1
|
Peter M, Hill M, Fisher J, Daniel M, McInnes-Dean H, Mellis R, Walton H, Lafarge C, Leeson-Beevers K, Peet S, Tapon D, Wynn SL, Chitty LS, Parker M. Equity and timeliness as factors in the effectiveness of an ethical prenatal sequencing service: reflections from parents and professionals. Eur J Hum Genet 2024:10.1038/s41431-024-01700-0. [PMID: 39362995 DOI: 10.1038/s41431-024-01700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Prenatal sequencing tests are being introduced into clinical practice in many developed countries. In part due to its greater ability to detect genetic variation, offering prenatal sequencing can present ethical challenges. Here we review ethical issues arising following the implementation of prenatal sequencing in the English National Health Service (NHS). We analysed semi structured interviews conducted with 48 parents offered prenatal sequencing and 63 health professionals involved in delivering the service to identify the ethical issues raised. Two main themes were identified: (1) Equity of access (including issues around eligibility criteria, laboratory analytical processes, awareness and education of clinicians, fear of litigation, geography, parental travel costs, and access to private healthcare), and (2) Timeliness and its impact on parental decision-making in pregnancy (in the context of the law around termination of pregnancy, decision-making in the absence of prenatal sequencing results, and the "importance" of prenatal sequencing results). Recognising both the practical and systemic ethical issues that arise out of delivering a national prenatal sequencing service is crucial. Although specific to the English context, many of the issues we identified are applicable to prenatal sequencing services more broadly. Education of health professionals and parents will help to mitigate some of these ethical issues.
Collapse
Affiliation(s)
- Michelle Peter
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Melissa Hill
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Morgan Daniel
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Hannah McInnes-Dean
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Antenatal Results and Choices, London, UK
| | - Rhiannon Mellis
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Holly Walton
- Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Caroline Lafarge
- School of Human and Social Sciences, University of West London, London, UK
| | | | | | - Dagmar Tapon
- Queen Charlotte's & Chelsea Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sarah L Wynn
- Unique - Rare Chromosome Disorder Support Group, Oxted, UK
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Parker
- The Ethox Centre, Nuffield Department of Population Health and Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Liao Y, Peng X, Yang Y, Zhou G, Chen L, Yang Y, Li H, Chen X, Guo S, Zuo Q, Zou J. Exploring ABHD5 as a Lipid-Related Biomarker in Idiopathic Pulmonary Fibrosis: Integrating Machine Learning, Bioinformatics, and In Vitro Experiments. Inflammation 2024:10.1007/s10753-024-02107-1. [PMID: 39046603 DOI: 10.1007/s10753-024-02107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Recent studies increasingly suggest a connection between lipids and idiopathic pulmonary fibrosis (IPF). This study was aimed at exploring potential lipid-related biomarkers for IPF and uncovering the mechanisms underlying pulmonary fibrosis. IPF-related datasets were retrieved from the GEO database, and the ComBat algorithm was used to merge multiple datasets and eliminate batch effects. Weighted gene co-expression network analysis (WGCNA) was utilized to identify modules and genes associated with IPF. Potential hub genes were determined by intersecting these genes with lipid-related genes from the GeneCards database. A machine learning-based integrative approach was developed to construct diagnostic and prognostic signatures, which were validated across several datasets. Additionally, single-cell sequencing data was used to validate the expression differences of core IPF-related genes across various cell types. The effect of ABHD5 on fibroblasts was assessed using the cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and cell scratch assays. The expression levels of fibrotic factors were measured using real-time quantitative polymerase chain reaction and western blot analysis. WGCNA identified a red module potentially related to IPF, and the intersection with lipid-related genes yielded 51 hub genes. These genes were used to build diagnostic and prognostic models that demonstrated robust validation capabilities across multiple datasets. Single-cell sequencing analysis revealed low expression of ABHD5 in the lung tissues of IPF patients, with a higher proportion of fibroblasts exhibiting low ABHD5 expression. Cell experiments showed that under the influence of TGF-β1, knockdown of ABHD5 slightly promoted fibroblast proliferation. Additionally, fibroblasts with low ABHD5 expression exhibited enhanced migratory capabilities and secreted more fibrotic factors. Lipid-related diagnostic and prognostic models for IPF were developed, and ABHD5 may serve as a potential biomarker. Low ABHD5 expression could potentially accelerate the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi Liao
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaying Peng
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guanghong Zhou
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyan Li
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianxia Chen
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujin Guo
- Department of Health Management &, Institute of Health Management, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiunan Zuo
- Department of Geriatric Respiratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zou
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Omidiran O, Patel A, Usman S, Mhatre I, Abdelhalim H, DeGroat W, Narayanan R, Singh K, Mendhe D, Ahmed Z. GWAS advancements to investigate disease associations and biological mechanisms. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4:e296. [PMID: 38737752 PMCID: PMC11086745 DOI: 10.1002/ctd2.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Genome-wide association studies (GWAS) have been instrumental in elucidating the genetic architecture of various traits and diseases. Despite the success of GWAS, inherent limitations such as identifying rare and ultra-rare variants, the potential for spurious associations, and in pinpointing causative agents can undermine diagnostic capabilities. This review provides an overview of GWAS and highlights recent advances in genetics that employ a range of methodologies, including Whole Genome Sequencing (WGS), Mendelian Randomization (MR), the Pangenome's high-quality T2T-CHM13 panel, and the Human BioMolecular Atlas Program (HuBMAP), as potential enablers of current and future GWAS research. State of the literature demonstrate the capabilities of these techniques in enhancing the statistical power of GWAS. WGS, with its comprehensive approach, captures the entire genome, surpassing the capabilities of the traditional GWAS technique focused on predefined Single Nucleotide Polymorphism (SNP) sites. The Pangenome's T2T-CHM13 panel, with its holistic approach, aids in the analysis of regions with high sequence identity, such as segmental duplications (SDs). Mendelian Randomization has advanced causative inference, improving clinical diagnostics and facilitating definitive conclusions. Furthermore, spatial biology techniques like HuBMAP, enable 3D molecular mapping of tissues at single-cell resolution, offering insights into pathology of complex traits. This study aims to elucidate and advocate for the increased application of these technologies, highlighting their potential to shape the future of GWAS research.
Collapse
Affiliation(s)
- Oluwaferanmi Omidiran
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Aashna Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Sarah Usman
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Ishani Mhatre
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - William DeGroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Rishabh Narayanan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Kritika Singh
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Dinesh Mendhe
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Fortin O, Mulkey SB, Fraser JL. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr Res 2024:10.1038/s41390-024-03343-9. [PMID: 38937640 DOI: 10.1038/s41390-024-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use. IMPACT: Reviews available genetic testing options during the prenatal period in detail. Discusses the impact of prenatal genetic testing on care using case-based examples. Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.
Collapse
Affiliation(s)
- Olivier Fortin
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
| | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Neurology and Rehabilitation Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jamie L Fraser
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA.
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA.
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
5
|
Huang Q, Wang Z, Teng Y, Zhang W, Wen J, Zhu H, Liang D, Wu L, Li Z. Application of whole exome sequencing in carrier screening for high-risk families without probands. Front Genet 2024; 15:1415811. [PMID: 38978874 PMCID: PMC11228263 DOI: 10.3389/fgene.2024.1415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose This study aimed to screen the genetic etiology for the high-risk families including those with an adverse pregnancy history, a history of consanguineous marriages, or a history of genetic diseases, but lack of proband via whole exome sequencing (WES). Methods 128 individuals from high-risk family were tested by WES. The candidate variants were analyzed according to the ACMG criteria to screen the potential carriers. At-risk couples (ARCs) who harbored the same causative gene were provided with precise fertility guidance to avoid the birth of children with birth defects. Results The total detection rate was 36.72%, with pathogenic/likely pathogenic (P/LP) variants found in 47 individuals, and variants of uncertain significance (VUS) were found in 34. Among couples with adverse pregnancy history: P/LP variants were found in 38 individuals, and VUS were found in 26, for a detection rate of 34.55%; among members of family history of genetic disease or consanguineous marriages: P/LP variants were found in nine individuals, and VUS were found in 8, for a detection rate of 50.00%. Otherwise, we detected 19 ARCs who both carried P/LP variants in the same gene, with a theoretical offspring prevalence of up to 7.42%. Conclusion In the absence of probands, carrier screening using WES can provide an efficient tool for screening the molecular etiology of high-risk families.
Collapse
Affiliation(s)
- Qinlin Huang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Zhongjie Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Juan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Tricoli L, Sase S, Hacker J, Pham V, Smith S, Chappell M, Breda L, Hurwitz S, Tanaka N, Castracani CC, Guerra A, Hou Z, Schlotawa L, Radhakrishnan K, Kurre P, Ahrens-Nicklas R, Adang L, Vanderver A, Rivella S. Effective Gene Therapy for Metachromatic Leukodystrophy Achieved with Minimal Lentiviral Genomic Integrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584404. [PMID: 38559013 PMCID: PMC10979988 DOI: 10.1101/2024.03.14.584404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.
Collapse
|
7
|
Szalai R, Till A, Gyenesei A, Bene J, Hadzsiev K. Importance and application of WES in fetal genetic diagnostics: Identification of novel ASPM mutation in a fetus with microcephaly. Mol Genet Metab Rep 2024; 38:101056. [PMID: 38469100 PMCID: PMC10926227 DOI: 10.1016/j.ymgmr.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Background Prenatal whole exome sequencing (WES) approaches can provide genetic diagnosis with rapid turnaround time and high diagnostic rate when conventional tests are negative. Here we report a family with multiple pregnancy loss and with repeated occurrence of fetal microcephaly. Methods and results Because of positive family history and recurrent structural abnormality during the pregnancies that may lead postnatal neurodevelopmental consequences, WES analysis was indicated. Umbilical cord blood sampling was carried out and WES was performed using Twist Human Core Exome Kit and Illumina sequencing technology. The presence of pathogenic variants was confirmed by Sanger sequencing. WES analysis revealed a known pathogenic c.8506_8507delCA (p.Gln2836Glufs*35, rs587783280) and a novel pathogenic c.3134_3135delTC (p.Leu1045Glnfs*17) ASPM mutations in the fetus in compound heterozygous state. The c.3134_3135delTC has never been reported in the literature. Conclusions Our findings serve additional evidence that WES can be an efficient and relevant tool to diagnose certain genetic disorders with appropriate indication and to assess the recurrence risk of a disease. With the application of WES in combination with pre-implantation genetic tests, we can avoid the transmission of pathogenic mutations and we can achieve a decreased abortion rate in obstetric care.
Collapse
Affiliation(s)
- Renata Szalai
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Agnes Till
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Judit Bene
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Kinga Hadzsiev
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| |
Collapse
|
8
|
Abdallah W, Spaggiari E, Brisset S, Dard R, Attié Bitach T, Bault JP, Quibel T. Prenatal Diagnosis of Primrose Syndrome. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:411-414. [PMID: 37929614 DOI: 10.1002/jum.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Primrose syndrome is a very rare congenital malformation. Symptoms of this disorder may appear during childhood, but the diagnosis is identified in adulthood in the majority of cases. The prenatal diagnosis of Primrose syndrome is not developed in the literature. We present herein a case series of 3 cases with characteristic sonographic features. A dysmorphic metopic suture, downslanting palpebral fissures, a wide forehead, and agenesis of corpus callosum are the main signs. A missense mutation in ZBTB20 identified in whole exome sequencing can confirm the prenatal diagnosis of Primrose syndrome.
Collapse
Affiliation(s)
- Wael Abdallah
- Department of Obstetrics and Maternal-Fetal Medicine, CHI Poissy St Germain-en-Laye, Poissy, France
| | - Emmanuel Spaggiari
- Department of Obstetrics and Maternal-Fetal Medicine, Necker-Enfants Malades Hospital, Paris, France
| | - Sophie Brisset
- Service de génétique, Centre hospitalier de Versailles, Paris, France
| | - Rodolphe Dard
- Genetics Department, CHI Poissy St Germain-en-Laye, Poissy, France
| | - Tania Attié Bitach
- Médecine génomique des Maladies rares, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Jean Philippe Bault
- Department of Obstetrics and Maternal-Fetal Medicine, CHI Poissy St Germain-en-Laye, Poissy, France
| | - Thibault Quibel
- Department of Obstetrics and Maternal-Fetal Medicine, CHI Poissy St Germain-en-Laye, Poissy, France
| |
Collapse
|
9
|
Li J, Ni H, Wang X, Cheng W, Li L, Cheng Y, Liu C, Li Y, Deng A. Association of a novel frameshift variant and a known deleterious variant in MMR genes with Lynch syndrome in Chinese families. World J Surg Oncol 2024; 22:36. [PMID: 38280988 PMCID: PMC10821544 DOI: 10.1186/s12957-024-03309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome. This condition is characterized by germline variants in DNA mismatch repair (MMR) genes, including MLH1, MSH2, MSH6, and PMS2. In this study, we analyzed the molecular defects and clinical manifestations of two families affected with CRC and proposed appropriate individual preventive strategies for all carriers of the variant. METHODS We recruited two families diagnosed with CRC and combined their family history and immunohistochemical results to analyze the variants of probands and those of other family members by using whole exome sequencing. Subsequently, gene variants in each family were screened by comparing them with the variants available in the public database. Sanger sequencing was performed to verify the variant sites. An online platform ( https://www.uniprot.org ) was used to analyze the functional domains of mutant proteins. RESULTS A novel frameshift variant (NM_001281492, c.1129_1130del, p.R377fs) in MSH6 and a known deleterious variant (NM_000249.4:c.1731G > A, p.S577S) in MLH1 were identified in the two families with CRC. Using bioinformatics tools, we noted that the frameshift variant reduced the number of amino acids in the MSH6 protein from 1230 to 383, thereby leading to no MSH6 protein expression. The silent variant caused splicing defects and was strongly associated with LS. 5-Fluorouracil-based adjuvant chemotherapy is not recommended for patients with LS. CONCLUSIONS The novel frameshift variant (MSH6, c.1129_1130del, p.R377fs) is likely pathogenic to LS, and the variant (MLH1, c.1731G > A, p.S577S) has been further confirmed to be pathogenic to LS. Our findings underscore the significance of genetic testing for LS and recommend that genetic consultation and regular follow-ups be conducted to guide individualized treatment for cancer-afflicted families, especially those with a deficiency in MMR expression.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Haichun Ni
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Yuanyuan Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Hadjipanteli A, Theodosiou A, Papaevripidou I, Evangelidou P, Alexandrou A, Salameh N, Kallikas I, Kakoullis K, Frakala S, Oxinou C, Marnerides A, Kousoulidou L, Anastasiadou VC, Sismani C. Sodium Channel Gene Variants in Fetuses with Abnormal Sonographic Findings: Expanding the Prenatal Phenotypic Spectrum of Sodium Channelopathies. Genes (Basel) 2024; 15:119. [PMID: 38255008 PMCID: PMC10815715 DOI: 10.3390/genes15010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in the brain and muscle. Pathogenic variants in genes encoding VGSCs have been associated with severe disorders including epileptic encephalopathies and congenital myopathies. In this study, we identified pathogenic variants in genes encoding the α subunit of VGSCs in the fetuses of two unrelated families with the use of trio-based whole exome sequencing, as part of a larger cohort study. Sanger sequencing was performed for variant confirmation as well as parental phasing. The fetus of the first family carried a known de novo heterozygous missense variant in the SCN2A gene (NM_001040143.2:c.751G>A p.(Val251Ile)) and presented intrauterine growth retardation, hand clenching and ventriculomegaly. Neonatally, the proband also exhibited refractory epilepsy, spasms and MRI abnormalities. The fetus of the second family was a compound heterozygote for two parentally inherited novel missense variants in the SCN4A gene (NM_000334.4:c.4340T>C, p.(Phe1447Ser), NM_000334.4:c.3798G>C, p.(Glu1266Asp)) and presented a severe prenatal phenotype including talipes, fetal hypokinesia, hypoplastic lungs, polyhydramnios, ear abnormalities and others. Both probands died soon after birth. In a subsequent pregnancy of the latter family, the fetus was also a compound heterozygote for the same parentally inherited variants. This pregnancy was terminated due to multiple ultrasound abnormalities similar to the first pregnancy. Our results suggest a potentially crucial role of the VGSC gene family in fetal development and early lethality.
Collapse
Affiliation(s)
- Andrea Hadjipanteli
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Athina Theodosiou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Ioannis Papaevripidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Paola Evangelidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Angelos Alexandrou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Nicole Salameh
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | | | | | - Christina Oxinou
- Christina Oxinou Histopathology/Cytology Laboratory, 1065 Nicosia, Cyprus
| | | | - Ludmila Kousoulidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | - Carolina Sismani
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| |
Collapse
|
11
|
Annicchiarico-López W, Peña-Pardo LX, Miranda-Quintero JE. Prenatal diagnosis of Freeman-Sheldon syndrome using ultrasound and genetic testing. Case report. REVISTA COLOMBIANA DE OBSTETRICIA Y GINECOLOGIA 2023; 74:310-316. [PMID: 38421226 PMCID: PMC10911420 DOI: 10.18597/rcog.4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024]
Abstract
Objectives To describe a case of prenatal diagnosis of Freeman-Sheldon syndrome based on ultrasound findings and complete fetal exome sequencing. Materials and methods A 33-year-old patient currently on treatment for hypothyroidism in whom a 19-week detailed anatomical ultrasound scan showed fetal deformities in more than two body areas (upper and lower limbs), suggesting a diagnosis of arthrogryposis. Genetic counseling was provided and amniocentesis was performed at 20 weeks for fluorescence in situ hybridization (FISH) analysis and complete fetal exome sequencing, with the latter allowing the identification of a heterozygous pathogenic variant of the MYH3 gene which is associated with type 2A distal arthrogryposis. Conclusions Complete fetal exome sequencing was a key factor in identifying the MYH3 gene mutation and confirmed that the deformities seen on ultrasound were associated with type 2A distal arthrogryposis. It is important to perform complete fetal exome sequencing in cases of joint malformations seen on prenatal ultrasound.
Collapse
|
12
|
Mierzwa M, Blaska M, Hamm M, Czarniecka A, Krajewska J, Taczanowska-Niemczuk A, Zachurzok A. A 4-Year-Old Boy with an Accidentally Detected Mutation in the RET Proto-Oncogene and Mutation in the Gene Encoding the Ryanodine Receptor1 (RyR1)-Case Report. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1916. [PMID: 38136118 PMCID: PMC10741967 DOI: 10.3390/children10121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Multiple endocrine neoplasia 2B (MEN2B) is a rare syndrome with prevalence estimated at approximately 0.2 per 100,000; it is caused by mutation of the RET proto-oncogene. MEN2B is characterized by early-onset medullary thyroid carcinoma (MTC), ganglioneuromatosis of the aerodigestive tract, marfanoid habitus, ophthalmologic abnormalities, and pheochromocytoma in adulthood. Mutations in the RyR1 gene manifest clinically in congenital myopathies and/or malignant hyperthermia susceptibility. We present a case of a 4-year-old boy with an accidentally detected RET and RyR1 mutations in the course of diagnostic approach of short stature and delayed motor development. Due to a poor and blurred clinical picture of MEN2B syndrome, accompanied by RyR1 mutation symptoms, the diagnostic path was extended. Our patient had no family history of MTC. In the imaging studies of the thyroid gland, no abnormalities were found, whereas the serum level of calcitonin was elevated to 34 pg/mL (N < 5.0). The patient qualified for total thyroidectomy, and the histopathological examination confirmed the diagnosis of MTC. The postoperative serum calcitonin level dropped to normal ranges. This case shows how new genetic diagnostic procedures could be crucial in accidentally diagnosing rare endocrine disease with atypical symptoms, giving an opportunity for relatively early intervention.
Collapse
Affiliation(s)
- Magdalena Mierzwa
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland; (M.B.); (A.Z.)
| | - Małgorzata Blaska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland; (M.B.); (A.Z.)
| | - Marek Hamm
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.H.); (J.K.)
| | - Agnieszka Czarniecka
- 3rd Department of Oncological Surgery, M. Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland;
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.H.); (J.K.)
| | - Anna Taczanowska-Niemczuk
- Department of Pediatric Surgery, Institute of Pediatrics, Jagiellonian University Medical College, 31-531 Kraków, Poland;
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland; (M.B.); (A.Z.)
| |
Collapse
|
13
|
Qin Y, Yao Y, Liu N, Wang B, Liu L, Li H, Gao T, Xu R, Wang X, Zhang F, Song J. Prenatal whole-exome sequencing for fetal structural anomalies: a retrospective analysis of 145 Chinese cases. BMC Med Genomics 2023; 16:262. [PMID: 37880672 PMCID: PMC10601195 DOI: 10.1186/s12920-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) significantly improves the diagnosis of the etiology of fetal structural anomalies. This study aims to evaluate the diagnostic value of prenatal WES and to investigate the pathogenic variants in structurally abnormal fetuses. METHODS We recruited 144 fetuses with structural anomalies between 14 and 2020 and 15 December 2021 in the study. Genetic screening was performed by WES combined with karyotyping and chromosomal microarray analysis. The molecular diagnostic yield of prenatal WES for each type of fetal structural anomaly and the identified pathogenic genes and mutations were reported. RESULTS In this study, we retrospectively analyzed the clinical and genetic data of 145 structurally anomalous fetuses. These cases were classified into 9 phenotypic classes based on antenatal ultrasound findings. Thirty-eight pathogenic variants in 24 genes were identified in 35 of the 145 cases, including 14 novel variants in 13 genes (EP300, MYH3, TSC2, MMP9, CPLANE1, INVS, COL1A1, EYA1, TTC21B, MKS1, COL11A2, PDHA1 and L1CAM). Five additional pathogenic variants were classified as incidental findings. Our study showed that the overall diagnosis rate of WES was 28.1% (27/96) in the parent-fetus trio cases and 16.3% (8/49) in the proband-only cases. Fetuses with musculoskeletal anomalies had the highest diagnostic yield (51.4%, 19/37). In addition, FGFR3 and COL1A1 were the most common pathogenic genes. CONCLUSIONS Our work expands the mutation spectrum of the genes associated with fetal structural anomalies and provides valuable information for future parental genetic counselling and pregnancy management of the structurally anomalous fetuses.
Collapse
Affiliation(s)
- Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Yanyi Yao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Nian Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Bo Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Lijun Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Hui Li
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Tangxinzi Gao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Runhong Xu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Xiaoyan Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Fanglian Zhang
- Honghu Hospital of Traditional Chinese Medicine, Jingzhou, 433200, Hubei Province, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
14
|
Wang W, Liu R, Liao W, Ji L, Mei J, Su D. NOTCH2 gene mutation and gamma-secretase inhibitor in mediating the malignancy of ovarian cancer. Aging (Albany NY) 2023; 15:9743-9758. [PMID: 37728427 PMCID: PMC10564443 DOI: 10.18632/aging.205045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023]
Abstract
The carcinogenic mechanisms by which serous ovarian cancer (OC) occurs remain to be explored. Currently, we have conducted whole-exome sequencing (WES) and targeted deep sequencing to validate new molecular markers, including NOTCH2, that impede the progression of cell malignancy in ovarian cancer (OC). Following NOTCH2 P2113S mutation and NOTCH signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment, the cell proliferation, migration, and invasion of A2780 and SKOV3 OC cells were examined in vitro. WES identified the P2113S point mutation in NOTCH2. The NOTCH2 mutation rate was 26.67 % among the 75 OC cases. The NOTCH2 P2113S mutation and DAPT treatment downregulated Notch-2 protein levels in the two OC cells. Functionally, interfering with NOTCH2 expression promoted the migrative, proliferative, and invasive capacities of OC cells. Western blotting further confirmed that NOTCH2-mediated tumorigenesis lies in reducing apoptosis through dysregulation of Bax/Bcl2, affecting repair of DNA damage through reducing DNA-PK and blocking the transcription factor Hes1 along with increasing immune regulator p65. Furthermore, the NOTCH2-mediated tumorigenesis was mostly reversed after NF-κB inhibitor Bay11-7082 treatment. These findings identified the NOTCH2 P2113S mutation in ovarian carcinogenesis, and NOTCH2 P2113S is a potential target in treating OC.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Ruiqian Liu
- Deyang People’s Hospital, Deyang 618099, Sichuan, China
| | - Wei Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Landie Ji
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Mei
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| | - Dan Su
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| |
Collapse
|
15
|
Abstract
OBJECTIVES Many serious or life-threatening neurologic conditions are first diagnosed during the fetal period, often following a routine ultrasound or sonographic evaluation after an abnormal aneuploidy screen. Such conditions represent a worrisome or unexpected finding for expectant parents, making the perinatal period a critical time point to engage and empower families encountering complex neurologic clinical scenarios. This review covers the role of perinatal palliative care in these settings. STUDY DESIGN This study is a topical review RESULTS: The prenatal identification of structural abnormalities of the brain or spinal cord, radiographic signs of hemorrhage or ischemic injury, or evidence of genetic or metabolic conditions should prompt involvement of a fetal palliative care team. The inherent prognostic uncertainty is challenging for prenatally diagnosed neurologic conditions which have difficult to predict short and long-term outcomes. While many of these conditions lead to the birth of an infant with neurodevelopmental challenges, few result in in utero demise. Palliative care beginning in the perinatal period provides an additional layer of support for families navigating complex decision-making during their pregnancy and provides continuity of care into the newborn period. Palliative care principles can help guide discussions around genetic and other diagnostic testing, fetal surgery, and birth planning. A multidisciplinary team can help support families with decision-making and through bereavement care in the setting of fetal or neonatal death. CONCLUSION Early palliative care team involvement can provide a more holistic approach to counseling, facilitate planning, and ensure that a family's goals and wishes are acknowledged throughout an infant's care trajectory. KEY POINTS · Many serious or life-threatening neurologic conditions are diagnosed during the fetal period.. · Palliative care principles should be incorporated in the fetal period for affected patients.. · Palliative care clinicians can aid parents and clinicians in shared decision-making.. · Palliative care principles should be employed by all care providers in relevant cases..
Collapse
Affiliation(s)
- Sharla Rent
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Monica E. Lemmon
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sarah Ellestad
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Margarita Bidegain
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
16
|
Zhao H, Du C, Yang G, Wang Y. Diagnosis, treatment, and research status of rare diseases related to birth defects. Intractable Rare Dis Res 2023; 12:148-160. [PMID: 37662624 PMCID: PMC10468410 DOI: 10.5582/irdr.2023.01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Rare diseases are diseases that occur at low prevalence, and most of them are chronic and serious diseases that are often life-threatening. Currently, there is no unified definition for rare diseases. The diagnosis, treatment, and research of rare diseases have become the focus of medicine and biopharmacology, as well as the breakthrough point of clinical and basic research. Birth defects are the hard-hit area of rare diseases and the frontiers of its research. Since most of these defects have a genetic basis, early screening and diagnosis have important scientific value and social significance for the prevention and control of such diseases. At present, there is no effective treatment for most rare diseases, but progress in prenatal diagnosis and screening can prevent the occurrence of diseases and help prevent and treat rare diseases. This article discusses the progress in genetic-related birth defects and rare diseases.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Gynecology and Obstetrics, Shandong Provincial Third Hospital, Shandong University, Ji'nan, China
| | - Chen Du
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| |
Collapse
|
17
|
Yang S, Xie BL, Dong XP, Wang LX, Zhu GH, Wang T, Wu WJ, Lai RS, Tao R, Guan MX, Chen FY, Tan DH, Deng Z, Xie HP, Zeng Y, Xiao ZA, Xie DH. cdh23 affects congenital hearing loss through regulating purine metabolism. Front Mol Neurosci 2023; 16:1079529. [PMID: 37575969 PMCID: PMC10416109 DOI: 10.3389/fnmol.2023.1079529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The pathogenic gene CDH23 plays a pivotal role in tip links, which is indispensable for mechanoelectrical transduction in the hair cells. However, the underlying molecular mechanism and signal regulatory networks that influence deafness is still largely unknown. Methods In this study, a congenital deafness family, whole exome sequencing revealed a new mutation in the pathogenic gene CDH23, subsequently; the mutation has been validated using Sanger sequencing method. Then CRISPR/Cas9 technology was employed to knockout zebrafish cdh23 gene. Startle response experiment was used to compare with wide-type, the response to sound stimulation between wide-type and cdh23-/-. To further illustrate the molecular mechanisms underlying congenital deafness, comparative transcriptomic profiling and multiple bioinformatics analyses were performed. Results The YO-PRO-1 assay result showed that in cdh23 deficient embryos, the YO-PRO-1 signal in inner ear and lateral line neuromast hair cells were completely lost. Startle response experiment showed that compared with wide-type, the response to sound stimulation decreased significantly in cdh23 mutant larvae. Comparative transcriptomic showed that the candidate genes such as atp1b2b and myof could affect hearing by regulating ATP production and purine metabolism in a synergetic way with cdh23. RT-qPCR results further confirmed the transcriptomics results. Further compensatory experiment showed that ATP treated cdh23-/- embryos can partially recover the mutant phenotype. Conclusion In conclusion, our study may shed light on deciphering the principal mechanism and provide a potential therapeutic method for congenital hearing loss under the condition of CDH23 mutation.
Collapse
Affiliation(s)
- Shu Yang
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bing-Lin Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Xiao-ping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Ling-xiang Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Gang-hua Zhu
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Wang
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei-jing Wu
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruo-sha Lai
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Tao
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min-xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Fang-yi Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong-hui Tan
- Department of Otolaryngology—Head and Neck Surgery, The Affiliated Hospital of Xiang Nan College, Chenzhou, China
| | - Zhong Deng
- Department of Otolaryngology—Head and Neck Surgery, The Affiliated Hospital of Xiang Nan College, Chenzhou, China
| | - Hua-ping Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Zi-an Xiao
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ding-hua Xie
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Bian X, Yang X, Shi X, Zeng W, Deng D, Chen S, Qiao F, Feng L, Wu Y. Whole-exome sequencing applications in prenatal diagnosis of fetal bowel dilatation. Open Life Sci 2023; 18:20220598. [PMID: 37215495 PMCID: PMC10199320 DOI: 10.1515/biol-2022-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023] Open
Abstract
This study introduced whole-exome sequencing (WES) in prenatal diagnosis of fetal bowel dilatation to improve the detection outcome when karyotype analysis and copy number variation sequencing (CNV-seq) were uninformative in detecting pathogenic variants. The work reviewed 28 cases diagnosed with fetal bowel dilatation and analyzed the results of karyotype analysis, CNV-seq, and WES. Among the 28 cases, the detection rate in cases with low risk of aneuploidy was 11.54% (3/26), which is lower than 100% (2/2) in cases with high risk of aneuploidy. Ten low-risk aneuploidy cases with isolated fetal bowel dilatation had normal genetic testing results, while the remaining 16 cases with other ultrasound abnormalities were detected for genetic variants at a rate of 18.75% (3/16). The detection rate of gene variation was 3.85% (1/26) by CNV-seq and 7.69% (2/26) by WES. This study suggested that WES could reveal more genetic risk in prenatal diagnosis of fetal bowel dilatation and has value in prenatal diagnosis to reduce birth defects.
Collapse
Affiliation(s)
- Xinyi Bian
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| |
Collapse
|
19
|
Srivastava P, Bamba C, Chopra S, Rohilla M, Chaudhry C, Kaur A, Panigrahi I, Mandal K. Identification of genetic alterations in couples and their products of conceptions from recurrent pregnancy loss in North Indian population. Front Genet 2023; 14:1155211. [PMID: 37260775 PMCID: PMC10227573 DOI: 10.3389/fgene.2023.1155211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Background: Recurrent pregnancy loss (RPL) is one of the most common pregnancy-related complications, which can be stressful and emotionally draining for a couple. Genetic alterations, which are responsible for RPL, can be present in either of the three genomes: mother, father, or their fetuses. In addition, environmental factors interacting with these three genomes can affect germline cells. With this aim, the present study was conducted to understand the underlying etiology of RPL using Next-generation sequencing (NGS; couple exome and TRIO exomes) in combination with cytogenetic tests [karyotyping and chromosomal microarray (CMA)]. Material & Methods: In present study we recruited 61 couples with RPL (history of ≥ 2 abortions) and 31 products of conceptions (POCs). For all couples karyotyping was done at the time of recruitment, followed by collection of POC samples and parental blood samples. Before processing POC samples for CMA, they were checked for maternal cell contamination (MCC) by QF-PCR. In POC samples with no pathogenic variant, TRIO exome sequencing was done. Further, in case of unavailability of POC sample, couple exome sequencing was done for RPL couples. Results: In six individuals out of 61 couples (5%), abnormality in karyotypes was detected. Among 116 normal karyotypes, there were 11 heteromorphisms (9.5%), for which the couples had to be counselled and reassured. Out of the 31 POCs, 10 were excluded because of MCC (around 30%) and one had major aneuploidy. CMA in POCs identified pathogenic copy number variations (CNVs) in 25% of cases (5/20) and variant of unknown significance (VUS) in 20% of cases (4/20). Autosomal trisomy was the most frequent chromosomal abnormality diagnosed. NGS was performed to establish single-gene causes of RPL. Couple exome sequencing was performed in 20 couples, and 14 were found to be carriers for autosomal recessive conditions. A total of 50 potential disease-causing variants in 40 genes were identified in 33 of 40 individuals (82.5%). Putative causative variants were identified in 37.5% of the TRIO cases (3/8). Mutations in few important genes (SRP54, ERBB4, NEB, ALMS, ALAD, MTHFR, F5, and APOE), which are involved in vital pathways, early embryonic development, and fetal demise, were identified in the POCs. Conclusion: It enhances our understanding of prenatal phenotypes of many Mendelian disorders. These mutated genes may play an auxiliary role in the development of treatment strategies for RPL. There was no correlation of the number of abortions with etiological yield of any technique to detect the cause of RPL. This study shows the utilization of combination of techniques in improving our understanding of the cause of early embryonic lethality in humans.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chitra Bamba
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chopra
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Minakshi Rohilla
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chakshu Chaudhry
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupriya Kaur
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Inusha Panigrahi
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
20
|
Bet BB, Snoep MC, van Leeuwen E, Linskens IH, Haak MC, Rozendaal L, Knobbe I, van Schuppen J, Hoekstra CEL, Koolbergen DR, Clur SA, Pajkrt E. Short-term outcome after the prenatal diagnosis of right aortic arch. Prenat Diagn 2023; 43:629-638. [PMID: 36738444 DOI: 10.1002/pd.6326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the proportion of children that require surgery in the first year of life and thereafter in order to improve the counseling of parents with a fetus with a right aortic arch (RAA). METHODS Fetuses diagnosed with isolated RAA, defined as the absence of intra- or extracardiac anomalies, between 2007 and 2021 were extracted from the prospective registry PRECOR. RESULTS In total, 110 fetuses were included, 92 with a prenatal diagnosis of RAA and 18 with double aortic arch (DAA). The prevalence of 22q11 deletion syndrome was 5.5%. Six pregnancies were terminated and five cases were false-positive; therefore, the follow-up consisted of 99 neonates. Surgery was performed in 10 infants (10%) in the first year of life. In total, 25 (25%) children had surgery at a mean age of 17 months. Eight of these 25 (32%) had a DAA. Only one child, with a DAA, required surgery in the first week of life due to obstructive stridor. CONCLUSIONS Children with a prenatally diagnosed RAA are at a low risk of acute respiratory postnatal problems. Delivery in a hospital with neonatal intensive care and pediatric cardiothoracic facilities seems only indicated in cases with suspected DAA. Expectant parents should be informed that presently 25% of the children need elective surgery and only incidentally due to acute respiratory distress.
Collapse
Affiliation(s)
- Bo B Bet
- Department of Obstetrics and Gynecology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Maartje C Snoep
- Department of Obstetrics and Fetal Medicine, LUMC, Leiden University, Leiden, The Netherlands
| | - Elisabeth van Leeuwen
- Department of Obstetrics and Gynecology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Ingeborg H Linskens
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Monique C Haak
- Department of Obstetrics and Fetal Medicine, LUMC, Leiden University, Leiden, The Netherlands
| | - Lieke Rozendaal
- Department of Pediatric Cardiology, LUMC, Leiden University, Leiden, The Netherlands
| | - Ingmar Knobbe
- Department of Pediatric Cardiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Joost van Schuppen
- Department of Radiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Carlijn E L Hoekstra
- Department of Otorhinolaryngology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - David R Koolbergen
- Department of Cardiothoracic Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Sally-Ann Clur
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Pediatric Cardiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Eva Pajkrt
- Department of Obstetrics and Gynecology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| |
Collapse
|
21
|
He J, Meng M, Zhou X, Gao R, Wang H. Isolation of single cells from human hepatoblastoma tissues for whole-exome sequencing. STAR Protoc 2023; 4:102052. [PMID: 36853859 PMCID: PMC9876968 DOI: 10.1016/j.xpro.2023.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
By combining single-cell processing with whole-exome sequencing, we have developed single-cell whole-exome sequencing to investigate the mechanisms of hepatoblastoma development and to provide potential targets and therapeutic approaches for clinical treatment. In the following protocol, we outline the steps involved in single-cell sorting, whole-genome amplification, amplification uniformity estimation, and whole-exome library construction. In addition to the cells we use, this protocol is also suitable for other cell lines and cell types.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Mei Meng
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xianchao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Gao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
22
|
Najib B, Quibel T, Tessier A, Mortreux J, Bouvagnet P, Cohen C, Vialard F, Dard R. Prenatal diagnosis of recurrent hypoplastic left heart syndrome associated with MYH6 variants: a case report. BMC Cardiovasc Disord 2023; 23:116. [PMID: 36890431 PMCID: PMC9993643 DOI: 10.1186/s12872-023-03169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) is a rare but genetically complex and clinically and anatomically severe form of congenital heart disease (CHD). CASE PRESENTATION Here, we report on the use of rapid prenatal whole-exome sequencing for the prenatal diagnosis of a severe case of neonatal recurrent HLHS caused by heterozygous compound variants in the MYH6 gene inherited from the (healthy) parents. MYH6 is known to be highly polymorphic; a large number of rare and common variants have variable effects on protein levels. We postulated that two hypomorphic variants led to severe CHD when associated in trans; this was consistent with the autosomal recessive pattern of inheritance. In the literature, dominant transmission of MYH6-related CHD is more frequent and is probably linked to synergistic heterozygosity or the specific combination of a single, pathogenic variant with common MYH6 variants. CONCLUSIONS The present report illustrates the major contribution of whole-exome sequencing (WES) in the characterization of an unusually recurrent fetal disorder and considered the role of WES in the prenatal diagnosis of disorders that do not usually have a genetic etiology.
Collapse
Affiliation(s)
- B Najib
- Department of Obstetrics and Gynecology, Saint Joseph University, Beirut, 0000, Lebanon
- Department of Obstetrics and Antenatal Fetal Medicine, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - T Quibel
- Department of Obstetrics and Antenatal Fetal Medicine, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - A Tessier
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - J Mortreux
- Service de Génétique, Laboratoire Eurofins Biomnis, 69007, Lyon, France
| | - P Bouvagnet
- Service de Génétique, Laboratoire Eurofins Biomnis, 69007, Lyon, France
| | - C Cohen
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - F Vialard
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
- RHuMA, UMR-BREED, INRA-ENVA-UVSQ, 78180, Montigny Le Bretonneux, France
| | - R Dard
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France.
- RHuMA, UMR-BREED, INRA-ENVA-UVSQ, 78180, Montigny Le Bretonneux, France.
| |
Collapse
|
23
|
Parisi MA, Caggana M, Cohen JL, Gold NB, Morris JA, Orsini JJ, Urv TK, Wasserstein MP. When is the best time to screen and evaluate for treatable genetic disorders?: A lifespan perspective. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:44-55. [PMID: 36876995 PMCID: PMC10475244 DOI: 10.1002/ajmg.c.32036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
This paper focuses on the question of, "When is the best time to identify an individual at risk for a treatable genetic condition?" In this review, we describe a framework for considering the optimal timing for pursuing genetic and genomic screening for treatable genetic conditions incorporating a lifespan approach. Utilizing the concept of a carousel that represents the four broad time periods when critical decisions might be made around genetic diagnoses during a person's lifetime, we describe genetic testing during the prenatal period, the newborn period, childhood, and adulthood. For each of these periods, we describe the objectives of genetic testing, the current status of screening or testing, the near-term vision for the future of genomic testing, the advantages and disadvantages of each approach, and the feasibility and ethical considerations of testing and treating. The notion of a "Genomics Passbook" is one where an early genomic screening evaluation could be performed on each individual through a public health program, with that data ultimately serving as a "living document" that could be queried and/or reanalyzed at prescribed times during the lifetime of that person, or in response to concerns about symptoms of a genetic disorder in that individual.
Collapse
Affiliation(s)
- Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Division of Genetics, Albany, New York, USA
| | | | - Nina B Gold
- Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph J Orsini
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Tiina K Urv
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa P Wasserstein
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
24
|
Wen J, Ping H, Kong X, Chai W. Developmental dysplasia of the hip: A systematic review of susceptibility genes and epigenetics. Gene 2023; 853:147067. [PMID: 36435507 DOI: 10.1016/j.gene.2022.147067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a complex developmental deformity whose pathogenesis and susceptibility-related genes have yet to be elucidated. This systematic review summarizes the current literature on DDH-related gene mutations, animal model experiments, and epigenetic changes in DDH. METHODS We performed a comprehensive search of relevant documents in the Medline, Scopus, Cochrane, and ScienceDirect databases covering the period from October 1991 to October 2021. We analyzed basic information on the included studies and summarized the DDH-related mutation sites, animal model experiments, and epigenetic changes associated with DDH. RESULTS A total of 63 studies were included in the analysis, of which 54 dealt with the detection of gene mutations, 7 presented details of animal experiments, and 6 were epigenetic studies. No genetic mutations were clearly related to the pathogenesis of DDH, including the most frequently studied genes on chromosomes 1, 17, and 20. Most gene-related studies were performed in Han Chinese or North American populations, and the quality of these studies was medium or low. GDF5 was examined in the greatest number of studies, and mutation sites with odds ratios > 10 were located on chromosomes 3, 9, and 13. Six mutations were found in animal experiments (i.e., CX3CR1, GDF5, PAPPA2, TENM3, UFSP2, and WISP3). Epigenetics research on DDH has focused on GDF5 promoter methylation, three microRNAs (miRNAs), and long noncoding RNAs. In addition, there was also a genetic test for miRNA and mRNA sequencing. CONCLUSIONS DDH is a complex joint deformity with a considerable genetic component whose early diagnosis is significant for preventing disease. At present, no genes clearly involved in the pathogenesis of DDH have been identified. Research on mutations associated with this condition is progressing in the direction of in vivo experiments in animal models to identify DDH susceptibility genes and epigenetics analyses to provide novel insights into its pathogenesis. In the future, genetic profiling may improve matters.
Collapse
Affiliation(s)
- Jiaxin Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Hangyu Ping
- School of Medicine, Nankai University, Tianjin, China
| | | | - Wei Chai
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
van Bever Y, Groenenberg IAL, Knapen MFCM, Dessens AB, Hannema SE, Wolffenbuttel KP, Diderich KEM, Hoefsloot LH, Srebniak MI, Bruggenwirth HT. Prenatal ultrasound finding of atypical genitalia: Counseling, genetic testing and outcomes. Prenat Diagn 2023; 43:162-182. [PMID: 35808910 DOI: 10.1002/pd.6205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To report uptake of genetic counseling (GC) and prenatal genetic testing after the finding of atypical genitalia on prenatal ultrasound (US) and the clinical and genetic findings of these pregnancies. METHODS A retrospective cohort study (2017-2019) of atypical fetal genitalia in a large expert center for disorders/differences of sex development. We describe counseling aspects, invasive prenatal testing, genetic and clinical outcome of fetuses apparently without [group 1, n = 22 (38%)] or with [group 2, n = 36 (62%)] additional anomalies on US. RESULTS In group 1, 86% of parents opted for GC versus 72% in group 2, and respectively 58% and 15% of these parents refrained from invasive testing. Atypical genitalia were postnatally confirmed in 91% (group 1) and 64% (group 2), indicating a high rate of false positive US diagnosis of ambiguous genitalia. Four genetic diagnoses were established in group 1 (18%) and 10 in group 2 (28%). The total genetic diagnostic yield was 24%. No terminations of pregnancy occurred in group 1. CONCLUSIONS For optimal care, referral for an expert fetal US scan, GC and invasive diagnostics including broad testing should be offered after prenatal detection of isolated atypical genitalia.
Collapse
Affiliation(s)
- Yolande van Bever
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Irene A L Groenenberg
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maarten F C M Knapen
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arianne B Dessens
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Sabine E Hannema
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Pediatric Endocrinology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Paediatric Endocrinology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Katja P Wolffenbuttel
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Urology and Pediatric Urology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Lies H Hoefsloot
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hennie T Bruggenwirth
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Kanesada K, Tsunedomi R, Hazama S, Ogihara H, Hamamoto Y, Shindo Y, Matsui H, Tokumitsu Y, Yoshida S, Iida M, Suzuki N, Takeda S, Ioka T, Nagano H. Association between a single nucleotide polymorphism in the R3HCC1 gene and irinotecan toxicity. Cancer Med 2023; 12:4294-4305. [PMID: 36308049 PMCID: PMC9972014 DOI: 10.1002/cam4.5299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Irinotecan is a useful anticancer drug for colorectal cancer treatment. UGT1A1*28 and *6 gene polymorphisms are known risk factors for irinotecan-associated toxicity. However, severe adverse effects due to irinotecan have been observed even in patients who do not harbor UGT1A1*28 or *6. We investigated gene polymorphisms in the whole exome to identify useful biomarkers for irinotecan toxicity other than UGT1A. METHODS A total of 178 patients with metastatic colorectal cancer (mCRC) and 87 patients with pancreatic cancer were treated with FOLFIRI, FOLFOX, FOLFOXIRI, modified FOLFIRINOX, or gemcitabine plus nab-paclitaxel. Genome-wide screening was performed using whole-exome sequencing (WES), and validation analysis was performed using qPCR with a hydrolysis probe. RESULTS Using WES after a doublet chemotherapy regimen comprising irinotecan and 5-fluorouracil (n = 15), seven single nucleotide polymorphisms (SNPs) were identified as candidate biomarkers for irinotecan-associated toxicity of neutropenia. Among the seven SNPs, an SNP in R3H domain and coiled-coil containing 1 (R3HCC1; c.919G > A, rs2272761) showed a significant association with neutropenia (>grade 3) after doublet chemotherapy. Patients receiving irinotecan including triplet chemotherapy, FOLFOXIRI for mCRC (n = 23) or modified FOLFIRINOX for pancreatic cancer (n = 40), also showed significant linear trends between R3HCC1 polymorphism and neutropenia (p = 0.017 and 0.046, respectively). No significant association was observed in patients treated with irinotecan-free regimens, FOLFOX for mCRC (n = 66), and gemcitabine plus nab-paclitaxel for pancreatic cancer (n = 47). CONCLUSION Thus, an SNP in the R3HCC1 gene may be a useful biomarker for the toxicity of irinotecan-containing chemotherapy for mCRC and pancreatic cancer.
Collapse
Affiliation(s)
- Kou Kanesada
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroyuki Ogihara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yoshihiko Hamamoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
27
|
Sparks TN, Dugoff L. How to choose a test for prenatal genetic diagnosis: a practical overview. Am J Obstet Gynecol 2023; 228:178-186. [PMID: 36029833 PMCID: PMC9877133 DOI: 10.1016/j.ajog.2022.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Establishing the diagnosis of a fetal genetic disease in utero expands decision-making opportunities for individuals during pregnancy and enables providers to tailor prenatal care and surveillance to disease-specific risks. The selection of prenatal genetic tests is guided by key details from fetal imaging, family and obstetrical history, suspected diagnoses and mechanisms of disease, an accurate understanding of what abnormalities each test is designed to detect, and, at times, the gestational age at which testing is initiated. Pre- and posttest counseling, by or in conjunction with providers trained in genetics, ensure an accurate understanding of genetic tests, their potential results and limitations, estimated turnaround time for results, and the clinical implications of their findings. As prenatal diagnosis and testing options continue to expand rapidly, it is increasingly important for obstetrical providers to understand how to choose appropriate genetic testing and contextualize the clinical implications of their results.
Collapse
Affiliation(s)
- Teresa N Sparks
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA.
| | - Lorraine Dugoff
- Divisions of Reproductive Genetics and Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
Vora NL, Norton ME. Prenatal exome and genome sequencing for fetal structural abnormalities. Am J Obstet Gynecol 2023; 228:140-149. [PMID: 36027950 PMCID: PMC9877148 DOI: 10.1016/j.ajog.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
As prenatal exome sequencing becomes integrated into clinical care, it is critical that providers caring for women with fetal anomalies recognize not only the benefits, but also the challenges and considerations related to this technology. This overview of prenatal sequencing includes information about indications for sequencing, methods, diagnostic yield, clinical utility, variant interpretation, ethical considerations and dilemmas, practical considerations (ie, turnaround time and cost), pre- and posttest counseling points, and psychological impact of testing on families.
Collapse
Affiliation(s)
- Neeta L Vora
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Mary E Norton
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
29
|
Scelsa B. Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up. Diagnostics (Basel) 2022; 12:diagnostics12123083. [PMID: 36553090 PMCID: PMC9776544 DOI: 10.3390/diagnostics12123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Brain abnormalities detected in fetal life are being increasingly recognized. Child neurologists are often involved in fetal consultations, and specific fetal neurology training has been implemented in many countries. Pediatric neurologists are asked to examine the data available and to contribute to the definition of the long-term outcomes. Ventriculomegaly, posterior fossa malformations, and agenesis/dysgenesis of corpus callosum are among the most common reasons for antenatal neurological consultations. Fetuses with central nervous system and extra-CNS anomalies should ideally be managed in secondary/tertiary hospitals where obstetricians who are experts in fetal medicine and pediatric specialists are available. Obstetricians play a critical role in screening, performing detailed neurosonography, and referring to other specialists for additional investigations. Clinical geneticists are frequently asked to propose diagnostic tests and counsel complex fetal malformations whose phenotypes may differ from those during postnatal life. Advances in fetal MRI and genetic investigations can support the specialists involved in counseling. Nevertheless, data interpretation can be challenging, and it requires a high level of expertise in a multidisciplinary setting. Postnatally, child neurologists should be part of an integrated multidisciplinary follow-up, together with neonatologists and pediatricians. The neurodevelopmental outcomes should be assessed at least up to school age. Children should be evaluated with formal tests of their gross motor, cognitive, language, fine motor/visuo-perceptual skills, and their behavior. In this perspective, fetal neurology can be regarded as the beginning of a long journey which continues with a prolonged, structured follow-up, support to the families, and transition to adult life. A review of the most common conditions is presented, along with the long-term outcomes and a proposal of the neurodevelopmental follow-up of children with CNS malformation which are diagnosed in uterus.
Collapse
Affiliation(s)
- Barbara Scelsa
- Department of Pediatric Neurology and Psychiatry, V. Buzzi Children's Hospital, ASST-FBF-Sacco, via Castelvetro 32, 20154 Milan, Italy
| |
Collapse
|
30
|
Miziak B, Czuczwar SJ. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy. Expert Opin Drug Discov 2022; 17:1313-1328. [PMID: 36408599 DOI: 10.1080/17460441.2023.2150164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There are approximately 70 million people with epilepsy and about 30% of patients are not satisfactorily treated. A link between gene mutations and epilepsy is well documented. A number of pathological variants of KCNT1 gene (encoding the weakly voltage-dependent sodium-activated potassium channel - KNa 1.1) mutations has been found. For instance, epilepsy of infancy with migrating focal seizures, autosomal sleep-related hypermotor epilepsy or Ohtahara syndrome have been associated with KCNT1 gene mutations. AREAS COVERED Several methods for studies on KNa 1.1 channels have been reviewed - patch clamp analysis, Förster resonance energy transfer spectroscopy and whole-exome sequencing. The authors also review available drugs for the management of KCNT1 epilepsies. EXPERT OPINION The current methods enable deeper insights into electrophysiology of KNa 1.1 channels or its functioning in different activation states. It is also possible to identify a given KCNT1 mutation. Quinidine and cannabidiol show variable efficacy as add-on to baseline antiepileptic drugs so more effective treatments are required. A combined approach with the methods shown above, in silico methods and the animal model of KCNT1 epilepsies seems likely to create personalized treatment of patients with KCNT1 gene mutations.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
31
|
van der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics 2022; 14:1373-1388. [PMID: 36537268 DOI: 10.2217/epi-2022-0287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this review we discuss epigenetic disorders that result from aberrations in genes linked to epigenetic regulation. We describe current testing methods for the detection of copy number variants (CNVs) in Mendelian disorders, dosage sensitivity, reciprocal phenotypes and the challenges of test selection and overlapping clinical features in genetic diagnosis. We discuss aberrations of DNA methylation and propose a role for episignatures as a novel clinical testing method in CNV disorders. Finally, we postulate that episignature mapping in CNV disorders may provide novel insights into the molecular mechanisms of disease and unlock key findings of the genome-wide impact on disease gene networks.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Kathleen Rooney
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Tessa Ma Trooster
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Marcel Mam Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
32
|
Advantages of current fetal neuroimaging and genomic technologies in prenatal diagnosis: A clinical case. Eur J Med Genet 2022; 66:104652. [PMID: 36374791 DOI: 10.1016/j.ejmg.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
The diagnosis of prenatal microcephaly, as well as the possibility of underlining a genetic cause, is becoming more frequent thanks to advances in prenatal imaging and parallel massive sequencing. One case of primary microcephaly in three sibs demonstrates how complementary diagnostic exams can help to diagnose and establish the etiology.
Collapse
|
33
|
Desbrest B, Couderc B. Les demandes d’analyses des caractéristiques génétiques par séquençage dans les recherches cliniques : considérations juridiques et éthiques. Therapie 2022; 78:247-257. [DOI: 10.1016/j.therap.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 10/16/2022]
|
34
|
Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz K, Reches A. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:59-67. [PMID: 35229910 PMCID: PMC9328397 DOI: 10.1002/uog.24885] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Prenatally detected central nervous system (CNS) anomalies present a diagnostic challenge. In this study, we compared the diagnostic yield of exome sequencing (ES) and chromosomal microarray analysis (CMA) in fetuses with a major CNS anomaly. METHODS This was a retrospective study of 114 cases referred for genetic evaluation following termination of pregnancy (TOP) due to a major CNS anomaly detected on prenatal ultrasound. All fetuses were first analyzed by CMA. All CMA-negative cases were offered ES. CMA-positive cases were reanalyzed using ES to assess its ability to detect copy-number variants (CNVs). RESULTS CMA identified a pathogenic or likely pathogenic (P/LP) CNV in 11/114 (10%) cases. Eighty-six CMA-negative cases were analyzed using ES, which detected P/LP sequence variants in 38/86 (44%). Among recurrent cases (i.e. cases with a previously affected pregnancy), the incidence of P/LP sequence variants was non-significantly higher compared with non-recurrent ones (12/19 (63%) vs 26/67 (39%); P = 0.06). Among the 38 cases with an ES diagnosis, 20 (53%) were inherited and carried a significant risk of recurrence. Reanalysis of 10 CMA-positive cases by ES demonstrated that the bioinformatics pipeline used for sequence variant analysis also detected all P/LP CNVs, as well as three previously known non-causative CNVs. CONCLUSIONS In our study, ES provided a high diagnostic yield (> 50%) in fetuses with severe CNS structural anomalies, which may have been partly due to the highly selected case series that included post-TOP cases from a specialist referral center. These data suggest that ES may be considered as a first-tier test for the prenatal diagnosis of major fetal CNS anomalies, detecting both P/LP sequence variants and CNVs. This is of particular importance given the time constraints of an ongoing pregnancy and the risk of recurrence in future pregnancies. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Yaron
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - V. Ofen Glassner
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Mory
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - N. Zunz Henig
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Kurolap
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Bar Shira
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Brabbing Goldstein
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Marom
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - L. Ben Sira
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Radiology DepartmentTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - H. Baris Feldman
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - G. Malinger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - K. Krajden Haratz
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Reches
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| |
Collapse
|
35
|
Evans MI, Britt DW, Evans SM, Devoe LD. Changing Perspectives of Electronic Fetal Monitoring. Reprod Sci 2022; 29:1874-1894. [PMID: 34664218 PMCID: PMC8522858 DOI: 10.1007/s43032-021-00749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
The delivery of healthy babies is the primary goal of obstetric care. Many technologies have been developed to reduce both maternal and fetal risks for poor outcomes. For 50 years, electronic fetal monitoring (EFM) has been used extensively in labor attempting to prevent a large proportion of neonatal encephalopathy and cerebral palsy. However, even key opinion leaders admit that EFM has mostly failed to achieve this goal. We believe this situation emanates from a fundamental misunderstanding of differences between screening and diagnostic tests, considerable subjectivity and inter-observer variability in EFM interpretation, failure to address the pathophysiology of fetal compromise, and a tunnel vision focus. To address these suboptimal results, several iterations of increasingly sophisticated analyses have intended to improve the situation. We believe that part of the continuing problem is that the focus of EFM has been too narrow ignoring important contextual issues such as maternal, fetal, and obstetrical risk factors, and increased uterine contraction frequency. All of these can significantly impact the application of EFM to intrapartum care. We have recently developed a new clinical approach, the Fetal Reserve Index (FRI), contextualizing EFM interpretation. Our data suggest the FRI is capable of providing higher accuracy and earlier detection of emerging fetal compromise. Over time, artificial intelligence/machine learning approaches will likely improve measurements and interpretation of FHR characteristics and other relevant variables. Such future developments will allow us to develop more comprehensive models that increase the interpretability and utility of interfaces for clinical decision making during the intrapartum period.
Collapse
Affiliation(s)
- Mark I Evans
- Fetal Medicine Foundation of America, New York, NY, USA.
- Comprehensive Genetics, PLLC, New York, NY, USA.
- Department of Obstetrics & Gynecology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| | - David W Britt
- Fetal Medicine Foundation of America, New York, NY, USA
| | - Shara M Evans
- Department of Maternal Child Health, Gillings School of Public Health, University of North Carolina, Chapel Hill, USA
| | - Lawrence D Devoe
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
36
|
Li R, Gao X, Sun H, Sun L, Hu X. Expression characteristics of long non-coding RNA in colon adenocarcinoma and its potential value for judging the survival and prognosis of patients: bioinformatics analysis based on The Cancer Genome Atlas database. J Gastrointest Oncol 2022; 13:1178-1187. [PMID: 35837189 DOI: 10.21037/jgo-22-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background To investigate the expression characteristics of long non-coding RNA (lncRNA) in colon adenocarcinoma (COAD) and its potential value in predicting the prognosis of patient survival. Methods We downloaded COAD-related RNA sequencing (RNA-seq) data and patient survival data from The Cancer Genome Atlas (TCGA). The data were analyzed for lncRNA expression differences, subjected to Cox regression analysis for survival rate, and Kaplan-Meier (KM) survival curves were plotted to analyze the role of the key genes related to prognostic survival by pathway enrichment analysis. Results The data of 494 COAD clinical samples from TCGA were analyzed; 204 lncRNAs were differentially expressed, 156 were up-regulated, and 48 were down-regulated. The 10 genes with the most significant expression differences were Linc02418, Blacat1, ELFN1-AS1, CRNDE, AC002384.1, AL353801.1, LINC01645, AC073283.2, AC087379.1, and LINC00484. Cox regression analysis of 204 lncRNA genes showed that 23 lncRNA genes with significant effects on the prognosis and survival rate of COAD patients were obtained when P<0.05 was used as the threshold. With P≤0.001 as the threshold, the KM curves of 4 genes (Linc02257, Linc02474, Ac010789.1, Ac083967.1) were statistically significant (P<0.05). The gene Linc02257 was selected for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and it was revealed that the inheritance of Linc02257-regulated gene expression was closely related to tumor development, such as collagen-containing extracellular matrix, organogenesis, activity of membrane protein receptors, and ion channel activity. The signaling pathways regulated by Linc02257 were also closely related to tumors, such as neuroactive ligand-receptor interaction, the PI3K-AKT signaling pathway, calcium signaling pathway, and protein digestion and absorption. Conclusions In COAD, lncRNA is differentially expressed and plays an important role in the disease regulation. It has potential application value in the diagnosis, targeted therapy, and prognosis of COAD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xu Gao
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Lixin Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xiaojian Hu
- Department of Urology, Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| |
Collapse
|
37
|
Wu X, Zhou L, Shi J, Cheng CY, Sun F. Multiomics analysis of male infertility. Biol Reprod 2022; 107:118-134. [PMID: 35639635 DOI: 10.1093/biolre/ioac109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 8-12% of couples globally, and the male factor is a primary cause in approximately 50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermia (OA) versus non-obstructive azoospermia (NOA) men, including whole-genome bisulfite sequencing (WGBS), single cell RNA-seq (scRNA-seq), whole exome sequencing (WES), and ATAC-seq. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
38
|
Brown JEH, Zamora AN, Outram S, Sparks TN, Lianoglou BR, Norstad M, Sahin Hodoglugil NN, Norton ME, Ackerman SL. “Let’s Just Wait Until She’s Born”: Temporal Factors That Shape Decision-Making for Prenatal Genomic Sequencing Amongst Families Underrepresented in Genomic Research. Front Genet 2022; 13:882703. [PMID: 35669190 PMCID: PMC9164104 DOI: 10.3389/fgene.2022.882703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Genomic sequencing has been increasingly utilized for prenatal diagnosis in recent years and this trend is likely to continue. However, decision-making for parents in the prenatal period is particularly fraught, and prenatal sequencing would significantly expand the complexity of managing health risk information, reproductive options, and healthcare access. This qualitative study investigates decision-making processes amongst parents who enrolled or declined to enroll in the prenatal arm of the California-based Program in Prenatal and Pediatric Genome Sequencing (P3EGS), a study in the Clinical Sequencing Evidence-Generating Research (CSER) consortium that offered whole exome sequencing for fetal anomalies with a focus on underrepresented groups in genomic research. Drawing on the views of 18 prenatal families who agreed to be interviewed after enrolling (n = 15) or declining to enroll (n = 3) in P3EGS, we observed that the timing of sequencing, coupled with unique considerations around experiences of time during pregnancy and prenatal testing, intersect with structural supports beyond the clinic to produce preferences for and against prenatal sequencing and to contain the threat of unwelcome, uncertain knowledge. Particularly for those without structural supports, finding out consequential information may be more palatable after the birth, when the first stage of the uncertain future has been revealed. Future research should examine the role of temporality in decision-making around prenatal genomic sequencing across diverse population cohorts, in order to observe more precisely the role that structural barriers play in patient preferences.
Collapse
Affiliation(s)
- Julia E. H. Brown
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Institute for Health and Aging, UCSF, San Francisco, CA, United States
- *Correspondence: Julia E. H. Brown,
| | - Astrid N. Zamora
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Simon Outram
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Institute for Health and Aging, UCSF, San Francisco, CA, United States
- Department of Social and Behavioral Sciences, UCSF, San Francisco, CA, United States
| | - Teresa N. Sparks
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UCSF, San Francisco, CA, United States
- Institute for Human Genetics, UCSF, San Francisco, CA, United States
- Center for Maternal Fetal Precision Medicine, UCSF, San Francisco, CA, United States
| | - Billie R. Lianoglou
- Center for Maternal Fetal Precision Medicine, UCSF, San Francisco, CA, United States
- Department of Surgery, UCSF, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, United States
| | - Matthew Norstad
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Institute for Health and Aging, UCSF, San Francisco, CA, United States
| | | | - Mary E. Norton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UCSF, San Francisco, CA, United States
- Institute for Human Genetics, UCSF, San Francisco, CA, United States
- Center for Maternal Fetal Precision Medicine, UCSF, San Francisco, CA, United States
| | - Sara L. Ackerman
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Social and Behavioral Sciences, UCSF, San Francisco, CA, United States
| |
Collapse
|
39
|
ZHANG-RUTLEDGE K, OWEN M, SWEENEY NM, DIMMOCK D, KINGSMORE SF, LAURENT LC. Retrospective identification of prenatal fetal anomalies associated with diagnostic neonatal genomic sequencing results. Prenat Diagn 2022; 42:705-716. [PMID: 35141907 PMCID: PMC9886440 DOI: 10.1002/pd.6111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/04/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To determine which types of fetal anomalies are associated with postnatal diagnoses of genetic diseases by genomic sequencing and to assess how prenatal genomic sequencing could affect clinical management. METHOD This was a secondary analysis of the second Newborn Sequencing in Genomic Medicine and Public Health study that compared fetal imaging results in critically ill infants who had actionable versus negative postnatal genomic sequencing results. RESULTS Of 213 infants who received genomic sequencing, 80 had available prenatal ultrasounds. Twenty-one (26%) of these were found to have genetic diseases by genomic sequencing. Fourteen (67%) of the 21 with genetic diseases had suspected anomalies prenatally, compared with 33 (56%) of 59 with negative results. Among fetuses with suspected anomalies, genetic diseases were 4.5 times more common in those with multiple anomalies and 6.7 times more common in those with anomalies of the extremities compared to those with negative results. Had the genetic diseases been diagnosed prenatally, clinical management would have been altered in 13 of 14. CONCLUSION Critically ill infants with diagnostic genomic sequencing were more likely to have multiple anomalies and anomalies of the extremities on fetal imaging. Among almost all infants with suspected fetal anomalies and diagnostic genomic sequencing results, prenatal diagnosis would have likely altered clinical management.
Collapse
Affiliation(s)
- Kathy ZHANG-RUTLEDGE
- Department of Obstetrics, Gynecology, and Reproductive Sciences; University of California, San Diego, CA
| | - Mallory OWEN
- Rady Children’s Institute of Genomic Medicine, San Diego, CA
| | - Nathaly M. SWEENEY
- Rady Children’s Institute of Genomic Medicine, San Diego, CA, Department of Pediatrics; University of California, San Diego, CA
| | - David DIMMOCK
- Rady Children’s Institute of Genomic Medicine, San Diego, CA
| | | | - Louise C. LAURENT
- Department of Obstetrics, Gynecology, and Reproductive Sciences; University of California, San Diego, CA
| |
Collapse
|
40
|
Zhi X, Ai Q, Sheng W, Yu Y, Shu J, Yu C, Yu X, Li D, Cai C. Identification of a Novel Deep Intronic Variant by Whole Genome Sequencing Combined With RNA Sequencing in a Chinese Patient With Menkes Disease. Front Genet 2022; 13:852764. [PMID: 35432457 PMCID: PMC9008829 DOI: 10.3389/fgene.2022.852764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Menkes disease (MD) is a rare X-linked connective tissue disorder of copper metabolism caused by pathogenic variant(s) in ATP7A gene. The aim of the present study is to determine the clinical characteristics and molecular basis of one patient with MD. Methods: One 10-month-old Chinese boy who met the clinical manifestations of MD was enrolled in this study. Whole genome sequencing (WGS) was performed in the patient in order to identify the variant(s), followed by Sanger sequencing. RNA sequencing (RNA-seq) from whole blood was subsequently applied to assess the effect of variant on transcription levels, and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed for further validation. In addition, X chromosome inactivation (XCI) status of the patient’s mother at the DNA level was measured by capillary electrophoresis. Results: The patient suffered from intermittent convulsions for more than 6 months, with psychomoto retardation and neurodegenerations. The patient also had curly hair, hypopigmented skin, cutis laxa, decreased muscle strength and hypotonia. MRI showed the intracranial arteries were tortuous with some “spiral” changes. The patient’s serum ceruloplasmin level was low. WGS revealed one novel hemizygous variant, c.2627-501C > T (NM_000,052.7), located in the deep intronic sequence of ATP7A gene. Sanger sequencing confirmed that the variant was inherited from his mother. RNA-seq confirmed the variant itself, and identified a pseudo-exon inserted between exons 12 and 13 in mRNA of ATP7A. The sequencing results of RT-PCR from the patient confirmed this finding, while neither of his parents detected aberrant splicing. The Capillary electrophoresis results showed that the patient’s mother had a skewed XCI. Conclusion: Our finding of the variant enlarges the variant spectrum in the ATP7A gene. This is a novel deep intronic variant which leads to the activation of a pseudo-exons in the ATP7A gene, and it demonstrates the usefulness of WGS combined with RNA-seq, in terms of revealing disease-causing variants in non-coding regions. Furthermore, the fact that the deep intronic variants cause disease by the activation of pseudo-exon inclusion indicates that in MD this might be an important mechanism.
Collapse
Affiliation(s)
- Xiufang Zhi
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
| | - Qi Ai
- Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Department of Hematology and Oncology, Tianjin Children’s Hospital, Tianjin, China
| | - Wenchao Sheng
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
| | - Yuping Yu
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
| | - Jianbo Shu
- Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Changshun Yu
- Tianjin Kingmed Center for Clinical Laboratory, Tianjin, China
| | - Xiaoli Yu
- Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
- Department of Neurology, Tianjin Children’s Hospital, Tianjin, China
- *Correspondence: Xiaoli Yu, ; Dong Li, ; Chunquan Cai,
| | - Dong Li
- Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
- Department of Neurology, Tianjin Children’s Hospital, Tianjin, China
- *Correspondence: Xiaoli Yu, ; Dong Li, ; Chunquan Cai,
| | - Chunquan Cai
- Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- *Correspondence: Xiaoli Yu, ; Dong Li, ; Chunquan Cai,
| |
Collapse
|
41
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
42
|
Wang Y, Greenfeld E, Watkins N, Belesiotis P, Zaidi SH, Marshall C, Thiruvahindrapuram B, Shannon P, Roifman M, Chong K, Chitayat D, Stavropoulos DJ, Noor A. Diagnostic yield of genome sequencing for fetal structural anomalies. Prenat Diagn 2022; 42:822-830. [PMID: 35089622 DOI: 10.1002/pd.6108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Genome sequencing (GS >30x) is beginning to be adopted as a comprehensive genome-wide test for the diagnosis of rare disease in the post-natal setting. Recent studies demonstrated the utility of exome sequencing (ES) in prenatal diagnosis, we investigate the potential benefits for GS to act as a comprehensive prenatal test for diagnosis of fetal abnormalities. METHODS We performed GS on a prospective cohort of 37 singleton fetuses with ultrasound-identified structural abnormalities undergoing invasive prenatal testing. GS was performed in parallel with standard diagnostic testing, and the prioritized variants were classified according to ACMG guidelines and reviewed by a panel of board-certified laboratory and clinical geneticists. RESULTS Diagnostic sequence variants were identified in 5 fetuses (14%), with pathogenic variants found in NIPBL, FOXF1, RERE, AMMECR1, and FLT4. A further 7 fetuses (19%) had variants of uncertain significance (VUS) that may explain the phenotypes. Importantly, GS also identified all pathogenic variants reported by clinical microarray (2 CNVs, 5%). CONCLUSION Prenatal GS offered diagnoses (sequence variants and CNVs) in 19% of fetuses with structural anomalies. GS has the potential of replacing multiple consecutive tests, including microarray, gene panels, and WES, to provide the most comprehensive analysis in a timely manner necessary for prenatal diagnosis. This article is protected by copyright. All rights reserved. What's already known about this topic? Current prenatal diagnostic protocol in Canada includes rapid aneuploidy detection (RAD) followed by microarray analysis. The diagnostic yield of Exome sequencing in fetuses with ultrasound abnormalities and negative results by RAD and CMA is 8.5 to 10%. However, the clinical utility of genome sequencing in prenatal settings is not established. What does this study add? This study demonstrates that RAD followed by genome sequencing has a diagnostic yield of ∼19% in fetuses with ultrasound abnormalities. Parental follow up testing to determine the inheritance of potentially pathogenic variants can further increase the diagnostic yield.
Collapse
Affiliation(s)
- Yiming Wang
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Medical Genetics and Genomics residency program, University of Toronto, Toronto, Ontario, Canada
| | - Elena Greenfeld
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Watkins
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Peter Belesiotis
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Syed H Zaidi
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian Marshall
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Patrick Shannon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Karen Chong
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri James Stavropoulos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdul Noor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Huang TX, Ma GC, Chen M, Li WF, Shaw SW. Difficulties of Prenatal Genetic Counseling for a Subsequent Child in a Family With Multiple Genetic Variations. Front Genet 2022; 12:612100. [PMID: 34970295 PMCID: PMC8712678 DOI: 10.3389/fgene.2021.612100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Many parents with a disabled child caused by a genetic condition appreciate the option of prenatal genetic diagnosis to understand the chance of recurrence in a future pregnancy. Genome-wide tests, such as chromosomal microarray analysis and whole-exome sequencing, have been increasingly used for prenatal diagnosis, but prenatal counseling can be challenging due to the complexity of genomic data. This situation is further complicated by incidental findings of additional genetic variations in subsequent pregnancies. Here, we report the prenatal identification of a baby with a MECP2 missense variant and 15q11.2 microduplication in a family that has had a child with developmental and epileptic encephalopathy caused by a de novo KCNQ2 variant. An extended segregation analysis including extended relatives, in addition to the parents, was carried out to provide further information for genetic counseling. This case illustrates the challenges of prenatal counseling and highlights the need to understand the clinical and ethical implications of genome-wide tests.
Collapse
Affiliation(s)
- Ting-Xuan Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Fang Li
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Steven W Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Prenatal Cell and Gene Therapy Group, Institute for Women's Health University College London, London, United Kingdom
| |
Collapse
|
44
|
Gabriel H, Korinth D, Ritthaler M, Schulte B, Battke F, von Kaisenberg C, Wüstemann M, Schulze B, Friedrich-Freksa A, Pfeiffer L, Entezami M, Schröer A, Bürger J, Schwaibold EMC, Lebek H, Biskup S. Trio exome sequencing is highly relevant in prenatal diagnostics. Prenat Diagn 2021; 42:845-851. [PMID: 34958143 PMCID: PMC9305182 DOI: 10.1002/pd.6081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Objective About 3% of newborns show malformations, with about 20% of the affected having genetic causes. Clarification of genetic diseases in postnatal diagnostics was significantly improved with high‐throughput sequencing, in particular through whole exome sequencing covering all protein‐coding regions. Here, we aim to extend the use of this technology to prenatal diagnostics. Method Between 07/2018 and 10/2020, 500 pregnancies with fetal ultrasound abnormalities were analyzed after genetic counseling as part of prenatal diagnostics using WES of the fetus and parents. Results Molecular genetic findings could explain ultrasound abnormalities in 38% of affected fetuses. In 47% of these, disease‐causing de novo variants were found. Pathogenic variants in genes with autosomal recessive or X‐linked inheritance were detected in more than one‐third (70/189 = 37%). The latter are associated with increased probability of recurrence, making their detection important for further pregnancies. Average time from sample receipt to report was 12 days in the recent cases. Conclusion Trio exome sequencing is a useful addition to prenatal diagnostics due to its high diagnostic yield and short processing time (comparable to chromosome analysis). It covers a wide spectrum of genetic changes. Comprehensive interdisciplinary counseling before and after diagnostics is indispensable.
What's already known about this topic?
It is known that about 20% of malformations in newborns can be associated with genetic causes. Whole‐exome sequencing, and especially trio exome sequencing, is an established and successful method in postnatal genetic diagnostics. Diagnostic yield for trio exome sequencing is around 37%.
What does this study add?
We show that trio exome sequencing is a fast and comprehensive method in prenatal diagnostics with diagnostic yield similar to that of postnatal trio exome sequencing. We provide case solution rates for different phenotypic observations from 19% for abnormalities of internal organs up to 52% for skeletal malformations.
Collapse
Affiliation(s)
| | - Dirk Korinth
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | | | | | | | | | - Max Wüstemann
- Zentrum für Pränatalmedizin Hannover, Hannover, Germany
| | | | | | - Lutz Pfeiffer
- Medicover Humangenetik Berlin-Lichtenberg, Berlin, Germany
| | | | | | | | | | - Holger Lebek
- Pränatale Diagnostik Berlin-Lichtenberg, Berlin, Germany
| | - Saskia Biskup
- Praxis für Humangenetik Tübingen, Tübingen, Germany.,CeGaT GmbH, Tübingen, Germany
| |
Collapse
|
45
|
Prenatal Diagnosis by Array Comparative Genomic Hybridization in Fetuses with Cardiac Abnormalities. Genes (Basel) 2021; 12:genes12122021. [PMID: 34946970 PMCID: PMC8701951 DOI: 10.3390/genes12122021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital heart defects (CHDs) appear in 8–10 out of 1000 live born newborns and are one of the most common causes of deaths. In fetuses, the congenital heart defects are found even 3–5 times more often. Currently, microarray comparative genomic hybridization (array CGH) is recommended by worldwide scientific organizations as a first-line test in the prenatal diagnosis of fetuses with sonographic abnormalities, especially cardiac defects. We present the results of the application of array CGH in 484 cases with prenatally diagnosed congenital heart diseases by fetal ultrasound scanning (256 isolated CHD and 228 CHD coexisting with other malformations). We identified pathogenic aberrations and likely pathogenic genetic loci for CHD in 165 fetuses and 9 copy number variants (CNVs) of unknown clinical significance. Prenatal array-CGH is a useful method allowing the identification of all unbalanced aberrations (number and structure) with a much higher resolution than the currently applied traditional assessment techniques karyotype. Due to this ability, we identified the etiology of heart defects in 37% of cases.
Collapse
|
46
|
Al-Hamed MH, Kurdi W, Khan R, Tulbah M, AlNemer M, AlSahan N, AlMugbel M, Rafiullah R, Assoum M, Monies D, Shah Z, Rahbeeni Z, Derar N, Hakami F, Almutairi G, AlOtaibi A, Ali W, AlShammasi A, AlMubarak W, AlDawoud S, AlAmri S, Saeed B, Bukhari H, Ali M, Akili R, Alquayt L, Hagos S, Elbardisy H, Akilan A, Almuhana N, AlKhalifah A, Abouelhoda M, Ramzan K, Sayer JA, Imtiaz F. Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes. Hum Genet 2021; 141:101-126. [PMID: 34853893 DOI: 10.1007/s00439-021-02406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| | - Wesam Kurdi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rubina Khan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha AlNemer
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Nada AlSahan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maisoon AlMugbel
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rafiullah Rafiullah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mirna Assoum
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Dorota Monies
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zeeshan Shah
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Nada Derar
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Fahad Hakami
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Science, Jeddah, Saudi Arabia
| | - Gawaher Almutairi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Afaf AlOtaibi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wafaa Ali
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Amal AlShammasi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wardah AlMubarak
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Samia AlDawoud
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Saja AlAmri
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Bashayer Saeed
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Hanifa Bukhari
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mohannad Ali
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rana Akili
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Laila Alquayt
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Samia Hagos
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Hadeel Elbardisy
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Asma Akilan
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Nora Almuhana
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Abrar AlKhalifah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mohamed Abouelhoda
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Tyne and Wear, Newcastle upon Tyne, NE4 5PL, UK
| | - Faiqa Imtiaz
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| |
Collapse
|
47
|
Prenatal diagnosis by whole exome sequencing in a family with a novel TBR1 mutation causing intellectual disability. Taiwan J Obstet Gynecol 2021; 60:1094-1097. [PMID: 34794744 DOI: 10.1016/j.tjog.2021.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To provide prenatal diagnosis for a pregnant woman with genetic history of intellectual disability. CASE REPORT A Chinese pedigree with intellectual disability was collected in this study. Cytogenetic analysis, chromosomal microarray analysis (CMA) and whole exome sequencing (WES) followed by Sanger validation were conducted to identify the genetic pathogenesis. A novel heterozygous deletion c.370_374delTTCCC in TBR1 gene was identified, leading to a frameshift mutation starting at Phe124 followed by a premature stop codon at position 141 (p.Phe124Valfs∗18). Segregation analysis identified that this novel mutation is co-segregated among the affected family members but absent in unaffected family members. Prenatal diagnosis indicated the absence of this mutation, and the family decided to continue the pregnancy after genetic counseling. CONCLUSION Our findings demonstrated the significance of genetic testing in the diagnosis of intellectual disability. This work also confirmed the effectiveness of WES in prenatal diagnosis.
Collapse
|
48
|
Stevens BK, Nunley PB, Wagner C, Murphy L, Wittman T, Ramdaney A, Jones M, Choates MG. Utility of expanded carrier screening in pregnancies with ultrasound abnormalities. Prenat Diagn 2021; 42:60-78. [PMID: 34792213 DOI: 10.1002/pd.6069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 11/05/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Explore the utility of expanded carrier screening in evaluating heritable causes of congenital anomalies detected by prenatal ultrasound. METHOD A retrospective chart review was conducted to collect structural abnormality and genetic testing data on infants who were evaluated postnatally by a medical geneticist. These were used to determine if expanded carrier screening could have determined the etiology prior to delivery. Additionally, recessive and X-linked conditions on clinically available carrier screening panels were evaluated to determine the number of conditions associated with abnormal ultrasound findings. RESULTS Our retrospective chart review found 222 patients with genetic etiologies, including eight unique autosomal recessive conditions and six X-linked conditions in the 23% who underwent exome sequencing. Of these 14 unique conditions detected, three were included on a list of 271 conditions for which screening was available in 2019 and five were included on a 500 condition panel available in 2020. A literature review was performed on the list of 271 conditions and 88 were reported to be associated with one or more ultrasound abnormalities. CONCLUSION This study demonstrates limited but potential utility for expanded carrier screening to determine the underlying etiology of congenital anomalies.
Collapse
Affiliation(s)
- Blair K Stevens
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Chelsea Wagner
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lauren Murphy
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Theresa Wittman
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aarti Ramdaney
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Malorie Jones
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Meagan Giles Choates
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
49
|
Rajasekaran P, Gandhi P, Idhrees M, Velayudhan BV. Aortic complications in pregnancy: the less remembered chapter—a narrative review. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pregnancy increases the risk of common vascular events and also the rarer events like aortic dissection (AD)/aortic rupture and this is even more pronounced in patients with predisposing aortopathies. AD was found to occur in 0.0004% of all pregnancies, and it is more pronounced in patients with underlying connective tissue disorders. The normal hemodynamic changes on a weak aorta will lead to AD and/or rupture, more so with increase in the period of gestation. Hence the haemodynamic and hormonal changes during pregnancy make pregnancy itself a risk factor for AD. It is advised that women with Marfan syndrome who are planning pregnancy should go through prophylactic aortic repair if the diameter of the ascending aorta exceeds 4 cm. Pre-pregnancy counselling is very important in these patients and must include complete history taking, including family history, physical examination and advanced aortic imaging. There is a general consensus among various authors advising against surgery during pregnancy in stable patients due to increased maternal and fetal morbidity but it is justified if the condition is refractory to medical management or in life threatening stage like acute AD. Though the incidence of aortopathy in pregnancy is rare, there is a high maternal and fetal mortality associated with this condition.
Collapse
Affiliation(s)
- Preetha Rajasekaran
- Department of Obstetrics and Gynaecology, Vihaa Hospitals, Anna Nagar, Chennai-600102, India
| | - Praveena Gandhi
- Department of Obstetrics and Gynaecology PPN Hospital, Palani-624601, India
| | - Mohammed Idhrees
- Institute of Cardiac and Aortic Diseases, SIMS hospital, Chennai-600026, India
| | - Bashi V. Velayudhan
- Institute of Cardiac and Aortic Diseases, SIMS hospital, Chennai-600026, India
| |
Collapse
|
50
|
Franks PW, Melén E, Friedman M, Sundström J, Kockum I, Klareskog L, Almqvist C, Bergen SE, Czene K, Hägg S, Hall P, Johnell K, Malarstig A, Catrina A, Hagström H, Benson M, Gustav Smith J, Gomez MF, Orho-Melander M, Jacobsson B, Halfvarson J, Repsilber D, Oresic M, Jern C, Melin B, Ohlsson C, Fall T, Rönnblom L, Wadelius M, Nordmark G, Johansson Å, Rosenquist R, Sullivan PF. Technological readiness and implementation of genomic-driven precision medicine for complex diseases. J Intern Med 2021; 290:602-620. [PMID: 34213793 DOI: 10.1111/joim.13330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
The fields of human genetics and genomics have generated considerable knowledge about the mechanistic basis of many diseases. Genomic approaches to diagnosis, prognostication, prevention and treatment - genomic-driven precision medicine (GDPM) - may help optimize medical practice. Here, we provide a comprehensive review of GDPM of complex diseases across major medical specialties. We focus on technological readiness: how rapidly a test can be implemented into health care. Although these areas of medicine are diverse, key similarities exist across almost all areas. Many medical areas have, within their standards of care, at least one GDPM test for a genetic variant of strong effect that aids the identification/diagnosis of a more homogeneous subset within a larger disease group or identifies a subset with different therapeutic requirements. However, for almost all complex diseases, the majority of patients do not carry established single-gene mutations with large effects. Thus, research is underway that seeks to determine the polygenic basis of many complex diseases. Nevertheless, most complex diseases are caused by the interplay of genetic, behavioural and environmental risk factors, which will likely necessitate models for prediction and diagnosis that incorporate genetic and non-genetic data.
Collapse
Affiliation(s)
- P W Franks
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - E Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - M Friedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Sundström
- Department of Cardiology, Akademiska Sjukhuset, Uppsala, Sweden.,George Institute for Global Health, Camperdown, NSW, Australia.,Medical Sciences, Uppsala University, Uppsala, Sweden
| | - I Kockum
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - L Klareskog
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - K Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - K Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - A Malarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pfizer, Worldwide Research and Development, Stockholm, Sweden
| | - A Catrina
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - H Hagström
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - M Benson
- Department of Pediatrics, Linkopings Universitet, Linkoping, Sweden.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J Gustav Smith
- Department of Cardiology and Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M F Gomez
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - M Orho-Melander
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - B Jacobsson
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Genetics and Bioinformatics, Oslo, Norway.,Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - J Halfvarson
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - D Repsilber
- Functional Bioinformatics, Örebro University, Örebro, Sweden
| | - M Oresic
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI, Finland
| | - C Jern
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - B Melin
- Department of Radiation Sciences, Oncology, Umeå Universitet, Umeå, Sweden
| | - C Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, CBAR, University of Gothenburg, Gothenburg, Sweden.,Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - T Fall
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - L Rönnblom
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - G Nordmark
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Å Johansson
- Institute for Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - R Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|