress in the brain. Therefore, KO may play as a promising agent in treatment and prevention of HFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea.,Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyo Jeong Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Qi Qi Pang
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Yu Ri Kwon
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
23
|
Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications. Mar Drugs 2021; 19:md19060306. [PMID: 34073184 PMCID: PMC8226823 DOI: 10.3390/md19060306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Euphausia superba, commonly known as krill, is a small marine crustacean from the Antarctic Ocean that plays an important role in the marine ecosystem, serving as feed for most fish. It is a known source of highly bioavailable omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In preclinical studies, krill oil showed metabolic, anti-inflammatory, neuroprotective and chemo preventive effects, while in clinical trials it showed significant metabolic, vascular and ergogenic actions. Solvent extraction is the most conventional method to obtain krill oil. However, different solvents must be used to extract all lipids from krill because of the diversity of the polarities of the lipid compounds in the biomass. This review aims to provide an overview of the chemical composition, bioavailability and bioaccessibility of krill oil, as well as the mechanisms of action, classic and non-conventional extraction techniques, health benefits and current applications of this marine crustacean.
Collapse
|
24
|
Abd Elhameed AG. Krill oil and low-dose aspirin combination mitigates experimentally induced silicosis in rats: role of NF-κB/TGF-β1/MMP-9 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19272-19284. [PMID: 33398741 DOI: 10.1007/s11356-020-11921-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This study is an attempt to assess pulmonary protective and antifibrotic potentials of a combination of aspirin, a widely used anti-inflammatory and cardioprotective agent, and krill oil, a naturally occurring omega-3 fatty acid source, against silica-induced pulmonary injury. For silicosis induction, silica particles (50 mg/rat, 0.1 mL 0.9% NaCl) were instilled intranasally into rats. Aspirin (10 mg/kg/day), krill oil (40 mg/kg/day), or their combination was administered orally for 56 days following silica exposure. Results showed that oral aspirin and krill oil combination significantly mitigated silica-induced pulmonary injury. Bronchoalveolar lavage fluid examination showed a decreased lactate dehydrogenase activity, total protein content, and accumulation of total and differential inflammatory cells. Oral aspirin and krill oil combination significantly attenuated silica-induced oxidative stress through the restoration of reduced glutathione concentration and catalase activity in addition to alleviation of elevated malondialdehyde and total nitric oxide contents. Moreover, aspirin and krill oil combination revealed considerable mitigation of silica-induced upregulated expression of the inflammatory and fibrotic mediators: nuclear factor kappa-B, transforming growth factor-β1, and matrix metalloproteinase-9. The antifibrotic effect was also evidenced through the decreased hydroxyproline content and the obvious restoration of lung architecture, as demonstrated upon histopathological examination. In conclusion, oral aspirin and krill oil combination can confer pulmonary protective, anti-inflammatory, and antifibrotic potentials against silica-induced pulmonary injury. This impact could be credited to the ability of this combination to activate resolution mechanisms, which, in turn, suppress the expression of inflammatory and fibrotic biomarkers and replenish antioxidant stores.
Collapse
Affiliation(s)
- Ahmed G Abd Elhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt.
| |
Collapse
|
25
|
Kim MG, Yang I, Lee HS, Lee JY, Kim K. Lipid-modifying effects of krill oil vs fish oil: a network meta-analysis. Nutr Rev 2021; 78:699-708. [PMID: 32073633 DOI: 10.1093/nutrit/nuz102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CONTEXT Krill oil is a good source of n-3 phospholipids and has greater bioavailability than fish oil, which contains n-3 triglycerides. However, it is unclear whether krill oil affects circulating lipid concentrations more beneficially than fish oil. OBJECTIVE A network meta-analysis was conducted to compare the lipid-modifying effects of krill oil and fish oil. DATA SOURCES PubMed and Embase databases were searched. STUDY SELECTION A total of 64 randomized controlled trials that determined the lipid-modifying effects of krill oil or fish oil were selected. DATA EXTRACTION The MetaXL program was used for meta-analysis. A subgroup analysis and a network meta-regression were conducted to investigate the dose-response effect of the n-3 fatty acid content of fish oil and krill oil. RESULTS Krill oil was associated with significantly lower triglyceride levels than control supplements (weighted mean difference [WMD] -23.26 [95%CI, -38.84 to -7.69]). However, the net differences in triglycerides (WMD -4.07 [95%CI, -15.22 to 7.08]), low-density lipoprotein cholesterol (WMD 3.01 [95%CI, -5.49 to 11.51]), high-density lipoprotein cholesterol (WMD 1.37 [95%CI, -3.73 to 6.48]), and total cholesterol (WMD 1.69 [95%CI, -6.62 to 10.01]) were not significantly different between the krill oil and fish oil groups. One gram of n-3 fatty acids contained in fish oil and krill oil lowered median triglycerides by 8.971 mg/dL (95% credible interval [CrI], 2.27 to 14.04) and 9.838 mg/dL (95%CrI, 0.72 to 19.40), respectively. CONCLUSIONS The lipid-modifying effects of krill oil and fish oil do not differ. The reduction in triglycerides depends on the dose of n-3 fatty acids consumed.
Collapse
Affiliation(s)
- Myeong Gyu Kim
- Graduate School of Clinical Pharmacy, CHA University, Pocheon, Republic of Korea
| | - Inkyou Yang
- Graduate School of Clinical Pharmacy, CHA University, Pocheon, Republic of Korea
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungim Kim
- College of Pharmacy, Korea University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Characterizing the phospholipid composition of six edible sea cucumbers by NPLC-Triple TOF-MS/MS. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Nosratpour M, Wang Y, Woo MW, Selomulya C. Characterisation of thermal and structural behaviour of lipid blends composed of fish oil and milkfat. Food Res Int 2020; 137:109377. [PMID: 33233079 DOI: 10.1016/j.foodres.2020.109377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
The blend of fish oil with a high percentage of long chain poly-unsaturated fatty acids, and milkfat with a high percentage of saturated fatty acids, could potentially demonstrate desirable characteristics from both components, such as increased omega-3 fatty acids and melting point, as well as improved crystallization and oxidative stability. In this study, the effect of various milkfat concentrations on thermal properties and crystalline structure of these blends were analysed to understand parameters determining the overall characteristics of the blend. Blends with different ratios of fish oil: milkfat (9:1, 7:3, 5:5, 3:7, 1:9), as well as pure fish oil and pure milkfat, were investigated at different cooling conditions. The crystallization behaviour in all samples shifted to lower temperature ranges, by increasing the cooling rate from 1 to 32 °C/min. However, the changes in cooling rate did not have significant effect on the melting profile of the samples. Whereas changes in milkfat ratio affect both the crystallization and melting behaviour. New crystallization peaks were observed on DSC spectra between the range of -4 to -13 °C in the blends. Moreover, new melting peaks appeared in two ranges of -1 to -8 °C and 8-9 °C, in the blends. The crystallization and melting behaviour of the blends were similar to those of milkfat when >30% milkfat was used. This was further confirmed via XRD where milkfat demonstrated the dominant polymorphic behaviour. Regarding shape of the crystals, fractal dimension analysis showed a similarity between clusters in blends containing 50% milkfat or higher. Increasing the ratio of milkfat led to an increase in fractal dimension which indicates higher mass-spatial distribution of the crystal networks in the blends. The data showed that adding 30% or more milkfat to pure fish oil resulted in blends demonstrating similar characteristics to milkfat, including thermal, structural, and oxidative stability. This shows the potential of blending a high percentage of docosahexaenoic acid in milk fat to improve their overall stability.
Collapse
Affiliation(s)
- Mitra Nosratpour
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, New Zealand
| | | |
Collapse
|
28
|
Antarctic Krill Oil Attenuates Oxidative Stress via the KEAP1-NRF2 Signaling in Patients with Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9534137. [PMID: 33082834 PMCID: PMC7563054 DOI: 10.1155/2020/9534137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Background Antarctic krill oil (AKO) has strong antioxidant activities and is effective for alleviating coronary heart disease (CHD). Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) axis is a crucial antioxidant signaling pathway. Thus, AKO may exert its antioxidant effects on CHD patients via KEAP1-NRF2 signaling. Methods AKO fatty acid (FA) profiles were analyzed by using gas chromatography (GC). One hundred CHD patients were divided into the intervention (IG, AKO) and control (CG, placebo) groups. Before and after 1, 2, and 3 months of intervention, we measured serum levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione peroxidase (GPx), and KEAP1 and NRF2 levels in peripheral blood leukocytes (PBLs). Serum FAs were measured by GC at baseline and after 3-month intervention. Results AKO contains rich eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which is more than 27% of total FA. The levels of EPA and DHA, KEAP1, and NRF2 in the IG group were higher than those in the CG group (p < 0.05). Serum levels of ROS, 8-OHdG, NO, and MDA in the IG group were lower than those in the CG group, whereas the levels of SOD, GSH, and GPx in the IG group were higher than those in the CG group (p < 0.05). Serum levels of saturated fatty acids (UFA) in the IG group were higher than those in the CG group, whereas reverse results were obtained for the levels of saturated fatty acids (SFA). Serum levels of EPA and DHA had a strong negative relationship with the level of ROS, whereas the ROS level had a strong negative relationship with the levels of KEAP1-NRF2. Conclusion AKO increases antioxidant capacities of CHD patients via the KEAP1-NRF2 signaling in the PBL.
Collapse
|
29
|
Krill Oil Has Different Effects on the Plasma Lipidome Compared with Fish Oil Following 30 Days of Supplementation in Healthy Women: A Randomized Controlled and Crossover Study. Nutrients 2020; 12:nu12092804. [PMID: 32933153 PMCID: PMC7551473 DOI: 10.3390/nu12092804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
This is a follow-up of our previous postprandial study and it focused on the plasma lipidomic responses to 30 days of krill oil (KO) versus fish oil (FO) supplementations in healthy women. Eleven women (aged 18–50 years) consumed KO or FO for 30 days in a randomized, cross-over study, with at least a four-week washout period between supplementations. The daily supplements provided 1.27 g/day of long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) from KO (containing 0.76 g eicosapentaenoic acid (EPA), 0.42 g docosahexaenoic acid (DHA)) and 1.44 g/day from FO (containing 0.79 g EPA, 0.47 g DHA). Fasting plasma samples at days 0, 15, and 30 were analyzed using gas chromatography and liquid chromatography electrospray ionisation-tandem mass spectrometry. KO resulted in a significantly greater relative area under the curve (relAUC) for plasma EPA after 30 days. Lipidomic analysis showed that 26 of 43 lipid molecular species had a significantly greater relAUC in the KO group, while 17/43 showed a significantly lower relAUC compared with the FO group. More than 38% of the lipids species which increased more following KO contained omega-3 PUFA, while where FO was greater than KO, only 12% contained omega-3 PUFA. These data show that KO and FO do not have equivalent effects on the plasma lipidome.
Collapse
|
30
|
Uluata S, Durmaz G, Julian McClements D, Decker EA. Comparing DPPP fluorescence and UV based methods to assess oxidation degree of krill oil-in-water emulsions. Food Chem 2020; 339:127898. [PMID: 32871303 DOI: 10.1016/j.foodchem.2020.127898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
In this study, lipid oxidation evaluation methods were compared for a krill-oil-in-water emulsion system. With this aim, thiocyanate and DPPP (diphenyl-1-pyrenylphosphine) fluorescence methods were comparatively examined to determine primary oxidation products. 2-thiobarbituric acid reactive substances (TBARS), hexanal and propanal formation were also monitored as secondary oxidations products. All oxidation experiments were performed via both auto-oxidation at 45 °C and light-riboflavin induced photooxidation at 37 °C. The results have shown that thiocyanate method was not suitable to measure lipid hydroperoxides by the both in auto- and photo-oxidation systems. On the other hand, fluorescence intensity of samples containing the DPPP probe increased during incubation period which indicates the formation of lipid hydroperoxides could be detected via this method. TBARS, hexanal and propanal concentrations also increased during storage period and the formation kinetics of secondary oxidation products was confirmed that the DPPP fluorescence method was accurate and reliable at different environmental conditions.
Collapse
Affiliation(s)
- Sibel Uluata
- Department of Nutrition and Dietetics, Inonu University, 44280 Malatya, Turkey.
| | - Gokhan Durmaz
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| | - D Julian McClements
- Department of Food Science University of Massachusetts Amherst 228 Chenoweth Laboratory, 100 Holdsworth Way Amherst, MA 01003 USA
| | - Eric A Decker
- Department of Food Science University of Massachusetts Amherst 228 Chenoweth Laboratory, 100 Holdsworth Way Amherst, MA 01003 USA
| |
Collapse
|
31
|
Burri L, Heggen K, Storsve AB. Higher omega-3 index after dietary inclusion of omega-3 phospholipids versus omega-3 triglycerides in Alaskan Huskies. Vet World 2020; 13:1167-1173. [PMID: 32801569 PMCID: PMC7396354 DOI: 10.14202/vetworld.2020.1167-1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Numerous studies have found benefits of omega-3 polyunsaturated fatty acids (PUFAs), namely, for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dogs. The objective of the present study was to assess the efficacy of dietary inclusion of equal amounts of omega-3 FAs in phospholipid (PL) from krill meal to triglyceride structure from fish oil to increase the omega-3 FA profile in red blood cells (RBCs) in dogs. Materials and Methods Ten adult Alaskan Huskies of both genders were supplemented with daily 1.7 g EPA and DHA from krill meal for 6 weeks, while another ten dogs received 1.7 g EPA and DHA from fish oil. FA and omega-3 index measurements of the two groups were taken after 0, 3, and 6 weeks for comparison. Results It was mainly the EPA levels that increased in the krill meal group (from 1.84% to 4.42%) compared to the fish oil group (from 1.90% to 2.46%) (p<0.001), which drove the group differences in the omega-3 index. This resulted in the krill meal group having a mean omega-3 index increase from 3.9 at baseline to 6.3%, which was significantly greater than the increase from 3.9% to 4.7% observed in the fish oil group (p<0.001). Concomitantly, omega-6 PUFAs, such as arachidonic acid and linoleic acid, were reduced in RBC membranes and the omega-6 to omega-3 ratio was significantly more reduced in the krill meal compared to the fish oil group. Conclusion The results showed that krill meal supplementation was associated with a reduction of omega-6 PUFAs, which compensated for the increased omega-3 index, suggesting that PLs are efficient delivery molecules of omega-3 PUFAs.
Collapse
Affiliation(s)
- Lena Burri
- Aker BioMarine Antarctic AS, Lysaker, Norway
| | - Knut Heggen
- Aker BioMarine Antarctic AS, Lysaker, Norway
| | | |
Collapse
|
32
|
Kroupova P, van Schothorst EM, Keijer J, Bunschoten A, Vodicka M, Irodenko I, Oseeva M, Zacek P, Kopecky J, Rossmeisl M, Horakova O. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients 2020; 12:nu12072037. [PMID: 32660007 PMCID: PMC7400938 DOI: 10.3390/nu12072037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (−40%), mesenteric adipose tissue (−43%), and hepatic lipid content (−64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.
Collapse
Affiliation(s)
- Petra Kroupova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Annelies Bunschoten
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Martin Vodicka
- Laboratory of Epithelial Physiology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Marina Oseeva
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, 25250 Vestec, Czech Republic;
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| |
Collapse
|
33
|
Schots PC, Pedersen AM, Eilertsen KE, Olsen RL, Larsen TS. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharmacol 2020; 11:961. [PMID: 32676029 PMCID: PMC7333527 DOI: 10.3389/fphar.2020.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The consumption of seafood and the use of fish oil for the production of nutraceuticals and fish feed have increased over the past decades due the high content of long-chain polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the marine food web. Calanus finmarchicus, feeding on phytoplankton, is a small copepod constituting a considerable biomass in the North Atlantic and is a novel source of omega-3 fatty acids. The oil is, however, different from other commercial marine oils in terms of chemistry and, possibly, bioactivity since it contains wax esters. Wax esters are fatty acids that are esterified with alcohols. In addition to the long-chain polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the oil is also rich in stearidonic acid (SDA), long-chain monounsaturated fatty acids, and the long-chain fatty alcohols eicosenol and docosenol. Recent animal studies have indicated anti-inflammatory and anti-obesogenic actions of this copepod oil beyond that provided by EPA and DHA. This review will discuss potential mechanisms behind these beneficial effects of the oil, focusing on the impact of the various components of the oil. The health effects of EPA and DHA are well recognized, whereas long-chain monounsaturated fatty acids and long-chain fatty alcohols have to a large degree been overlooked in relation to human health. Recently, however the fatty alcohols have received interest as potential targets for improved health via conversion to their corresponding fatty acids. Together, the different lipid components of the oil from C. finmarchicus may have potential as nutraceuticals for reducing obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Pauke Carlijn Schots
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Karl-Erik Eilertsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar Ludvig Olsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Steinar Larsen
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
34
|
Eysteinsson ST, Arason S, Guðjónsdóttir M. Chemical characterization and processing suitability of zooplankton-rich side-streams from Atlantic mackerel (Scomber scombrus) processing. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Zhang Y, Wu G, Zhang Y, Wang X, Jin Q, Zhang H. Advances in exogenous docosahexaenoic acid-containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Compr Rev Food Sci Food Saf 2020; 19:1420-1448. [PMID: 33337094 DOI: 10.1111/1541-4337.12543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In recent years, docosahexaenoic acid-containing phospholipids (DHA-PLs) have attracted much attention because of theirs unique health benefits. Compared with other forms of docosahexaenoic acid (DHA), DHA-PLs possess superior biological effects (e.g., anticancer, lipid metabolism regulation, visual development, and brain and nervous system biochemical reactions), more intricate metabolism mechanisms, and a stronger attraction to consumer. The production of DHA-PLs is hampered by several challenges associated with the limited content of DHA-PLs in natural sources, incomplete utilization of by-products, few microorganisms for DHA-PLs production, high cost, and complex process of artificial preparation of DHA-PLs. In this article, the sources, biological activities, and commercial applications of DHA-PLs were summarized, with intensive discussions on advantages of DHA-PLs over DHA, isomerism of DHA in phospholipids (PLs), and brain health. The excellent biological characteristics of DHA-PLs are primarily concerned with DHA and PLs. The metabolic fate of different DHA-PLs varies from the position of DHA in PLs to polar groups in DHA-PLs. Overall, well understanding of DHA-PLs about their sources and characteristics is critical to accelerate the production of DHA-PLs, economically enhance the value of DHA-PLs, and improve the applicability of DHA-PLs and the acceptance of consumers.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
Helal MG, El-Kashef DH. Krill oil alleviates oxidative stress, iron accumulation and fibrosis in the liver and spleen of iron-overload rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3950-3961. [PMID: 31823254 DOI: 10.1007/s11356-019-06983-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Krill oil (KO) is a recent supplement which is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These fatty acids are found in both krill oil and fish oil. In krill oil, they esterified to phospholipids, but in fish oil, they are esterified to triacylglycerols. The target of this study was to investigate whether KO could help against iron overload-induced toxicity in liver and spleen. Rats were randomly assigned into 3 categories: control rats, rats received iron in a drinking water for 8 weeks followed by either vehicle or KO (40 mg/kg) treatment for an extra 8 weeks. Extent of hepatic and splenic injury was assessed via biochemical, histopathological and immunohistochemical evaluations. KO effectively improved the microscopic features of liver and spleen. Moreover, it decreased the increased levels of serum transaminases, ALP, LDH, iron, and ferritin and increased albumin serum level as well. In addition, it restored the balance between oxidants and antioxidants in the hepatic and splenic tissues. Furthermore, it decreased HO-1 levels, upregulated the production of Nrf2, and limited the expression of MMP9. These findings altogether suggest that KO might be a new candidate for treatment of iron overload-induced toxicity. Graphical abstract Graphical abstract.
Collapse
Affiliation(s)
- Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
37
|
Kim HY, Cheon JH, Lee SH, Min JY, Back SY, Song JG, Kim DH, Lim SJ, Han HK. Ternary nanocomposite carriers based on organic clay-lipid vesicles as an effective colon-targeted drug delivery system: preparation and in vitro/in vivo characterization. J Nanobiotechnology 2020; 18:17. [PMID: 31964393 PMCID: PMC6975051 DOI: 10.1186/s12951-020-0579-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/08/2020] [Indexed: 02/14/2023] Open
Abstract
This study aimed to develop a new colon-targeted drug delivery system via the preparation of ternary nanocomposite carriers based on organic polymer, aminoclay and lipid vesicles. Budesonide (Bud), an anti-inflammatory drug was chosen as a model drug and encapsulated into three different formulations: liposome (Bud-Lip), aminoclay-coated liposome (AC-Bud-Lip), and Eudragit® S100-aminoclay double coated liposome (EAC-Bud-Lip). The formation of the aminoclay-lipid vesicle nanocomposite was confirmed by energy dispersive X-ray spectrum, transmission electron microscopy, and Fourier-transform infrared spectroscopy. All formulations were produced with a high encapsulation efficiency in a narrow size distribution. Drug release from EAC-Bud-Lip was approximately 10% for 2-h incubation at pH 1.2, implying the minimal drug release in acidic gastric condition. At pH 7.4, EAC-Bud-Lip underwent significant size reduction and exhibited drug release profiles similar to that from AC-Bud-Lip, implying the pH-dependent removal of the outer coating layer. Compared to free Bud solution, EAC-Bud-Lip achieved a higher drug uptake in Caco-2 cells and exhibited a stronger inhibition of TNF-α and IL-6 secretion in LPS-stimulated Raw264.7 cells. Furthermore, a bio-distribution study in mice demonstrated that Eudragit® S100-aminoclay dual coating led to a higher colonic distribution with a longer residence time, which correlated well with the delayed systemic drug exposure in rats. Taken together, the present study suggests that the ternary nanocomposite carrier consisting of Eudragit® S100, aminoclay, and lipid vesicle might be useful as an effective colon-targeted drug delivery system.
Collapse
Affiliation(s)
- Hyeon Young Kim
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea
| | - Jeong Youn Min
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea
| | - Seung-Yun Back
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea
| | - Da Hye Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Jeong Lim
- Department of Integrated Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea.
| |
Collapse
|
38
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
39
|
Yaghmur A, Lotfi S, Ariabod SA, Bor G, Gontsarik M, Salentinig S. Internal Lamellar and Inverse Hexagonal Liquid Crystalline Phases During the Digestion of Krill and Astaxanthin Oil-in-Water Emulsions. Front Bioeng Biotechnol 2019; 7:384. [PMID: 31867316 PMCID: PMC6906996 DOI: 10.3389/fbioe.2019.00384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Krill oil represents an important alternative natural source of omega-3 (ω-3) polyunsaturated fatty acids (PUFAs). Considering the beneficial health effects of these essential fatty acids, particularly in various disorders including cancer, cardiovascular, and inflammation diseases, it is of paramount importance to gain insight into the digestibility of krill oil. In this work, we study the fate of krill oil-in-water emulsion, stabilized by sodium caseinate, during lipolysis by coupling time-resolved synchrotron small-angle X-ray scattering (SAXS) to flow-through lipolysis model. For gaining further insight into the effect of ω-3 PUFA-containing oil type on the dynamic structural features occurring during lipolysis, two additional astaxanthin oil-in-water emulsions, stabilized using either sodium caseinate or citrem, were subjected to lipolysis under identical experimental conditions. In addition to the difference in lipid composition in both oils, ω-3 PUFAs in astaxanthin oil, similar to fish oil, exist in the form of triacylglycerols; whereas most of those in krill oil are bound to phospholipids. SAXS showed the formation of highly ordered nanostructures on exposure of these food emulsions to the lipolysis medium: the detection of a biphasic feature of coexisting inverse hexagonal (H2) and lamellar (Lα) liquid crystalline phases in the digested krill oil droplets' interiors, as compared to a neat Lα phase in the digested astaxanthin oil droplets. We discuss the dynamic phase behavior and describe the suggested important role of these phases in facilitating the delivery of nutrients throughout the body. In addition, the potential implication in the development of food and drug nanocarriers is briefly described.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saleh Lotfi
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Atoussa Ariabod
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gizem Bor
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Gontsarik
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
40
|
Natural Choline from Egg Yolk Phospholipids Is More Efficiently Absorbed Compared with Choline Bitartrate; Outcomes of A Randomized Trial in Healthy Adults. Nutrients 2019; 11:nu11112758. [PMID: 31766273 PMCID: PMC6893749 DOI: 10.3390/nu11112758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Choline is a vitamin-like essential nutrient, important throughout one’s lifespan. Therefore, choline salts are added to infant formula, supplements and functional foods. However, if choline is present in a natural form, e.g. bound to phospholipids, it may be more efficiently absorbed. The study’s aim was to evaluate if choline uptake is improved after consumption of an egg yolk phospholipid drink, containing 3 g of phospholipid bound choline, compared to a control drink with 3 g of choline bitartrate. We performed a randomized, double blind, cross-over trial with 18 participants. Plasma choline, betaine and dimethylglycine concentrations were determined before and up to six hours after consumption of the drinks. The plasma choline response, as determined by the incremental area under the curve, was four times higher after consumption of the egg yolk phospholipid drink compared with the control drink (p < 0.01). Similar outcomes were also observed for choline’s main metabolites, betaine (p < 0.01) and dimethylglycine (p = 0.01). Consumption of natural choline from egg yolk phospholipids improved choline absorption compared to consumption of chemically produced choline bitartrate. This information is of relevance for the food industry, instead of adding choline-salts, adding choline from egg yolk phospholipids can improve choline uptake and positively impact health.
Collapse
|
41
|
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| | - Priyatharini Ambigaipalan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| |
Collapse
|
42
|
Basic composition, antioxidant activity and nanoemulsion behavior of oil from mantis shrimp (Oratosquilla nepa). FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Sung HH, Sinclair AJ, Huynh K, Smith AT, Mellett NA, Meikle PJ, Su XQ. Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: A randomized crossover study. Nutrition 2019; 65:191-201. [DOI: 10.1016/j.nut.2019.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 10/26/2022]
|
44
|
Ang X, Chen H, Xiang JQ, Wei F, Quek SY. Preparation and functionality of lipase-catalysed structured phospholipid – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
|
46
|
Lapointe JF, Harvey L, Aziz S, Jordan H, Hegele RA, Lemieux P. A Single-dose, Comparative Bioavailability Study of a Formulation containing OM3 as Phospholipid and Free Fatty Acid to an Ethyl Ester Formulation in the Fasting and Fed States. Clin Ther 2019; 41:426-444. [DOI: 10.1016/j.clinthera.2019.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
|
47
|
Xie D, Gong M, Wei W, Jin J, Wang X, Wang X, Jin Q. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr Rev Food Sci Food Saf 2019; 18:514-534. [PMID: 33336946 DOI: 10.1111/1541-4337.12427] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Antarctic krill (Euphausia superba) oil has been receiving increasing attention due to its nutritional and functional potentials. However, its application as a novel food ingredient has not yet been fully explored. This review summarizes the chemical composition, extraction technologies, potential health benefits, and current applications of krill oil, with the aim of providing suggestions for its exploitation. Krill oil is a unique lipid consisting of diverse lipid classes and is characterized by a high concentration (39.29% to 80.69%) of phospholipids (PLs) associated with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It also contains considerable amounts of bioactive minor components such as astaxanthin, sterols, tocopherols, vitamin A, flavonoids, and minerals. The current technologies used in krill oil production are solvent extraction, nonsolvent extraction, super/subcritical fluid extraction, and enzyme-assisted pretreatment extraction, which all greatly influence the yield and quality of the end-product. In addition, krill oil has been documented to have various health benefits, including anti-inflammatory effects, cardiovascular disease (CVD) prevention, women's health, neuroprotection, and anticancer activities. Although krill oil products used for dietary supplements have been commercially available, few studies have attempted to explore the underlying molecular mechanisms to elucidate how exactly the krill oil exerts different biological activities. Further studies should focus on this to improve the development of krill oil products for human consumption.
Collapse
Affiliation(s)
- Dan Xie
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.,the Zhonghai Ocean (Wuxi) Marine Equipment Engineering Co. Ltd., Jiangnan Univ. Natl. Univ. Science Park, 100 Jinxi Road, Wuxi, Jiangsu, 214125, P. R. China
| | - Mengyue Gong
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Wei Wei
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Jun Jin
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaosan Wang
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Xingguo Wang
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Qingzhe Jin
- the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Natl. Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
48
|
Yeral I, Sayan CD, Karaca G, Simsek Y, Sagsoz N, Ozkan ZS, Atasoy P, Sahin Y, Neselioglu S, Erel O. What is the protective effect of krill oil on rat ovary against ischemia-reperfusion injury? J Obstet Gynaecol Res 2018; 45:592-599. [DOI: 10.1111/jog.13876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Ilkin Yeral
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Cemile D. Sayan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Gökhan Karaca
- Department of General Surgery; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Yavuz Simsek
- Yavuz Simsek Women's Health Center; Kırıkkale Turkey
| | - Nevin Sagsoz
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Zehra S. Ozkan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Pınar Atasoy
- Department of Pathology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Yasar Sahin
- Kırıkkale University Faculty of Veterinary Medicine; Kırıkkale Turkey
| | - Salim Neselioglu
- Department of Clinical Biochemistry; Yıldırım Beyazıt University Faculty of Medicine; Ankara Turkey
| | - Ozcan Erel
- Department of Clinical Biochemistry; Yıldırım Beyazıt University Faculty of Medicine; Ankara Turkey
| |
Collapse
|
49
|
Ahn SH, Lim SJ, Ryu YM, Park HR, Suh HJ, Han SH. Absorption rate of krill oil and fish oil in blood and brain of rats. Lipids Health Dis 2018; 17:162. [PMID: 30021606 PMCID: PMC6052518 DOI: 10.1186/s12944-018-0812-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Krill (Euphausia superba) is a small marine crustacean with a lipid content. The mechanism of Krill oil function is not clear yet and research reports on the absorption rate of the phospholipids of krill oil in the blood and brain are very poor. METHODS We studied the effect of oral short-term and long-term administration of Krill oils (KOs) on bioavailability in the blood and brain of rats. For short-term testing of fish and KO bioavailability, rats were divided into four groups: normal, fish oil (FO), Krill oil 1 (KO), and Krill oil 2 (CKO). The blood and brain were collected at 2, 4, 8, 12, 24, and 48 h after oral administration (1000 mg/rat). Five hundred milligrams of FO, KO, and CKO were orally administered daily for 2 weeks for long-term administration, and then the brain and blood were collected. RESULTS Two types of KOs showed high content of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the PL. The EPA content of CKO and KO were 41.13 and 32.49%, respectively. After short-term KO administration, KO showed a higher EPA content than CKO in the blood after 2 h. KO showed higher content of DHA than CKO even after 2 h. FO increased until 8 h, but then decreased rapidly until 12 h. Although the total unsaturated fatty acid (UFA) content of KOs was lower than the total UFS content in FO, the remaining UFS content in the brain was higher than that in FO over time. Following oral administration of FO, KO, and CKO for 1 and 2 weeks, triglycerides (TG) and PL contents in the blood for KOs were slightly higher than for FO. EPA and DHA levels in the brain were slightly higher in KOs following long-term administration, but the difference was not significant. CONCLUSIONS Base on these findings, KOs have functional potential for the brain and vascular diseases, and can be utilized as a multi-functional material composed mainly of functional ingredients.
Collapse
Affiliation(s)
- So Hyun Ahn
- Department of Food and Nutrition, Korea University, Seoul, 07249, Republic of Korea
| | - Su Jin Lim
- Alpha B&H, Seoul, 06705, Republic of Korea
| | | | - Hye-Ryung Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Hyung Joo Suh
- BK21Plus, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Hee Han
- BK21Plus, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
50
|
Seto Y, Morizane C, Ueno K, Sato H, Onoue S. Supersaturable Self-Emulsifying Drug Delivery System of Krill Oil with Improved Oral Absorption and Hypotriglyceridemic Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5352-5358. [PMID: 29754485 DOI: 10.1021/acs.jafc.8b00693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to develop a supersaturable self-emulsifying drug delivery system (S-SEDDS) of krill oil (KO), a rich source of docosahexaenoic acid and eicosapentaenoic acid (EPA), to improve its hypotriglyceridemic function. S-SEDDS of KO (KO/S-SEDDS) was prepared by the addition of lysolecithin, glycerin, and hydroxypropyl methylcellulose (HPMC). Self-emulsifying drug delivery system of KO (KO/SEDDS) and KO with HPMC (KO/HPMC) were also prepared for comparison purposes. The physicochemical and pharmacokinetic properties of KO samples were characterized, and the hypotriglyceridemic function of KO/S-SEDDS was evaluated. Micronized droplets in KO/SEDDS and KO/S-SEDDS with a mean diameter of ca. 270 nm could be observed in comparison to KO and KO/HPMC. Both KO/HPMC and KO/S-SEDDS tended to enhance the dissolution behavior of KO, and the S-SEDDS formulation improved the dissolution behavior of KO as a result of micronized droplets and the addition of HPMC. KO/S-SEDDS (60 mg of EPA/kg) improved the oral absorption of KO based on the pharmacokinetic profiling of EPA, and repeated oral administration of KO/S-SEDDS (250 mg of KO kg-1 day-1) for 7 days had a potent hypotriglyceridemic effect on rats with corn-oil-induced hypertriglyceridemia compared to orally administered KO. On the basis of these findings, the S-SEDDS approach might be an efficacious dosage option to enhance the nutraceutical properties of KO.
Collapse
Affiliation(s)
- Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Chikara Morizane
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Kodai Ueno
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| |
Collapse
|