1
|
Zhu Y, Wu S, Guo F, Dong Z, Chen Y, Chen Y. Structural characteristics of sulfated xylogalactomannan isolated from Caulerpa okamurae and its anticoagulant activity. Int J Biol Macromol 2024; 275:133743. [PMID: 38986975 DOI: 10.1016/j.ijbiomac.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Due to wonderful taste, rich nutrition and biological functions, many marine green algae in the genus Caulerpa have been recently developed as candidates for green caviar. A novel water-soluble sulfated xylogalactomannan CO-0-1 was obtained from the green algae Caulerpa okamurae. CO-0-1 was mainly composed of mannose (Man), galactose (Gal), and xylose (Xyl) at the ratio of 4.4:4.0:1.4 with the molecular weight at 470 kDa and the sulfate content at 12.78 %. The sulfated xylogalactomannan had Man at the backbone with →4)-β-D-Manp-(1→ and →2)-β-D-Manp-(1→ as the main chain and branches at O-3 position. The side chains contained →3)-β-D-Galp-(1→ and minor →2)-β-D-Xylp(1→. The sulfate groups only distributed at the side chains and at O-6 position of →3)-β-D-Galp-(1→ and O-4 position of (1→2)-β-D-Xylp. The anticoagulant activity indicated that CO-0-1 displayed intrinsic anticoagulant and specific anti-thrombin activities. The investigation expanded the utilization and development scene and scope of the green algae Caulerpa okamurae.
Collapse
Affiliation(s)
- Yanlin Zhu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Feng Guo
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Zhe Dong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
2
|
Wang M, Wang S, Tang HP, Li JY, Zhang ZJ, Yang BY, Kuang HX. Buddleja officinalis Maxim.: A review of its botany, ethnopharmacology, phytochemistry, pharmacology, and therapeutic potential for ophthalmic diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116993. [PMID: 37541402 DOI: 10.1016/j.jep.2023.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buddleja officinalis Maxim. (B. officinalis), commonly known as "Menghua" "Yangerduo" is a widely recognized traditional herbal medicine in China, Korea, and Vietnam. For thousands of years, it has been used to treat dry eye disease, conjunctivitis, keratitis, eye ulcers, eye pain, cough, asthma, hemoptysis, and other medical conditions. AIM OF THE REVIEW This review article aims to provide a concise summary of the botany, ethnopharmacology, phytochemistry, pharmacology, medicinal potential, and application of B. officinalis in treating ophthalmic diseases and critically evaluates the existing literature to establish a scientific basis for its reasonable utilization and further investigation. MATERIALS AND METHODS The information reviewed in this study was collected from various electronic resources, including the Web of Science, PubMed, and Google Scholar. RESULTS To date, 80 structurally diverse compounds have been isolated and characterized from B. officinalis, primarily flavonoids, phenylethanoids, triterpenoids, and monoterpenes. Extracts and compounds derived from B. officinalis have been reported to possess broad pharmacological effects including anti-dry eye disease, anti-inflammation, anti-oxidation, anti-diabetes, anti-obesity, improving osteoporosis and treatment of skin diseases. This review provides a reference for the future studies on of B. officinalis. CONCLUSIONS As a natural medicinal plant, B. officinalis is worthy of further development in botany, ethnopharmacology, phytochemistry, pharmacology, and therapeutic potential for ophthalmic diseases. Although some components have demonstrated multiple pharmacological activities, their mechanisms of action remain unclear. Further studies on the underlying molecular basis and mechanism of action are warranted.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jia-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
3
|
Chumphoochai K, Manohong P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model. Mar Drugs 2023; 21:577. [PMID: 37999401 PMCID: PMC10672060 DOI: 10.3390/md21110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Obesity is a multifactorial disease characterized by an excessive accumulation of fat, which in turn poses a significant risk to health. Bioactive compounds obtained from macroalgae have demonstrated their efficacy in combating obesity in various animal models. The green macroalgae Caulerpa lentillifera (CL) contains numerous active constituents. Hence, in the present study, we aimed to elucidate the beneficial anti-obesity effects of extracts derived from C. lentillifera using a Caenorhabditis elegans obesity model. The ethanol (CLET) and ethyl acetate (CLEA) extracts caused a significant decrease in fat consumption, reaching up to approximately 50-60%. Triglyceride levels in 50 mM glucose-fed worms were significantly reduced by approximately 200%. The GFP-labeled dhs-3, a marker for lipid droplets, exhibited a significant reduction in its level to approximately 30%. Furthermore, the level of intracellular ROS displayed a significant decrease of 18.26 to 23.91% in high-glucose-fed worms treated with CL extracts, while their lifespan remained unchanged. Additionally, the mRNA expression of genes associated with lipogenesis, such as sbp-1, showed a significant down-regulation following treatment with CL extracts. This finding was supported by a significant decrease (at 16.22-18.29%) in GFP-labeled sbp-1 gene expression. These results suggest that C. lentillifera extracts may facilitate a reduction in total fat accumulation induced by glucose through sbp-1 pathways. In summary, this study highlights the anti-obesity potential of compounds derived from C. lentillifera extracts in a C. elegans model of obesity, mediated by the suppression of lipogenesis pathways.
Collapse
Affiliation(s)
- Kawita Chumphoochai
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand; (P.M.); (N.N.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand; (P.M.); (N.N.)
| | - Montakan Tamtin
- Kung Krabaen Bay Royal Development of Fisheries, Khlong Khut Sub-District, Tha Mai, Chantaburi 22000, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| |
Collapse
|
4
|
Ho TL, Lee J, Ahn SY, Lee D, Song W, Kang I, Ko E. Immunostimulatory effects of marine algae extracts on in vitro antigen-presenting cell activation and in vivo immune cell recruitment. Food Sci Nutr 2023; 11:6560-6570. [PMID: 37823147 PMCID: PMC10563723 DOI: 10.1002/fsn3.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 10/13/2023] Open
Abstract
Marine algae are photosynthetic eukaryotic organisms that are widely used as sources of food, cosmetics, and drugs. However, their biological and immunological effects on immune cells have not been fully elucidated. To unravel their immunological activity and broaden their application, we generated antigen-presenting cells (APCs), including dendritic cells (DCs) and macrophages, from mouse bone marrow cells and treated them with six different marine algae extracts (MAEs). We evaluated cell viability, activation marker expression, and pro-inflammatory cytokine production by APCs after 2 days of MAE treatment. All six MAEs significantly induced cytokine production of APCs, among which Pyropia yezoensis (PY), Peyssonnelia caulifera (PC), and Meristotheca papulosa (MP) extracts exhibited the strongest effect. Cladophora wrightiana var. minor (CW) extract moderately upregulated cytokine levels but increased the expression of activation markers on DCs. Moreover, PY, PC, MP, Sargassum pectinifera (SP), and Caulerpa okamurae (CO) pre-treated APCs effectively stimulated T-cell proliferation and cytokine production. Furthermore, the mice injected with MAEs exhibited higher cytokine (TNF-α, IL-6, and IL-1β) production as well as enhanced innate immune cell recruitment capacities (DCs, monocytes, neutrophils, and natural killer cells) in the peritoneal cavity of the mice compared to those of the non-treated mice. Therefore, all MAEs exhibited immunostimulatory potential, with PY, PC, CW, and MP extracts being the most effective in stimulating immune responses and cell activation. To the best of our knowledge, this is the first study to determine the immunomodulatory activities of six MAEs both in vitro and in vivo.
Collapse
Affiliation(s)
- Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & ScienceJeju National UniversityJejuRepublic of Korea
| | - Jueun Lee
- Department of Veterinary Medicine, College of Veterinary MedicineJeju National UniversityJejuRepublic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary MedicineJeju National UniversityJejuRepublic of Korea
| | - Dong‐Ha Lee
- Department of Veterinary Medicine, College of Veterinary MedicineJeju National UniversityJejuRepublic of Korea
| | - Woo‐Jin Song
- Department of Veterinary Medicine, College of Veterinary MedicineJeju National UniversityJejuRepublic of Korea
- Veterinary Medical Research Institute, Jeju National UniversityJejuRepublic of Korea
| | - Inhae Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & ScienceJeju National UniversityJejuRepublic of Korea
- Department of Food Science and NutritionJeju National UniversityJejuRepublic of Korea
| | - Eun‐Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology & ScienceJeju National UniversityJejuRepublic of Korea
- Department of Veterinary Medicine, College of Veterinary MedicineJeju National UniversityJejuRepublic of Korea
- Veterinary Medical Research Institute, Jeju National UniversityJejuRepublic of Korea
| |
Collapse
|
5
|
Thakuri LS, Park CM, Park JW, Kim HA, Rhyu DY. Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation. ALGAE 2023; 38:81-92. [DOI: 10.4490/algae.2023.38.12.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2025]
Abstract
Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210°C). The total phenolic content of GCSW extract at 210°C (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferatoractivated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.
Collapse
|
6
|
Han JH, Kim MT, Myung CS. Garcinia Cambogia Improves High-Fat Diet-Induced Glucose Imbalance by Enhancing Calcium/CaMKII/AMPK/GLUT4-Mediated Glucose Uptake in Skeletal Muscle. Mol Nutr Food Res 2022; 66:e2100669. [PMID: 35213784 DOI: 10.1002/mnfr.202100669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/01/2022] [Indexed: 12/20/2022]
Abstract
SCOPE Garcinia cambogia (G. cambogia) is known to have antiobesity effects. In this study, the therapeutic effects of G. cambogia on glucose homeostasis in obesity-induced diabetes are explored and the underlying mechanisms are investigated. METHODS AND RESULTS C2C12 myotubes are treated with G. cambogia; glucose uptake, intracellular Ca2+ levels, and related alterations in signaling pathways are examined. High-fat diet (HFD)-fed mice are administered G. cambogia for 8 weeks; oral glucose tolerance is evaluated, and the regulation of identified targets of signaling pathways in quadriceps skeletal muscle are examined in vivo. G. cambogia increases glucose uptake in C2C12 myotubes and induces the upregulation of AMPK, ACC, and p38 MAPK phosphorylation. Notably, G. cambogia markedly elevates both intracellular Ca2+ levels, activating CaMKII, a Ca2+ -sensing protein, and TBC1D4-mediated GLUT4 translocation, to facilitate glucose uptake. Furthermore, high-glucose-induced inhibition of glucose uptake and signal transduction is reverted by G. cambogia. In an HFD-induced diabetes mouse model, G. cambogia administration results in significant blood glucose-lowering effects, which are attributed to the regulation of targets that have been identified in vitro, in quadricep skeletal muscle. CONCLUSION These findings provide new insights into the mechanism by which G. cambogia regulates glucose homeostasis in obesity-induced diabetes.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min-Tae Kim
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
7
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Zhang C, Kim E, Cui J, Wang Y, Lee Y, Zhang G. Influence of the ecological environment on the structural characteristics and bioactivities of polysaccharides from alfalfa ( Medicago sativa L.). Food Funct 2022; 13:7029-7045. [DOI: 10.1039/d2fo00371f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polysaccharides from alfalfa (Medicago sativa L.) (APS) exhibit a variety of bioactivities; however, little information is available on the effects of the ecological environment on the structural characteristics and bioactivities of APS.
Collapse
Affiliation(s)
- Chongyu Zhang
- Department of Nutrition and China-Korea Joint R&D center on Plant-derived polysaccharide, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Eunyoung Kim
- Department of Food Science and Nutrition, and Korea-China Joint R&D center on Plant-derived polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Jiamei Cui
- Department of Food Science and Nutrition, and Korea-China Joint R&D center on Plant-derived polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Yunpeng Wang
- Department of Nutrition and China-Korea Joint R&D center on Plant-derived polysaccharide, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, and Korea-China Joint R&D center on Plant-derived polysaccharide, Jeju National University, Jeju 63243, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea
| | - Guiguo Zhang
- Department of Nutrition and China-Korea Joint R&D center on Plant-derived polysaccharide, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| |
Collapse
|
9
|
Garcinia cambogia Ameliorates Non-Alcoholic Fatty Liver Disease by Inhibiting Oxidative Stress-Mediated Steatosis and Apoptosis through NRF2-ARE Activation. Antioxidants (Basel) 2021; 10:antiox10081226. [PMID: 34439474 PMCID: PMC8388869 DOI: 10.3390/antiox10081226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive free fatty acids (FFAs) causes reactive oxygen species (ROS) generation and non-alcoholic fatty liver disease (NAFLD) development. Garcinia cambogia (G. cambogia) is used as an anti-obesity supplement, and its protective potential against NAFLD has been investigated. This study aims to present the therapeutic effects of G. cambogia on NAFLD and reveal underlying mechanisms. High-fat diet (HFD)-fed mice were administered G. cambogia for eight weeks, and steatosis, apoptosis, and biochemical parameters were examined in vivo. FFA-induced HepG2 cells were treated with G. cambogia, and lipid accumulation, apoptosis, ROS level, and signal alterations were examined. The results showed that G. cambogia inhibited HFD-induced steatosis and apoptosis and abrogated abnormalities in serum chemistry. G. cambogia increased in NRF2 nuclear expression and activated antioxidant responsive element (ARE), causing induction of antioxidant gene expression. NRF2 activation inhibited FFA-induced ROS production, which suppressed lipogenic transcription factors, C/EBPα and PPARγ. Moreover, the ability of G. cambogia to inhibit ROS production suppressed apoptosis by normalizing the Bcl-2/BAX ratio and PARP cleavage. Lastly, these therapeutic effects of G. cambogia were due to hydroxycitric acid (HCA). These findings provide new insight into the mechanism by which G. cambogia regulates NAFLD progression.
Collapse
|
10
|
González-Arceo M, Gómez-Zorita S, Aguirre L, Portillo MP. Effect of Microalgae and Macroalgae Extracts on Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:2017. [PMID: 34208211 PMCID: PMC8230871 DOI: 10.3390/nu13062017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/05/2022] Open
Abstract
The present review aims to gather scientific evidence regarding the beneficial effects of microalgae and macroalgae extracts on non-alcoholic fatty liver disease (NAFLD). The described data show that both microalgae and macroalgae improved this alteration. The majority of the reported studies analysed the preventive effects because algae were administered to animals concurrent with the diet that induced NAFLD. The positive effects were demonstrated using a wide range of doses, from 7.5 to 300 mg/kg body weight/day or from 1 to 10% in the diet, and experimental periods ranged from 3 to 16 weeks. Two important limitations on the scientific knowledge available to date are that very few studies have researched the mechanisms of action underlying the preventive effects of microalgae on NAFLD and that, for the majority of the algae studied, a single paper has been reported. For these reasons, it is not possible to establish the best conditions in order to know the beneficial effects that these algae could bring. In this scenario, further studies are needed. Moreover, the beneficial effects of algae observed in rodent need to be confirmed in humans before we can start considering these products as new tools in the fight against fatty liver disease.
Collapse
Affiliation(s)
- Maitane González-Arceo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| | - Leixuri Aguirre
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| |
Collapse
|
11
|
Yue C, Li M, Li J, Han X, Zhu H, Yu G, Cheng J. Medium-, long- and medium-chain-type structured lipids ameliorate high-fat diet-induced atherosclerosis by regulating inflammation, adipogenesis, and gut microbiota in ApoE -/- mice. Food Funct 2021; 11:5142-5155. [PMID: 32432606 DOI: 10.1039/d0fo01006e] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accumulating evidence has suggested that medium-, long-, and medium-chain (MLM) structured lipids have anti-obesity effects, but whether they can alleviate the development of atherosclerosis (AS) and affect the composition of the gut microbiota in high-fat diet-fed ApoE-/- mice has not been elucidated. The present study found that MLM structured lipid supplementation could significantly decrease obesity-related parameters compared with high-fat diet alone in ApoE-/- mice. Additionally, MLM structured lipids could significantly decrease the blood glucose and increase the serum total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels. Additionally, high-dose MLM structured lipids supplementation could reduce the area of atherosclerotic lesions and decrease the expression of VCAM-1, MCP-1 and CD68, which are related to inflammation in aortic tissue. Further analysis showed that MLM structured lipids could significantly reduce lipid accumulation in the adipose tissue of high-fat diet-fed ApoE-/- mice. The relative protein expression of SREBP-1, ACC, FAS, C/EBPα and PPARγ was decreased and the ratio of p-AMPK/AMPK was increased in epididymis white adipose tissue (eWAT) after MLM structured lipids treatment. Additionally, MLM structured lipids supplementation regulated the bacterial composition, including reducing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of short-chain fatty acid-producing bacteria (Blautia and Anaerotruncus), decreasing the relative abundance of [Ruminococcus] torques group, Ruminiclostridium 9, Catenibacterium and [Eubacterium] fissicatena group. Spearman's correlation analysis revealed significant correlations between changes in the gut microbiota and atherosclerosis-related indices. The results demonstrated that the alleviating effects of MLM structured lipids supplementation on AS in high-fat diet-fed ApoE-/- mice were closely related to reshaping the composition of the gut microbiota.
Collapse
Affiliation(s)
- Chonghui Yue
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Ming Li
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Jing Li
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Xu Han
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Hongwei Zhu
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| |
Collapse
|
12
|
Zhang D, Zheng W, Li X, Liang G, Ye N, Liu Y, Li A, Liu X, Zhang R, Cheng J, Yang H, Gong M. Investigation of Obesity-Alleviation Effect of Eurycoma longifolia on Mice Fed with a High-Fat Diet through Metabolomics Revealed Enhanced Decomposition and Inhibition of Accumulation of Lipids. J Proteome Res 2021; 20:2714-2724. [PMID: 33856806 DOI: 10.1021/acs.jproteome.1c00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The metabolic and bioactivity effects of Eurycoma longifolia (Eucalyptus longifolia) in obesity treatment were studied in mice fed with a high-fat diet using a metabolomics approach. Aqueous extracts of E. longifolia were obtained via grinding, dissolving, and freeze-drying. The hepatic steatosis effect of E. longifolia was characterized by hematoxylin and eosin histological staining. External performance of the obesity-alleviation effect was monitored by measuring body and food weight. In addition, the metabolomics analysis of the E. longifolia-mice interaction system was performed using the established platform combining liquid chromatography-tandem mass spectrometry with statistical analysis. The presence and spatial distribution patterns of differential molecules were further evaluated through desorption electrospray ionization-mass spectrometry imaging. The results showed that E. longifolia played a vital role in downregulating lipid accumulation (especially triacylglycerols) and fatty acids biosynthesis together with enhanced lipid decomposition and healing in Bagg albino mice. During such a process, E. longifolia mainly induced metabolomic alterations of amino acids, organic acids, phospholipids, and glycerolipids. Moreover, under the experimental concentrations, E. longifolia induced more fluctuations of aqueous-soluble metabolites in the plasma and lipids in the liver than in the kidneys. This study provides an advanced alternative to traditional E. longifolia-based studies for evaluating the metabolic effects and bioactivity of E. longifolia through metabolomics technology, revealing potential technological improvement and clinical application.
Collapse
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Ge Liang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Nan Ye
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Ang Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Rui Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| |
Collapse
|
13
|
Lutein attenuates excessive lipid accumulation in differentiated 3T3-L1 cells and abdominal adipose tissue of rats by the SIRT1-mediated pathway. Int J Biochem Cell Biol 2021; 133:105932. [PMID: 33529717 DOI: 10.1016/j.biocel.2021.105932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity is now a worldwide disease and is mainly attributable to increased body fat deposition. In a growing number of epidemiological studies, lutein has been revealed to have different degrees of anti-obesity properties, but the potential underlying mechanisms that have been reported are limited. Therefore, we aimed to clarify the protective effects of lutein against excessive lipid accumulation, and we explored the role of SIRT1 and SIRT1-mediated pathways both in abdominal adipose tissue and mature 3T3-L1 cells during lutein administration. METHODS In our design, male Sprague-Dawley rats were fed either control or high-fat diets with or without 25 mg/kg·bw/day lutein for 5 weeks. Additionally, differentiated 3T3-L1 cells were incubated with 40 μM lutein or 10 μM Ex527 for 24 h. RESULTS Lutein supplementation decreased the body weight, abdominal fat index ratio, frequency and mean area of larger adipocytes in HE staining induced by the high-fat diet and then activated the expression of SIRT1 and thus upregulated FoxO1, ATGL, and HSL expression and downregulated SREBP-1, FAS, and ACC expression both in abdominal adipose tissue and differentiated 3T3-L1 cells. However, coincubation with Ex527 and lutein suppressed the activation of SIRT1 and reversed the expression of FoxO1, ATGL, HSL, SREBP-1, FAS, and ACC in comparison to those in the Lut group. CONCLUSIONS Overall, we suggest that the effects of lutein on attenuating excessive lipid accumulation are dependent on the SIRT1-mediated pathway in vivo and in vitro, which indicates that lutein administration may be a potential strategy for preventing excessive lipid accumulation and obesity.
Collapse
|
14
|
Lu YA, Lee HG, Li X, Hyun JM, Kim HS, Kim TH, Kim HM, Lee JJ, Kang MC, Jeon YJ. Anti-obesity effects of red seaweed, Plocamium telfairiae, in C57BL/6 mice fed a high-fat diet. Food Funct 2021; 11:2299-2308. [PMID: 32108840 DOI: 10.1039/c9fo02924a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to demonstrate the anti-obesity effect of Plocamium telfairiae (PT), a red seaweed. Different percentages of ethanol (0%, 20%, 40%, 60%, 80%, and 100%) were used for the preparation of PT extract. Furthermore, 3T3-L1 cells were used to determine the percentage of ethanol for optimal anti-adipogenesis of PT, and the anti-obesity properties of the optimized extract of PT (PTE) (40%) was assessed in obese mice. The results indicate that 40% ethanol extract (40 PTE) significantly decreased fat accumulation and suppressed the expression of major adipogenesis factors such as peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element-binding protein 1 (SREBP-1), CCAAT/enhancer-binding protein (C/EBP)-α, and phosphorylated ACC (pACC) in 3T3-L1 cells. Furthermore, in the high-fat diet-induced obese mice, 40 PTE significantly reduced the weights of white adipose tissue, as well as the levels of triglyceride, total cholesterol, adiponectin, and insulin in the serum. Liver histopathology showed that steatosis decreased in all the PTE treatment groups. The adipogenesis-related proteins, PPAR-γ and SREBP-1, were also significantly decreased in PTE treatment groups. Additionally, 40 PTE increased mRNA expression of mitochondrial uncoupling proteins (UCP)-1 and UCP-3 in brown adipose tissue. These findings provide evidence that 40 PTE can alleviate lipid droplet accumulation in 3T3-L1 adipocytes and obese C57BL/6 mice, indicating that PTE has strong anti-obesity effects and could be used as a therapeutic agent or a component of pharmaceutical drugs and functional foods.
Collapse
Affiliation(s)
- Yu An Lu
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyo Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Xining Li
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Ji-Min Hyun
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Tae Hee Kim
- Naturetech Co., 29-8, Yongjeong-gil, chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Hye-Min Kim
- Naturetech Co., 29-8, Yongjeong-gil, chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Jeong Jun Lee
- Naturetech Co., 29-8, Yongjeong-gil, chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Process Engineering, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
15
|
Jiang X, Hao J, Liu Z, Ma X, Feng Y, Teng L, Li Y, Wang D. Anti-obesity effects of Grifola frondosa through the modulation of lipid metabolism via ceramide in mice fed a high-fat diet. Food Funct 2021; 12:6725-6739. [PMID: 34160500 DOI: 10.1039/d1fo00666e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is characterized by massive fat deposition and is related to a series of metabolic complications, such as insulin resistance (IR) and steatohepatitis. Grifola frondosa (GF) is a basidiomycete fungus and a source of various nutritional ingredients related to human health. In this study, after a systematic analysis of its nutritional ingredients, GF was administered to mice fed a high-fat diet (HFD) to investigate its effects on lipid metabolism. In HFD-fed mice, GF significantly controlled the body weight, blood glucose and related organ indices, and effectively counteracted hyperlipidemia and IR triggered by the HFD. GF administration efficiently alleviated hepatic steatosis and adipocyte hypertrophy, and regulated alanine aminotransferase and aspartate aminotransferase in the liver. An analysis of the intestinal microflora showed that GF reversed obesity-induced dysbiosis by affecting the relative abundance of certain bacteria, reducing lipopolysaccharide production and regulating the superpathway of heme biosynthesis associated with inflammation. According to the results of lipidomics, ceramide, a metabolite related to inflammation and IR, was found to be dysregulated in HFD-fed mice. However, GF regulated the ceramide levels and restored lipid metabolism via the suppression of Toll-like receptor 4/nuclear factor kappa-B signaling, which is involved in inflammation and IR. This study provides the experimental basis for the application of GF as an agent for obesity.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gómez-Zorita S, González-Arceo M, Trepiana J, Eseberri I, Fernández-Quintela A, Milton-Laskibar I, Aguirre L, González M, Portillo MP. Anti-Obesity Effects of Macroalgae. Nutrients 2020; 12:nu12082378. [PMID: 32784488 PMCID: PMC7469045 DOI: 10.3390/nu12082378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Macroalgae have attracted great interest for their potential applications in nutraceutical and pharmaceutical industries as source of bioactive medicinal products and food ingredients. This review gathers data from in vitro and in vivo studies addressing the anti-obesity effects of macroalgae. Great consensus exists in all reported in vitro studies concerning the reduction induced by seaweed extracts in the expression of transcriptional factors controlling adipogenesis. In animals, macroalgae reduced body fat accumulation and prevented other obesity features, such as dyslipidemia, insulin resistance and fatty liver. These effects are not due to food intake reduction, since few studies have reported such event. Indeed, the effects on metabolic pathways in target tissues/organs seem to play a more relevant role. Macroalgae can reduce de novo lipogenesis, limiting fatty acid availability for triglyceride synthesis in white adipose tissue. This effect has been observed in both cell cultures and adipose tissue from animals treated with macroalgae extracts. In addition, increased fatty acid oxidation and thermogenic capacity, as well as a shift towards healthier gut microbiota composition may contribute to the body fat-lowering effect of macroalgae. Studies in humans are needed to determine whether macroalgae can represent a feasible tool to prevent and/or manage overweight and obesity.
Collapse
Affiliation(s)
- Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01006 Vitoria, Spain
| | - Maitane González-Arceo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01006 Vitoria, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01006 Vitoria, Spain
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01006 Vitoria, Spain
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01006 Vitoria, Spain
- Correspondence: (I.M.-L.); (L.A.); Tel.: +34-945-013-863 (I.M.-L. & L.A.); Fax: +34-945-013-014 (I.M.-L. & L.A.)
| | - Leixuri Aguirre
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01006 Vitoria, Spain
- Correspondence: (I.M.-L.); (L.A.); Tel.: +34-945-013-863 (I.M.-L. & L.A.); Fax: +34-945-013-014 (I.M.-L. & L.A.)
| | - Marcela González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), Santa Fe 3000, Argentina;
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (J.T.); (I.E.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01006 Vitoria, Spain
| |
Collapse
|
17
|
Zhou M, Hu N, Liu M, Deng Y, He L, Guo C, Zhao X, Li Y. A Candidate Drug for Nonalcoholic Fatty Liver Disease: A Review of Pharmacological Activities of Polygoni Multiflori Radix. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5462063. [PMID: 32382557 PMCID: PMC7193283 DOI: 10.1155/2020/5462063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Nonalcoholic fatty liver disease, a type of metabolic syndrome, continues to rise globally. Currently, there is no approved drug for its treatment. Improving lifestyle and exercise can alleviate symptoms, but patients' compliance is poor. More and more studies have shown the potential of Polygoni Multiflori Radix (PMR) in the treatment of NAFLD and metabolic syndrome. Therefore, this paper reviews the pharmacological effects of PMR and its main chemical components (tetrahydroxystilbene glucoside, emodin, and resveratrol) on NAFLD. PMR can inhibit the production of fatty acids and promote the decomposition of triglycerides, reduce inflammation, and inhibit the occurrence of liver fibrosis. At the same time, it maintains an oxidation equilibrium status in the body, to achieve the therapeutic purpose of NAFLD and metabolic syndrome. Although more standardized studies and clinical trials are needed to confirm its efficacy, PMR may be a potential drug for the treatment of NAFLD and its complications. However, the occurrence of adverse reactions of PMR has affected its extensive clinical application. Therefore, it is necessary to further study its toxicity mechanism, enhance efficacy and control toxicity, and even reduce toxicity, which will contribute to the safe clinical use of PMR.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Ying Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Linfeng He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Chaocheng Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
18
|
Caulerpa okamurae extract attenuates inflammatory interaction, regulates glucose metabolism and increases insulin sensitivity in 3T3-L1 adipocytes and RAW 264.7 macrophages. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:253-264. [PMID: 32088151 DOI: 10.1016/j.joim.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine whether Caulerpa okamurae ethanolic extract (COE) could inhibit obesity-mediated inflammation, improve glucose metabolism and increase insulin sensitivity, using in vitro cell models of RAW 264.7 macrophages and 3T3-L1 adipocytes. METHODS We cocultured 3T3-L1 adipocytes in direct contact with lipopolysaccharide-stimulated RAW 264.7 macrophages and induced insulin resistance in 3T3-L1 adipocytes with tumor necrosis factor-α (TNF-α) in the presence or absence of 250 µg/mL of COE. We investigated various markers of inflammation, glucose regulation and insulin sensitivity in these models using Griess reagent to measure nitric oxide (NO) production, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose to measure glucose uptake, Western blot analysis to quantify protein expression and reverse transcriptase-polymerase chain reaction to evaluate mRNA expression. RESULTS We found that COE (250 µg/mL) significantly inhibited the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages by downregulating NO production, nitric oxide synthase 2 expression and nuclear translocation of nuclear factor-κB. COE also showed similar anti-inflammatory activity in coculture, along with decreased TNF-α, interleukin-6 and monocyte chemoattractant protein mRNA expression. In addition, COE also improved glucose uptake in coculture by upregulating glucose transporter-4 (GLUT-4) and adiponectin and reducing serine phosphorylation of insulin receptor substrate-1 (IRS1). In the TNF-α-induced insulin resistance model of 3T3-L1 adipocytes, COE significantly improved both basal and insulin-stimulated glucose uptake, accompanied by phosphorylation of IRS1 at tyrosine 632, phospho-5' adenosine monophosphate-activated protein kinase α and glycogen synthase kinase-3β (Ser9) as well as upregulation of GLUT-4. CONCLUSION Together, these findings suggest that COE has potential to treat or prevent obesity-induced metabolic disorders.
Collapse
|
19
|
Bermano G, Stoyanova T, Hennequart F, Wainwright CL. Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:205-256. [PMID: 32089234 DOI: 10.1016/bs.apha.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is epidemiological evidence that dietary intake of seaweeds is associated with a lower prevalence of chronic diseases. While seaweeds are of high nutritious value, due to their high content of fiber, polyunsaturated fatty acids and minerals, they also contain an abundance of bioactive compounds. There is a growing body of scientific data that these bioactive moieties exert effects that could correct the metabolic dysregulation that is present in obesity and Type 2 diabetes (T2D). In this review we describe how the molecular mechanisms, specific to different tissues, that underly obesity and T2D are influenced by both seaweed extracts and seaweed-derived bioactive molecules. In obesity, modulation of antioxidant capacity and reduction of intracellular ROS levels within tissues, and regulation of signaling pathways involved in enhancing browning of white adipose tissue, have been highlighted as key mechanism and identified as a potential target for optimal energy metabolism. In T2D, management of post-prandial blood glucose by modulating α-glucosidase or α-amylase activities, modulation of the AMPK signaling pathway, and similarly to obesity, reduction of ROS and NO production with subsequent increased expression of antioxidant enzymes have been shown to play a key role in glucose metabolism and insulin signaling. Future studies aimed at discovering new therapeutic drugs from marine natural products should, therefore, focus on bioactive compounds from seaweed that exert antioxidant activity and regulate the expression of key signaling pathways involved in glucose homeostasis, mechanisms that are common to both obesity and T2D management. In addition, more data is required to provide evidence of clinical benefit.
Collapse
Affiliation(s)
- Giovanna Bermano
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora Stoyanova
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | | | - Cherry L Wainwright
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom.
| |
Collapse
|
20
|
Wang X, Wang J, Wei L, Hu CY, Deng H, Guo Y, Meng YH. Apple phlorizin oxidation product 2 inhibits proliferation and differentiation of 3T3-L1 preadipocytes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
21
|
Juárez-Portilla C, Olivares-Bañuelos T, Molina-Jiménez T, Sánchez-Salcedo JA, Moral DID, Meza-Menchaca T, Flores-Muñoz M, López-Franco Ó, Roldán-Roldán G, Ortega A, Zepeda RC. Seaweeds-derived compounds modulating effects on signal transduction pathways: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153016. [PMID: 31325683 DOI: 10.1016/j.phymed.2019.153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Recently, the study of marine natural products has gained interest due to their relevant biological activities. Specially, seaweeds produce bioactive compounds that could act as modulators of cell signaling pathways involved in a plethora of diseases. Thereby, the description of the molecular mechanisms by which seaweeds elicit its biological functions will certainly pave the way to the pharmacological development of drugs. AIM This review describes the molecular mechanisms by which seaweeds act and its possible utilization in the design of new drugs. METHODS This review was conducted according to the PRISMA-P guidelines for systematic reviews. Two independent authors searched into four different databases using combinations of keywords. Two more authors selected the articles following the eligibility criteria. Information extraction was conducted by two separated authors and entered into spreadsheets. Methodological quality and risk of bias were determined applying a 12-question Risk of Bias criteria tool. RESULTS AND DISCUSSION We found 2360 articles (SCOPUS: 998; PubMed: 678; Wiley: 645 and EBSCO: 39) using the established keywords, of which 113 articles fit the inclusion criteria and were included in the review. This work comprises studies in cell lines, and animal models, any clinical trial was excluded. The articles were published from 2005 up to March 31st 2018. The biggest amount of articles was published in 2017. Furthermore, the seaweeds tested in the studies were collected in 15 countries, mainly in Eastern countries. We found that the main modulated signaling pathways by seaweeds-derivate extracts and compounds were: L-Arginine/NO, TNF-α, MAPKs, PI3K/AKT/GSK, mTOR, NF-κB, extrinsic and intrinsic apoptosis, cell cycle, MMPs and Nrf2. Finally, the articles we analyzed showed moderate risk of bias in almost all the parameters evaluated. However, the studies fail to describe the place and characteristics of sample collection, the sample size, and the blindness of the experimental design. CONCLUSION In this review we identified and summarized relevant information related to seaweed-isolated compounds and extracts having biological activity; their role in different signal pathways to better understand their potential to further development of cures for cancer, diabetes, and inflammation-related diseases.
Collapse
Affiliation(s)
- Claudia Juárez-Portilla
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Tatiana Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Km 103 autopista Tijuana-Ensenada, A.P. 453. Ensenada, Baja California, México
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México
| | - José Armando Sánchez-Salcedo
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Iztapalapa, Ciudad de México
| | - Diana I Del Moral
- Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana. Médicos y Odontólogos s/n. Col. Unidad del Bosque, C.P. 91010, Xalapa, Veracruz, México
| | - Mónica Flores-Muñoz
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Óscar López-Franco
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, 07300, Ciudad de México, México
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
22
|
Liu L, Ding C, Tian M, Yi D, Wang J, Zhao J, Hu Y, Wang C. Fermentation improves the potentiality of capsicum in decreasing high-fat diet-induced obesity in C57BL/6 mice by modulating lipid metabolism and hormone response. Food Res Int 2019; 124:49-60. [DOI: 10.1016/j.foodres.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
|
23
|
Castro BBA, Arriel K, Renó P, Sanders-Pinheiro H. Modelos experimentais de obesidade: análise crítica do perfil metabólico e da aplicabilidade. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introdução: a prevalência da obesidade e de outras doenças relacionadas está aumentando em todo o mundo de forma preocupante. Caracterizada pelo aumento do peso corporal ou do acúmulo excessivo de gordura corporal, a obesidade tem sido associada ao aumento da mortalidade decorrente de maior incidência de hipertensão, diabetes e vários tipos de câncer. Os modelos animais fornecem dados fundamentais para a compreensão dos parâmetros básicos que regulam os componentes do nosso balanço energético. Objetivo: esta revisão selecionou artigos que utilizaram modelos animais (ratos e camundongos) de obesidade focando nas principais alterações metabólicas causadas pela obesidade com o objetivo de apresentar os principais modelos utilizados nos últimos 5 anos. Material e Métodos: Foram realizadas duas buscas na base de dados PubMed utilizando as expressões: “obesity” AND “metabolism” AND “animal model” AND “mice” e “obesity” AND “metabolism” AND “animal model” AND “rat”, sendo selecionados os estudos considerados mais relevantes a partir dos critérios: descrição detalhada do modelo experimental e análise dos parâmetros metabólicos de interesse: peso, perfil lipídico e perfil glicêmico. Outras referências foram utilizadas para elucidar melhor os modelos encontrados e também aqueles que não foram citados, mas, que possuem importância no entendimento da evolução dos modelos animais de obesidade. Resultados: A espécie mais utilizada foi o camundongo, o sexo predominante foi o masculino, a faixa etária dos roedores variou de neonatos até 44 semanas e o período de acompanhamento chegou até 53 semanas. A obesidade foi confirmada pelo aumento significativo do peso e na maioria dos estudos foram encontradas alterações no metabolismo lipídico e glicêmico. Encontramos cinco grupos de mecanismos de indução da obesidade porém a maioria dos estudos utilizou dietas hiperlipídicas, modelo que mais se assemelha às alterações metabólicas encontradas em humanos. Conclusão: Investigar as causas e efeitos da obesidade induzida em modelos experimentais pode fornecer uma melhor compreensão da fisiopatologia da obesidade, e proporcionar novas opções de prevenção e tratamento.
Collapse
|
24
|
Choi RY, Lee HI, Ham JR, Yee ST, Kang KY, Lee MK. Heshouwu (Polygonum multiflorum Thunb.) ethanol extract suppresses pre-adipocytes differentiation in 3T3-L1 cells and adiposity in obese mice. Biomed Pharmacother 2018; 106:355-362. [PMID: 29966981 DOI: 10.1016/j.biopha.2018.06.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
This study investigated whether Heshouwu (Polygonum multiflorum Thunb.) root ethanol extract (PME) has anti-obesity activity using 3T3-L1 cells and high-fat diet (HFD)-induced obese mice. Treatment with PME (5 and 10 μg/mL) dose-dependently suppressed 3T3-L1 pre-adipocyte differentiation to adipocytes and cellular triglyceride contents. In addition, PME inhibited mRNA and protein expression of adipogenic transcription factors such as CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), which led to down-regulation of fatty acid synthase gene expression. After feeding mice PME (0.05%) with HFD for 12 weeks, their visceral fat mass, size and body weight were significantly reduced compared with the HFD group. Furthermore, PME supplementation significantly up-regulated the PPARα, CPT1, CPT2, UCP1 and HSL mRNA levels compared with the HFD group, whereas it down-regulated expression of the PPARγ and DGAT2 genes. Finally, HFD increased serum leptin, insulin, glucose and insulin and glucose levels; however, PME reversed these changes. These results demonstrated that PME might relieve obesity that occurs via inhibition of adipogenesis and lipogenesis as well as through lipolysis and fatty acid oxidation in 3T3-L1 cells and HFD-induced obese mice.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Hae-In Lee
- Mokpo Marin Food-Industry Research Center, Mokpo, 58621, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea; Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea; Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
25
|
Balan D, Chan KL, Murugan D, AbuBakar S, Wong PF. Antiadipogenic effects of a standardized quassinoids-enriched fraction and eurycomanone fromEurycoma longifolia. Phytother Res 2018. [DOI: 10.1002/ptr.6065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D. Balan
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Kit-Lam Chan
- School of Pharmaceutical Sciences; University of Science Malaysia; 11800 Penang Malaysia
| | - D. Murugan
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|