1
|
Grimley M, Davies SM, Shrestha A, Shova A, Asnani M, Kent M, Sayani F, Quinn CT, Niss O, Lutzko C, Mehta PA, Khandelwal P, Little C, Chandra S, Felker S, Chi M, Kalfa TA, Knight-Madden J, Arumugam PI, Ramos KN, Witting S, Latham T, Bushman FD, Malik P. Lentiviral gene therapy with reduced-intensity conditioning for sickle cell disease: a phase 1/2 trial. Nat Med 2025:10.1038/s41591-025-03662-2. [PMID: 40419809 DOI: 10.1038/s41591-025-03662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/20/2025] [Indexed: 05/28/2025]
Abstract
Autologous transplantation of gene-modified cells for treatment of sickle cell disease has involved myeloablative conditioning with associated cytopenias and toxicities. We report results of seven patients treated in a first-in-human phase 1/2 study for sickle cell disease using reduced-intensity conditioning transplant of autologous hematopoietic stem cells genetically modified with a lentiviral vector (GbGM), with 2-7 yr of follow-up. GbGM encodes a modified γ-globin gene that expresses a potent anti-sickling fetal hemoglobin, HbFG16D. The primary study objectives were safety (occurrence of adverse events and duration of neutropenia and thrombocytopenia) and feasibility of treatment. Primary feasibility endpoints of collection of at least 8 × 106 CD34+ cells per kg body weight, successful transduction of a minimum of 4 × 106 CD34+ cells per kg body weight and the number of subjects with an average vector copy number of >0.01 copies per cell 1 yr after infusion were met. A median of 4 collections (range, 4-8) were needed to achieve the target cell dose, and all products achieved the target vector copy number. There were 503 adverse events in the seven patients throughout the study period, the most common being grade 2-3 vaso-occlusive crisis. Median duration of grade 4 thrombocytopenia was 5 d and of grade 4 neutropenia was 8 d. All seven patients exhibited sustained HbFG16D expression and >80% reduction in severe vaso-occlusive events (secondary endpoints). The clinical trial was terminated after infusion of the seventh patient as the predetermined primary endpoints were met and industry funding was complete. Larger trials are warranted to evaluate the benefits of reduced-intensity conditioning. ClinicalTrials.gov registration number: NCT02186418 .
Collapse
Affiliation(s)
- Michael Grimley
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Archana Shrestha
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Amy Shova
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Monika Asnani
- Caribbean Institute for Health Research, Sickle Cell Unit, The University of the West Indies, Kingston, Jamaica
| | - Michael Kent
- Center for Cancer and Blood Disorders, Atrium Health Levine Children's, Charlotte, NC, USA
| | - Farzana Sayani
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles T Quinn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Omar Niss
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carolyn Lutzko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Courtney Little
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sydney Felker
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mengna Chi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Theodosia A Kalfa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research, Sickle Cell Unit, The University of the West Indies, Kingston, Jamaica
| | - Paritha I Arumugam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kristie N Ramos
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Scott Witting
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Teresa Latham
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Punam Malik
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Shao L, Zheng Y, Somerville RP, Stroncek DF, Jin P. New insights on potency assays from recent advances and discoveries in CAR T-cell therapy. Front Immunol 2025; 16:1597888. [PMID: 40406092 PMCID: PMC12095010 DOI: 10.3389/fimmu.2025.1597888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025] Open
Abstract
This review explores recent advances in the characteristics and manufacturing of CAR T-cell products. Traditional potency assays have been designed based on well-established CAR T-cell functionalities. However, the advent of innovative tools and methodologies has revealed a broader spectrum of important CAR T-cell characteristics that correlate with function. Furthermore, as manufacturing strategies continue to evolve, conventional potency assays may no longer fully capture the complexity of these products. Therefore, it is essential to examine these emerging characteristics and manufacturing approaches and consider the development of tailored potency assays to ensure products are fully characterized.
Collapse
Affiliation(s)
| | | | | | - David F. Stroncek
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Ping Jin
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Booth C, Sevilla J, Almarza E, Kuo CY, Zubicaray J, Terrazas D, O'Toole G, Chitty-Lopez M, Choi G, Nicoletti E, Long-Boyle J, Fernandes A, Chetty K, De Oliveira S, Banuelos C, Xu-Bayford J, Bastone AL, John-Neek P, Jackson C, Moore TB, Gilmour K, Schambach A, Rothe M, Kasbekar S, Rao GR, Patel K, Shah G, Thrasher AJ, Bueren JA, Schwartz JD, Kohn DB. Lentiviral Gene Therapy for Severe Leukocyte Adhesion Deficiency Type 1. N Engl J Med 2025; 392:1698-1709. [PMID: 40305711 DOI: 10.1056/nejmoa2407376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
BACKGROUND The β2 common integrin subunit CD18 is essential for leukocyte-endothelial adhesion and extravasation to inflamed or infected tissue. Damaging variants in ITGB2, which encodes CD18, cause leukocyte adhesion deficiency type I (LAD-I), an inborn error of immunity that leads to frequent life-threatening infections and a high risk of death among affected children. Allogeneic hematopoietic stem-cell transplantation (HSCT) represents a curative treatment but is limited by donor availability, a high incidence of graft-versus-host disease, and graft failure. METHODS In a phase 1-2, multinational, open-label study, we enrolled nine children who had severe LAD-I and treated them with marnetegragene-autotemcel (marne-cel), a gene therapy of autologous CD34+ hematopoietic stem cells transduced with a self-inactivating lentiviral vector containing human ITGB2, and followed them for 24 months. The primary efficacy end point of the phase 2 study was survival without allogeneic HSCT (HSCT-free survival) at least 1 year after marne-cel infusion and at 2 years of age among the patients who were younger than 1 year of age at enrollment, tested against a null hypothesis of survival of 39% of the patients. We also report interim data from six patients enrolled in the long-term follow-up study. RESULTS Serious adverse events related to myeloablative busulfan conditioning were observed. No adverse events attributed to gene therapy were reported. None of the patients had graft failure. HSCT-free survival was 100% (95% confidence interval [CI], 66 to 100) at 1 year after infusion (P<0.001). All the patients who were enrolled at younger than 1 year of age were alive beyond 2 years of age. Pretreatment neutrophilia and skin abnormalities related to LAD-I resolved. The annualized incidence of infection-related hospitalizations beyond 90 days after engraftment through 24 months after marne-cel infusion was 74.45% lower than the incidence before marne-cel infusion, the annualized incidence of prolonged infection-related hospitalizations was 81.95% lower, and the annualized incidence of prespecified serious infections was 84.90% lower. CONCLUSIONS In this study, lentiviral vector-transduced autologous CD34+ HSCT was successful in treating severe LAD-I. (Funded by Rocket Pharmaceuticals and the California Institute for Regenerative Medicine; ClinicalTrials.gov numbers, NCT03812263 and NCT06282432.).
Collapse
Affiliation(s)
- Claire Booth
- University College London Great Ormond Street Institute of Child Health, London
- Great Ormond Street Hospital NHS Foundation Trust, London
| | - Julián Sevilla
- Hematología y Hemoterapia, Fundación para la investigación Biomédica, Hospital Infantil Universitario Niño Jesús (HIUNJ), Madrid
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
| | - Elena Almarza
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
- Rocket Pharmaceuticals, Cranbury, NJ
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD)/CIEMAT, Madrid
| | | | - Josune Zubicaray
- Hematología y Hemoterapia, Fundación para la investigación Biomédica, Hospital Infantil Universitario Niño Jesús (HIUNJ), Madrid
| | | | | | | | | | | | - Janel Long-Boyle
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco
| | | | - Kritika Chetty
- University College London Great Ormond Street Institute of Child Health, London
| | | | | | | | | | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | - Kimberly Gilmour
- University College London Great Ormond Street Institute of Child Health, London
- Immunology Department, Great Ormond Street Hospital, London
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Adrian J Thrasher
- University College London Great Ormond Street Institute of Child Health, London
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD)/CIEMAT, Madrid
| | | | | |
Collapse
|
4
|
Seleme MC, Kasimsetty A, Hwang Y, Lee C, Roche AM, Henriksen AC, Everett JK, Bushman FD, Sabatino DE. Small molecule inhibition of SUMOylation increases expression from AAV vectors both during and after initial transduction in mice. Mol Ther 2025:S1525-0016(25)00296-5. [PMID: 40263936 DOI: 10.1016/j.ymthe.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/14/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Adeno-associated virus-based vector (AAV)-based gene therapy has been used to treat thousands of patients, but a limitation can be inefficient transgene expression from AAV vectors. AAV transduction can be affected by the small ubiquitin-like modifier (SUMO) system, in which SUMO proteins are attached to proteins after translation, thereby modulating their function and stability. However, to date, practical modulators of SUMOylation to increase AAV vector transgene expression have not been available. Here we demonstrate that small molecule inhibitors of SUMOylation can boost expression from AAV vectors. Treatment with the SUMOylation inhibitor TAK-981 sharply increased AAV transgene expression in transformed human cells, in primary human cells, and in mice. Increased transgene expression in vitro and in vivo was associated with increased mRNA levels per vector DNA template. Treatment of mice with TAK-981 during AAV delivery increased AAV transgene expression; in addition, TAK-981 could boost transgene expression when introduced at long times after initial AAV vector transduction, regardless of whether mice had been exposed to TAK-981 previously. Modulators of SUMOylation are currently in clinical trials in human patients and, thus, may soon represent a viable strategy for boosting AAV transgene expression to improve human gene therapy outcomes.
Collapse
Affiliation(s)
- Maria C Seleme
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aradhana Kasimsetty
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carole Lee
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allysen C Henriksen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Hematology, Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Baatz F, Ghosh A, Herbst J, Polten S, Meyer J, Rhiel M, Maetzig T, Geffers R, Rothe M, Bastone AL, John-Neek P, Frühauf J, Eiz-Vesper B, Bonifacius A, Falk CS, Kaisenberg CV, Cathomen T, Schambach A, van den Brink MRM, Hust M, Sauer MG. Targeting BCL11B in CAR-engineered lymphoid progenitors drives NK-like cell development with prolonged anti-leukemic activity. Mol Ther 2025; 33:1584-1607. [PMID: 39955618 PMCID: PMC11997514 DOI: 10.1016/j.ymthe.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/26/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Chimeric antigen receptor (CAR)-induced suppression of the transcription factor B cell CLL/lymphoma 11B (BCL11B) propagates CAR-induced killer (CARiK) cell development from lymphoid progenitors. Here, we show that CRISPR-Cas9-mediated Bcl11b knockout in human and murine early lymphoid progenitors distinctively modulates this process either alone or in combination with a CAR. Upon adoptive transfer into hematopoietic stem cell recipients, Bcl11b-edited progenitors mediated innate-like antigen-independent anti-leukemic immune responses. With CAR expression allowing for additional antigen-specific responses, the progeny of double-edited lymphoid progenitors acquired prolonged anti-leukemic activity in vivo. These findings give important insights into how Bcl11b targeting can be used to tailor anti-leukemia functionality of CAR-engineered lymphoid progenitor cells.
Collapse
Affiliation(s)
- Franziska Baatz
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnab Ghosh
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Herbst
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Saskia Polten
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jörg Frühauf
- Clinic for Radiation Therapy and special Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Constantin V Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael Hust
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Jadlowsky JK, Hexner EO, Marshall A, Grupp SA, Frey NV, Riley JL, Veloso E, McConville H, Rogal W, Czuczman C, Hwang WT, Li Y, Leskowitz RM, Farrelly O, Karar J, Christensen S, Barber-Rotenberg J, Gaymon A, Aronson N, Bernstein W, Melenhorst JJ, Roche AM, Everett JK, Zolnoski SA, McFarland AG, Reddy S, Petrichenko A, Cook EJ, Lee C, Gonzalez VE, Alexander K, Kulikovskaya I, Ramírez-Fernández Á, Minehart JC, Ruella M, Gill SI, Schuster SJ, Cohen AD, Garfall AL, Shah PD, Porter DL, Maude SL, Levine BL, Siegel DL, Chew A, McKenna S, Lledo L, Davis MM, Plesa G, Herbst F, Stadtmauer EA, Tebas P, DiNofia A, Haas A, Haas NB, Myers R, O'Rourke DM, Svoboda J, Tanyi JL, Aplenc R, Jacobson JM, Ko AH, Cohen RB, June CH, Bushman FD, Fraietta JA. Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies. Nat Med 2025; 31:1134-1144. [PMID: 39833408 DOI: 10.1038/s41591-024-03478-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Long-term risks of gene therapy are not fully understood. In this study, we evaluated safety outcomes in 783 patients over more than 2,200 total patient-years of observation from 38 T cell therapy trials. The trials employed integrating gammaretroviral or lentiviral vectors to deliver engineered receptors to target HIV-1 infection or cancer. Eighteen patients (2.3%) developed secondary malignancies after treatment, with a median onset of 1.94 years (range: 51 d to 14 years). Where possible, incident tumor samples were analyzed for vector copy number, revealing no evidence of high-level marking or other indications of insertional mutagenesis. One T cell lymphoma was detected, but malignant T cells were not marked by vector integration. Analysis of vector integration sites in 176 patients revealed no pathological insertions linked to secondary malignancies, although, in some cases, integration in or near specific genes, including tumor suppressor genes, was associated with modest clonal expansion and sustained T cell persistence. These findings highlight the safety of engineered T cell therapies.
Collapse
Affiliation(s)
- Julie K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephan A Grupp
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Noelle V Frey
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James L Riley
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Veloso
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly McConville
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter Rogal
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cory Czuczman
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yimei Li
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel M Leskowitz
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Farrelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayashree Karar
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon Christensen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie Barber-Rotenberg
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery Gaymon
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Aronson
- Department of Medicine, Division of Infectious Diseases, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy Bernstein
- Department of Medicine, Division of Infectious Diseases, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jan Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonja A Zolnoski
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma J Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carole Lee
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa E Gonzalez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Alexander
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ángel Ramírez-Fernández
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janna C Minehart
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam D Cohen
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred L Garfall
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Payal D Shah
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Maude
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen McKenna
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Stadtmauer
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pablo Tebas
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda DiNofia
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew Haas
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi B Haas
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina Myers
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janos L Tanyi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Aplenc
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew H Ko
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Roger B Cohen
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Sobrino S, Joseph L, Magrin E, Chalumeau A, Hebert N, Corsia A, Denis A, Roudaut C, Aussel C, Leblanc O, Brusson M, Felix T, Diana JS, Petrichenko A, El Etri J, Godard A, Tibi E, Manceau S, Treluyer JM, Mavilio F, Bushman FD, Marcais A, Castelle M, Neven B, Hermine O, Renolleau S, Magnani A, Asnafi V, El Nemer W, Bartolucci P, Six E, Semeraro M, Miccio A, Cavazzana M. Severe inflammation and lineage skewing are associated with poor engraftment of engineered hematopoietic stem cells in patients with sickle cell disease. Nat Commun 2025; 16:3137. [PMID: 40169559 PMCID: PMC11961595 DOI: 10.1038/s41467-025-58321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
In sickle cell disease (SCD), the β6Glu→Val substitution in the β-globin leads to red blood cell sickling. The transplantation of autologous, genetically modified hematopoietic stem and progenitor cells (HSPCs) is a promising treatment option for patients with SCD. We completed a Phase I/II open-label clinical trial (NCT03964792) for patients with SCD using a lentiviral vector (DREPAGLOBE) expressing a potent anti-sickling β-globin. The primary endpoint was to evaluate the short-term safety and secondary endpoints included the efficacy and the long-term safety. We report on the results after 18 to 36 months of follow-up. No drug-related adverse events or signs of clonal hematopoiesis were observed. Despite similar vector copy numbers in the drug product, gene-marking in peripheral blood mononuclear cells and correction of the clinical phenotype varied from one patient to another. Single-cell transcriptome analyses show that in the patients with poor engraftment, the most immature HSCs display an exacerbated inflammatory signature (via IL-1 or TNF-α and interferon signaling pathways). This signature is accompanied by a lineage bias in the HSCs. Our clinical data indicates that the DREPAGLOBE-based gene therapy (GT) is safe. However, its efficacy is variable and probably depends on the number of infused HSCs and intrinsic, engraftment-impairing inflammatory alterations in HSCs. Trial: NCT03964792.
Collapse
Affiliation(s)
- Steicy Sobrino
- Laboratory of Chromatin and Gene Regulation During Development, University Paris Cite, UMR1163 INSERM, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Laure Joseph
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
| | - Elisa Magrin
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, AP-HP, INSERM, Institut Imagine, Paris, France
| | - Anne Chalumeau
- Laboratory of Chromatin and Gene Regulation During Development, University Paris Cite, UMR1163 INSERM, Imagine Institute, Paris, France
| | - Nicolas Hebert
- Univ Paris Est Créteil, IMRB, Laboratory of Excellence LABEX GRex, Créteil, France
- Etablissement Français du Sang, Créteil, France
| | - Alice Corsia
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Department of Adult Hematology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Laboratory of Excellence LABEX GRex, Paris, France
| | - Adeline Denis
- Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Cécile Roudaut
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, AP-HP, INSERM, Institut Imagine, Paris, France
| | - Clotilde Aussel
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, AP-HP, INSERM, Institut Imagine, Paris, France
| | - Olivia Leblanc
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, AP-HP, INSERM, Institut Imagine, Paris, France
| | - Mégane Brusson
- Laboratory of Chromatin and Gene Regulation During Development, University Paris Cite, UMR1163 INSERM, Imagine Institute, Paris, France
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation During Development, University Paris Cite, UMR1163 INSERM, Imagine Institute, Paris, France
| | - Jean-Sebastien Diana
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, AP-HP, INSERM, Institut Imagine, Paris, France
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jana El Etri
- Laboratory of Chromatin and Gene Regulation During Development, University Paris Cite, UMR1163 INSERM, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Auria Godard
- Aix Marseille Univ, CNRS, EFS, ADES, Labex GR-Ex, Marseille, France
| | - Eden Tibi
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
| | - Sandra Manceau
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Department of Adult Hematology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Laboratory of Excellence LABEX GRex, Paris, France
| | - Jean Marc Treluyer
- Centre d'Investigation Clinique-Unité de Recherche Clinique, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
- Université Paris Cité, Paris, France
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ambroise Marcais
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Department of Adult Hematology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Laboratory of Excellence LABEX GRex, Paris, France
| | - Martin Castelle
- Pediatric Immunology and Hematology Department, Hôpital Necker Enfants-Malades, Paris, France
| | - Benedicte Neven
- Pediatric Immunology and Hematology Department, Hôpital Necker Enfants-Malades, Paris, France
| | - Olivier Hermine
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Department of Adult Hematology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Laboratory of Excellence LABEX GRex, Paris, France
| | - Sylvain Renolleau
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Department of Adult Hematology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Laboratory of Excellence LABEX GRex, Paris, France
| | - Alessandra Magnani
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, AP-HP, INSERM, Institut Imagine, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Wassim El Nemer
- Aix Marseille Univ, CNRS, EFS, ADES, Labex GR-Ex, Marseille, France
| | - Pablo Bartolucci
- Univ Paris Est Créteil, IMRB, Laboratory of Excellence LABEX GRex, Créteil, France
- Paris-East Créteil University, Henri Mondor University Hospitals, APHP, Sickle Cell Referral Center-UMGGR, Créteil, France
| | - Emmanuelle Six
- Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Michaela Semeraro
- Centre d'Investigation Clinique-Unité de Recherche Clinique, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
- Université Paris Cité, Inserm, Pharmacologie et évaluations des thérapeutiques chez l'enfant et la femme enceinte, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, University Paris Cite, UMR1163 INSERM, Imagine Institute, Paris, France
| | - Marina Cavazzana
- Departement of Biotherapy Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Groupe Hospitalier Universitaire Centre, Université Paris Cité, Paris, France.
- Biotherapy Clinical Investigation Center, AP-HP, INSERM, Institut Imagine, Paris, France.
| |
Collapse
|
8
|
Rist M, Kaku M, Coffin JM. Ex vivo HIV DNA integration in STAT3 drives T cell persistence-A model of HIV-associated T cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646272. [PMID: 40236153 PMCID: PMC11996357 DOI: 10.1101/2025.03.31.646272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Oncogenic retroviruses are known for their pathogenesis via insertional mutagenesis, in which the presence of a provirus and its transcriptional control elements alter the expression of a nearby or surrounding host gene. There are reports of proviral integration driving oncogenesis in people with HIV and the use of HIV-derived vectors for gene therapy has raised concern about oncogenic side effects. To study this issue, we used an ex vivo human CD4+ T cell infection model developed in our laboratory to identify HIV-1 integration sites that might influence cell proliferation or survival. Combining integration site analysis and bulk RNA sequencing, we established that an upregulated STAT3 signature due to proviral insertional mutagenesis was associated with persistent HIV-infected CD4+ T cells. HIV+ persistent cells also expressed a STAT3-related anti-apoptotic and cytotoxic phenotype that resembles that of HIV-associated T cell lymphomas. HIV insertional mutagenesis of STAT3 and expression of its downstream targets provides a model of HIV-associated T cell lymphomas that can be used to further determine the oncogenic drivers of HIV-associated lymphomas, both AIDS- and gene therapy-associated, and, potentially, to evaluate therapeutics against these HIV-associated cancers. Author Summary The effects of HIV proviral insertional mutagenesis have been demonstrated in a handful of HIV-associated T cell lymphomas, where integration of an HIV provirus within intron 1 of STAT3 , results in increased expression of the STAT3 protein. To study the effects of HIV insertional mutagenesis, we established an ex vivo culture protocol of primary human CD4+ T cells infected with a replication-incompetent HIV vector with a gfp-reporter. After infection, the HIV/GFP+ cells from all three donors declined, but, over time, 3/6 replicates from one donor populations of infected cells rebounded. The resurgent HIV/GFP+ cells contained a provirus integrated within intron 1 of STAT3 , which led to increases in gene expression, STAT3 activation, and upregulation of a STAT3 -associated anti-apoptotic and cytotoxic phenotype. The STAT3 -associated gene signature shared similarities to the HIV-associated lymphomas with similar integration sites. Additionally, in all 3 replicates, insertional mutagenesis of genes other than STAT3 may have also contributed to clonal expansion of HIV/GFP+ T cells. Overall, we have demonstrated that HIV provirus insertional mutagenesis can influence T cell persistence. Our study provides a primary T cell culture model system that can be used to further study how proviral insertional mutagenesis influences HIV-associated T cell lymphomas and the safety of lentiviral vectors used in gene and cell therapies.
Collapse
|
9
|
Perica K, Jain N, Scordo M, Patel R, Eren OC, Patel U, Gundem G, Domenico D, Mitra S, Socci ND, Everett JK, Roche AM, Petrichenko A, Shah GL, Arcila ME, Borsu L, Park JH, Horwitz SM, Giralt SA, Dogan A, Leslie C, Papaemmanuil E, Bushman FD, Usmani SZ, Sadelain M, Mailankody S. CD4+ T-Cell Lymphoma Harboring a Chimeric Antigen Receptor Integration in TP53. N Engl J Med 2025; 392:577-583. [PMID: 39908432 PMCID: PMC11801235 DOI: 10.1056/nejmoa2411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Malignant T-cell transformation after chimeric antigen receptor (CAR) T-cell therapy has been described, but the contribution of CAR integration to oncogenesis is not clear. Here we report a case of a T-cell lymphoma harboring a lentiviral integration in a known tumor suppressor, TP53, which developed in a patient with multiple myeloma after B-cell maturation antigen (BCMA) CAR T-cell therapy.
Collapse
MESH Headings
- Humans
- B-Cell Maturation Antigen/genetics
- B-Cell Maturation Antigen/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Lentivirus/genetics
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Multiple Myeloma/complications
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Tumor Suppressor Protein p53/genetics
- Female
- Aged
- Fatal Outcome
Collapse
Affiliation(s)
- Karlo Perica
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nayan Jain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Scordo
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ruchi Patel
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ozgur Can Eren
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Utsav Patel
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunes Gundem
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dylan Domenico
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sneha Mitra
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aoife M. Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gunjan L. Shah
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Maria E. Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laetitia Borsu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jae H. Park
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven M. Horwitz
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sergio A. Giralt
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christina Leslie
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Saad Z. Usmani
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sham Mailankody
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
10
|
Tian G, Courtney AN, Yu H, Bhar S, Xu X, Barragán GA, Martinez Amador C, Ghatwai N, Wood MS, Schady D, Montalbano A, Reddy S, Roche AM, de la Cerda D, Parsons DW, Di Pierro EJ, Bushman FD, Heczey A, Metelitsa LS. Hyperleukocytosis in a neuroblastoma patient after treatment with natural killer T cells expressing a GD2-specific chimeric antigen receptor and IL-15. J Immunother Cancer 2025; 13:e010156. [PMID: 39800376 PMCID: PMC11883886 DOI: 10.1136/jitc-2024-010156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/23/2024] [Indexed: 03/08/2025] Open
Abstract
The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15). This patient was the first to be treated on dose level (DL) 5 and the first patient whose product was restimulated with K562-derived artificial antigen-presenting cells (aAPCs) instead of autologous peripheral blood mononuclear cells (PBMCs). 12 previously treated patients on DLs 1 through 4 did not experience significant toxicity. Our root-cause analysis revealed no genetic alterations of known clinical significance and excluded the possibility of clonal expansion due to insertional retroviral mutagenesis. We report that the use of aAPCs instead of PBMCs for CAR-NKT restimulation contributed to a hyperproliferative state associated with distinct gene expression that possibly led to explosive lymphocyte expansion and uncontrolled toxicity in the patient. These findings warrant the implementation of measures to control immune cell activation during manufacture of cell therapy products, especially those armed with transgenic cytokines.
Collapse
Affiliation(s)
- Gengwen Tian
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Amy N Courtney
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Hangjin Yu
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Saleh Bhar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatric Critical Care Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics-Hematology & Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Xin Xu
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Gabriel A Barragán
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Claudia Martinez Amador
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nisha Ghatwai
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Michael S Wood
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Deborah Schady
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Antonino Montalbano
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David de la Cerda
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Donald Williams Parsons
- Department of Pediatrics-Hematology & Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Erica J Di Pierro
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andras Heczey
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Voit RA, Liao X, Caulier A, Antoszewski M, Cohen B, Armant M, Lu HY, Fleming TJ, Kamal E, Wahlster L, Roche AM, Everett JK, Petrichenko A, Huang MM, Clarke W, Myers KC, Forester C, Perez-Atayde A, Bushman FD, Pellin D, Shimamura A, Williams DA, Sankaran VG. Regulated GATA1 expression as a universal gene therapy for Diamond-Blackfan anemia. Cell Stem Cell 2025; 32:38-52.e6. [PMID: 39532107 PMCID: PMC11698655 DOI: 10.1016/j.stem.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Gene therapy using hematopoietic stem and progenitor cells is altering the therapeutic landscape for patients with hematologic, immunologic, and metabolic disorders but has not yet been successfully developed for individuals with the bone marrow failure syndrome Diamond-Blackfan anemia (DBA). More than 30 mutations cause DBA through impaired ribosome function and lead to inefficient translation of the erythroid master regulator GATA1, providing a potential avenue for therapeutic intervention applicable to all patients with DBA, irrespective of the underlying genotype. Here, we report the development of a clinical-grade lentiviral gene therapy that achieves erythroid lineage-restricted expression of GATA1. We show that this vector is capable of augmenting erythropoiesis in DBA models and diverse patient samples without impacting hematopoietic stem cell function or demonstrating any signs of premalignant clonal expansion. These preclinical safety and efficacy data provide strong support for the first-in-human universal gene therapy trial for DBA through regulated GATA1 expression.
Collapse
Affiliation(s)
- Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Xiaotian Liao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Blake Cohen
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Myriam Armant
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry Y Lu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis J Fleming
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elena Kamal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Angelina Petrichenko
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mei-Mei Huang
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William Clarke
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Craig Forester
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danilo Pellin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
James SE, Chen S, Ng BD, Fischman JS, Jahn L, Boardman AP, Rajagopalan A, Elias HK, Massa A, Manuele D, Nichols KB, Lazrak A, Lee N, Roche AM, McFarland AG, Petrichenko A, Everett JK, Bushman FD, Fei T, Kousa AI, Lemarquis AL, DeWolf S, Peled JU, Vardhana SA, Klebanoff CA, van den Brink MRM. Leucine zipper-based immunomagnetic purification of CAR T cells displaying multiple receptors. Nat Biomed Eng 2024; 8:1592-1614. [PMID: 39715901 PMCID: PMC11917073 DOI: 10.1038/s41551-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/26/2024] [Indexed: 12/25/2024]
Abstract
Resistance to chimaeric antigen receptor (CAR) T cell therapy develops through multiple mechanisms, most notably antigen loss and tumour-induced immune suppression. It has been suggested that T cells expressing multiple CARs may overcome the resistance of tumours and that T cells expressing receptors that switch inhibitory immune-checkpoint signals into costimulatory signals may enhance the activity of the T cells in the tumour microenvironment. However, engineering multiple features into a single T cell product is difficult because of the transgene-packaging constraints of current gene-delivery vectors. Here we describe a cell-sorting method that leverages leucine zippers for the selective single-step immunomagnetic purification of cells co-transduced with two vectors. Such 'Zip sorting' facilitated the generation of T cells simultaneously expressing up to four CARs and coexpressing up to three 'switch' receptors. In syngeneic mouse models, T cells with multiple CARs and multiple switch receptors eliminated antigenically heterogeneous populations of leukaemia cells coexpressing multiple inhibitory ligands. By combining diverse therapeutic strategies, Zip-sorted multi-CAR multi-switch-receptor T cells can overcome multiple mechanisms of CAR T cell resistance.
Collapse
Affiliation(s)
- Scott E James
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope National Medical Center, Duarte, CA, USA.
| | - Sophia Chen
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Brandon D Ng
- Weill Cornell Medical College, New York, NY, USA
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Jacob S Fischman
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenz Jahn
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Alexander P Boardman
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adhithi Rajagopalan
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Harold K Elias
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alyssa Massa
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Dylan Manuele
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | | | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasia I Kousa
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Andri L Lemarquis
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Santosha A Vardhana
- Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Klebanoff
- Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
13
|
Dimitri AJ, Baxter AE, Chen GM, Hopkins CR, Rouin GT, Huang H, Kong W, Holliday CH, Wiebking V, Bartoszek R, Drury S, Dalton K, Koucky OM, Chen Z, Giles JR, Dils AT, Jung IY, O’Connor R, Collins S, Everett JK, Amses K, Sherrill-Mix S, Chandra A, Goldman N, Vahedi G, Jadlowsky JK, Young RM, Melenhorst JJ, Maude SL, Levine BL, Frey NV, Berger SL, Grupp SA, Porter DL, Herbst F, Porteus MH, Carty SA, Bushman FD, Weber EW, Wherry EJ, Jordan MS, Fraietta JA. TET2 regulates early and late transitions in exhausted CD8 + T cell differentiation and limits CAR T cell function. SCIENCE ADVANCES 2024; 10:eadp9371. [PMID: 39536093 PMCID: PMC11559603 DOI: 10.1126/sciadv.adp9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
CD8+ T cell exhaustion hampers control of cancer and chronic infections and limits chimeric antigen receptor (CAR) T cell efficacy. Targeting TET2 in CAR T cells provides therapeutic benefit; however, TET2's role in exhausted T cell (TEX) development is unclear. In chronic lymphocytic choriomeningitis virus (LCMV) infection, TET2 drove conversion from stem cell-like TEX progenitors toward terminally differentiated and effector (TEFF)-like TEX. TET2 also enforced a terminally differentiated state in the early bifurcation between TEFF and TEX, indicating broad roles for TET2 in acquisition of effector biology. To exploit the therapeutic potential of TET2, we developed clinically actionable TET2-targeted CAR T cells by disrupting TET2 via knock-in of a safety switch alongside CAR knock-in at the TRAC locus. TET2-targeted CAR T cells exhibited restrained terminal exhaustion in vitro and enhanced antitumor responses in vivo. Thus, TET2 regulates fate transitions in TEX differentiation and can be targeted with a safety mechanism in CAR T cells for improved tumor control.
Collapse
Affiliation(s)
- Alexander J. Dimitri
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E. Baxter
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory M. Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin R. Hopkins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geoffrey T. Rouin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher H. Holliday
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Volker Wiebking
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Robert Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney Drury
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine Dalton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Owen M. Koucky
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R. Giles
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander T. Dils
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Amses
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Aditi Chandra
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie K. Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jan Joseph Melenhorst
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shannon L. Maude
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bruce L. Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noelle V. Frey
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shelley L. Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David L. Porter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew H. Porteus
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Shannon A. Carty
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan W. Weber
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. John Wherry
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martha S. Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Yoon JK, Schindler JW, Loperfido M, Baricordi C, DeAndrade MP, Jacobs ME, Treleaven C, Plasschaert RN, Yan A, Barese CN, Dogan Y, Chen VP, Fiorini C, Hull F, Barbarossa L, Unnisa Z, Ivanov D, Kutner RH, Guda S, Oborski C, Maiwald T, Michaud V, Rothe M, Schambach A, Pfeifer R, Mason C, Biasco L, van Til NP. Preclinical lentiviral hematopoietic stem cell gene therapy corrects Pompe disease-related muscle and neurological manifestations. Mol Ther 2024; 32:3847-3864. [PMID: 39295144 PMCID: PMC11573599 DOI: 10.1016/j.ymthe.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aimin Yan
- AVROBIO, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Véronique Michaud
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
| | - Luca Biasco
- AVROBIO, Inc., Cambridge, MA 02139, USA; Zayed Centre for Research, University College London, London WC1N 1DZ, UK
| | - Niek P van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Chappell ME, Breda L, Tricoli L, Guerra A, Jarocha D, Castruccio Castracani C, Papp TE, Tanaka N, Hamilton N, Triebwasser MP, Ghiaccio V, Fedorky MT, Gollomp KL, Bochenek V, Roche AM, Everett JK, Cook EJ, Bushman FD, Teawtrakul N, Glentis S, Kattamis A, Mui BL, Tam YK, Weissman D, Abdulmalik O, Parhiz H, Rivella S. Use of HSC-targeted LNP to generate a mouse model of lethal α-thalassemia and treatment via lentiviral gene therapy. Blood 2024; 144:1633-1645. [PMID: 38949981 PMCID: PMC11487647 DOI: 10.1182/blood.2023023349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
ABSTRACT α-Thalassemia (AT) is one of the most commonly occurring inherited hematological diseases. However, few treatments are available, and allogeneic bone marrow transplantation is the only available therapeutic option for patients with severe AT. Research into AT has remained limited because of a lack of adult mouse models, with severe AT typically resulting in in utero lethality. By using a lipid nanoparticle (LNP) targeting the receptor CD117 and delivering a Cre messenger RNA (mRNACreLNPCD117), we were able to delete floxed α-globin genes at high efficiency in hematopoietic stem cells (HSC) ex vivo. These cells were then engrafted in the absence or presence of a novel α-globin-expressing lentiviral vector (ALS20αI). Myeloablated mice infused with mRNACreLNPCD117-treated HSC showed a complete knock out (KO) of α-globin genes. They showed a phenotype characterized by the synthesis of hemoglobin H (HbH; also known as β-tetramers or β4), aberrant erythropoiesis, and abnormal organ morphology, culminating in lethality ∼8 weeks after engraftment. Mice infused with mRNACreLNPCD117-treated HSC with at least 1 copy of ALS20αI survived long term with normalization of erythropoiesis, decreased production of HbH, and amelioration of the abnormal organ morphology. Furthermore, we tested ALS20αI in erythroid progenitors derived from α-globin-KO CD34+ cells and cells isolated from patients with both deletional and nondeletional HbH disease, demonstrating improvement in α-globin/β-globin mRNA ratio and reduction in the formation of HbH by high-performance liquid chromatography. Our results demonstrate the broad applicability of LNP for disease modeling, characterization of a novel mouse model of severe AT, and the efficacy of ALS20αI for treating AT.
Collapse
Affiliation(s)
- Maxwell E. Chappell
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
| | - Laura Breda
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lucas Tricoli
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Danuta Jarocha
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Cellular Immunotherapeutics, Translational and Correlative Studies Laboratory, University of Pennsylvania, Philadelphia, PA
| | | | - Tyler E. Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Naoto Tanaka
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nolan Hamilton
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael P. Triebwasser
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Valentina Ghiaccio
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan T. Fedorky
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kandace L. Gollomp
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Veronica Bochenek
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Aoife M. Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma J. Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nattiya Teawtrakul
- Division of Hematology, Department of Internal Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | - Stavros Glentis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Center for Musculoskeletal Disorders, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Pierson Smela M, Pepe V, Lubbe S, Kiskinis E, Church GM. SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. Stem Cell Reports 2024; 19:1505-1515. [PMID: 39270651 PMCID: PMC11561455 DOI: 10.1016/j.stemcr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, mutations, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. The ongoing decline of next-generation sequencing prices has made whole-genome sequencing (WGS) a promising option for detecting these abnormalities. However, this approach has been held back by a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended genome edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
Collapse
Affiliation(s)
| | - Valerio Pepe
- Wyss Institute at Harvard University, Boston MA, USA
| | - Steven Lubbe
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Simpson Querrey Center of Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - George M Church
- Wyss Institute at Harvard University, Boston MA, USA; Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Libertini S, Jadlowsky JK, Lanz TA, Mihalcik LM, Pizzurro DM. Genotoxicity evaluation of gene therapies: A report from the International Workshop on Genotoxicity Testing (IWGT) 2022. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39301812 DOI: 10.1002/em.22633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
At the 8th International Workshop on Genotoxicity Testing meeting in Ottawa, in August 2022, a plenary session was dedicated to the genotoxicity risk evaluation of gene therapies, including insertional oncogenesis and off-target genome editing. This brief communication summarizes the topics of discussion and the main insights from the speakers. Common themes included recommendations to conduct tailored risk assessments based on a weight-of-evidence approach, to promote data sharing, transparency, and cooperation between stakeholders, and to develop state-of-the-art validated tests relevant to clinical scenarios.
Collapse
Affiliation(s)
- S Libertini
- Novartis Biomedical Research, Basel, Switzerland
| | - J K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T A Lanz
- Pfizer Drug Safety Research & Development, Groton, Connecticut, USA
| | - L M Mihalcik
- Aclairo Pharmaceutical Development Group, Sterling, Virginia, USA
| | | |
Collapse
|
18
|
Klapwijk JC, Del Rio Espinola A, Libertini S, Collin P, Fellows MD, Jobling S, Lynch AM, Martus H, Vickers C, Zeller A, Biasco L, Brugman MH, Bushmann FD, Cathomen T, Ertl HCJ, Gabriel R, Gao G, Jadlowsky JK, Kimber I, Lanz TA, Levine BL, Micklethwaite KP, Onodera M, Pizzurro DM, Reed S, Rothe M, Sabatino DE, Salk JJ, Schambach A, Themis M, Yuan J. Improving the Assessment of Risk Factors Relevant to Potential Carcinogenicity of Gene Therapies: A Consensus Article. Hum Gene Ther 2024; 35:527-542. [PMID: 39049734 DOI: 10.1089/hum.2024.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Regulators and industry are actively seeking improvements and alternatives to current models and approaches to evaluate potential carcinogenicity of gene therapies (GTs). A meeting of invited experts was organized by NC3Rs/UKEMS (London, March 2023) to discuss this topic. This article describes the consensus reached among delegates on the definition of vector genotoxicity, sources of uncertainty, suitable toxicological endpoints for genotoxic assessment of GTs, and future research needs. The collected recommendations should inform the further development of regulatory guidelines for the nonclinical toxicological assessment of GT products.
Collapse
Affiliation(s)
| | | | | | - Philippe Collin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mick D Fellows
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Susan Jobling
- TestaVec Ltd, Maidenhead, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Catherine Vickers
- National Centre for the Replacement Refinement and Reduction of Animals in Research, London, United Kingdom
| | - Andreas Zeller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Luca Biasco
- UCL Zayed Centre for Research (ZCR), London, United Kingdom
| | - Martijn H Brugman
- Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, United Kingdom
| | - Frederic D Bushmann
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, Pennsylvania, USA
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hildegrund C J Ertl
- Ertl Laboratory, Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Julie K Jadlowsky
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thomas A Lanz
- Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth P Micklethwaite
- Department of Haematology, Blood Transplant and Cell Therapies Program, Westmead Hospital, Sydney, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory - ICPMR Westmead, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Masafumi Onodera
- Gene & Cell Therapy Promotion Center, National Center for Child Health and Development, Tokyo, Japan
| | | | - Simon Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Denise E Sabatino
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jesse J Salk
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Themis
- TestaVec Ltd, Maidenhead, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Jing Yuan
- Kymera Therapeutics, Watertown, Massachusetts, USA
| |
Collapse
|
19
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
20
|
Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503767. [PMID: 38821669 DOI: 10.1016/j.mrgentox.2024.503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
Collapse
Affiliation(s)
| | - Lena Dorsheimer
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany.
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Yasmin Dietz-Baum
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
21
|
Kasimsetty A, Sabatino DE. Integration and the risk of liver cancer-Is there a real risk? J Viral Hepat 2024; 31 Suppl 1:26-34. [PMID: 38606944 DOI: 10.1111/jvh.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 04/13/2024]
Abstract
Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.
Collapse
Affiliation(s)
- Aradhana Kasimsetty
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Armani-Tourret M, Gao C, Hartana CA, Sun W, Carrere L, Vela L, Hochroth A, Bellefroid M, Sbrolla A, Shea K, Flynn T, Roseto I, Rassadkina Y, Lee C, Giguel F, Malhotra R, Bushman FD, Gandhi RT, Yu XG, Kuritzkes DR, Lichterfeld M. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 2024; 187:1238-1254.e14. [PMID: 38367616 PMCID: PMC10903630 DOI: 10.1016/j.cell.2024.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Collapse
Affiliation(s)
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - WeiWei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Amy Sbrolla
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina Shea
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Theresa Flynn
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Carole Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Bell JA, Collon K, Mayfield C, Gallo MC, Chang SW, Sugiyama O, Tang AH, Hollis R, Chopra S, Kohn DB, Lieberman JR. Biodistribution of lentiviral transduced adipose-derived stem cells for "ex-vivo" regional gene therapy for bone repair. Gene Ther 2023; 30:826-834. [PMID: 37568039 DOI: 10.1038/s41434-023-00415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Ex-vivo gene therapy has been shown to be an effective method for treating bone defects in pre-clinical models. As gene therapy is explored as a potential treatment option in humans, an assessment of the safety profile becomes an important next step. The purpose of this study was to evaluate the biodistribution of viral particles at the defect site and various internal organs in a rat femoral defect model after implantation of human ASCs transduced with lentivirus (LV) with two-step transcriptional activation (TSTA) of bone morphogenetic protein-2 (LV-TSTA-BMP-2). Animals were sacrificed at 4-, 14-, 56-, and 84-days post implantation. The defects were treated with either a standard dose (SD) of 5 million cells or a high dose (HD) of 15 million cells to simulate a supratherapeutic dose. Treatment groups included (1) SD LV-TSTA-BMP-2 (2) HD LV-TSTA-BMP-2, (3) SD LV-TSTA-GFP (4) HD LV-TSTA-GFP and (5) SD nontransduced cells. The viral load at the defect site and ten organs was assessed at each timepoint. Histology of all organs, ipsilateral tibia, and femur were evaluated at each timepoint. There were nearly undetectable levels of LV-TSTA-BMP-2 transduced cells at the defect site at 84-days and no pathologic changes in any organ at all timepoints. In conclusion, human ASCs transduced with a lentiviral vector were both safe and effective in treating critical size bone defects in a pre-clinical model. These results suggest that regional gene therapy using lentiviral vector to treat bone defects has the potential to be a safe and effective treatment in humans.
Collapse
Affiliation(s)
- Jennifer A Bell
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA.
| | - Kevin Collon
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA
| | - Cory Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA
| | - Matthew C Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA
| | - Stephanie W Chang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA
| | - Roger Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Shefali Chopra
- Department of Pathology, Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, CA, 90089, USA
| |
Collapse
|
24
|
Merelli I, Beretta S, Cesana D, Gennari A, Benedicenti F, Spinozzi G, Cesini D, Montini E, D’Agostino D, Calabria A. InCliniGene enables high-throughput and comprehensive in vivo clonal tracking toward clinical genomics data integration. Database (Oxford) 2023; 2023:baad069. [PMID: 37935583 PMCID: PMC10630073 DOI: 10.1093/database/baad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
High-throughput clonal tracking in patients under hematopoietic stem cell gene therapy with integrating vector is instrumental in assessing bio-safety and efficacy. Monitoring the fate of millions of transplanted clones and their progeny across differentiation and proliferation over time leverages the identification of the vector integration sites, used as surrogates of clonal identity. Although γ-tracking retroviral insertion sites (γ-TRIS) is the state-of-the-art algorithm for clonal identification, the computational drawbacks in the tracking algorithm, based on a combinatorial all-versus-all strategy, limit its use in clinical studies with several thousands of samples per patient. We developed the first clonal tracking graph database, InCliniGene (https://github.com/calabrialab/InCliniGene), that imports the output files of γ-TRIS and generates the graph of clones (nodes) connected by arches if two nodes share common genomic features as defined by the γ-TRIS rules. Embedding both clonal data and their connections in the graph, InCliniGene can track all clones longitudinally over samples through data queries that fully explore the graph. This approach resulted in being highly accurate and scalable. We validated InCliniGene using an in vitro dataset, specifically designed to mimic clinical cases, and tested the accuracy and precision. InCliniGene allows extensive use of γ-TRIS in large gene therapy clinical applications and naturally realizes the full data integration of molecular and genomics data, clinical and treatment measurements and genomic annotations. Further extensions of InCliniGene with data federation and with application programming interface will support data mining toward precision, personalized and predictive medicine in gene therapy. Database URL: https://github.com/calabrialab/InCliniGene.
Collapse
Affiliation(s)
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Alessandro Gennari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Daniele Cesini
- Centro Nazionale Analisi Fotogrammi (CNAF), Istituto Nazionale di Fisica Nucleare, Viale Carlo Berti Pichat 6/2, Bologna 40127, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Daniele D’Agostino
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Viale Causa 13, Genoa 16145, Italy
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, Segrate (MI) 20054, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| |
Collapse
|
25
|
Dragoni F, Kwaa AK, Traut CC, Veenhuis RT, Woldemeskel BA, Camilo-Contreras A, Raymond HE, Dykema AG, Scully EP, Rosecrans AM, Smith KN, Bushman FD, Simonetti FR, Blankson JN. Proviral location affects cognate peptide-induced virus production and immune recognition of HIV-1-infected T cell clones. J Clin Invest 2023; 133:e171097. [PMID: 37698927 PMCID: PMC10617777 DOI: 10.1172/jci171097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDHIV-1-infected CD4+ T cells contribute to latent reservoir persistence by proliferating while avoiding immune recognition. Integration features of intact proviruses in elite controllers (ECs) and people on long-term therapy suggest that proviruses in specific chromosomal locations can evade immune surveillance. However, direct evidence of this mechanism is missing.METHODSIn this case report, we characterized integration sites and full genome sequences of expanded T cell clones in an EC before and after chemoradiation. We identified the cognate peptide of infected clones to investigate cell proliferation and virus production induced by T cell activation, and susceptibility to autologous CD8+ T cells.RESULTSThe proviral landscape was dominated by 2 large clones with replication-competent proviruses integrated into zinc finger (ZNF) genes (ZNF470 and ZNF721) in locations previously associated with deeper latency. A third nearly intact provirus, with a stop codon in Pol, was integrated into an intergenic site. Upon stimulation with cognate Gag peptides, infected clones proliferated extensively and produced virus, but the provirus in ZNF721 was 200-fold less inducible. While autologous CD8+ T cells decreased the proliferation of cells carrying the intergenic provirus, they had no effect on cells with the provirus in the ZNF721 gene.CONCLUSIONSWe provide direct evidence that upon activation of infected clones by cognate antigen, the lower inducibility of intact proviruses in ZNF genes can result in immune evasion and persistence.FUNDINGOffice of the NIH Director and National Institute of Dental & Craniofacial Research; NIAID, NIH; Johns Hopkins University Center for AIDS Research.
Collapse
Affiliation(s)
| | | | | | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology, and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Hayley E. Raymond
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Arbor G. Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Kellie N. Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Joel N. Blankson
- Department of Medicine
- Department of Molecular and Comparative Pathobiology, and
| |
Collapse
|
26
|
Smela MP, Pepe V, Church GM. SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559766. [PMID: 37829615 PMCID: PMC10565884 DOI: 10.1101/2023.09.27.559766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
1Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. Any of these abnormalities can invalidate experiments, so detecting them is crucial. The ongoing decline of next-generation sequencing prices has made whole genome sequencing (WGS) an effective quality control option, since WGS can detect any abnormality involving changes to DNA sequences or presence of unwanted sequences. However, this approach has suffered from a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
Collapse
Affiliation(s)
- Merrick Pierson Smela
- Wyss Institute at Harvard University, Cambridge, Massachusetts, United States of America
- Equal contributions
| | - Valerio Pepe
- Wyss Institute at Harvard University, Cambridge, Massachusetts, United States of America
- Equal contributions
| | - George M. Church
- Wyss Institute at Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Harvard University, Cambridge, Massachusetts, United States of America
- Lead contact
| |
Collapse
|
27
|
Del Core L, Pellin D, Wit EC, Grzegorczyk MA. Scalable inference of cell differentiation networks in gene therapy clonal tracking studies of haematopoiesis. Bioinformatics 2023; 39:btad605. [PMID: 37774002 PMCID: PMC10585354 DOI: 10.1093/bioinformatics/btad605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/15/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
MOTIVATION Investigating cell differentiation under a genetic disorder offers the potential for improving current gene therapy strategies. Clonal tracking provides a basis for mathematical modelling of population stem cell dynamics that sustain the blood cell formation, a process known as haematopoiesis. However, many clonal tracking protocols rely on a subset of cell types for the characterization of the stem cell output, and the data generated are subject to measurement errors and noise. RESULTS We propose a stochastic framework to infer dynamic models of cell differentiation from clonal tracking data. A state-space formulation combines a stochastic quasi-reaction network, describing cell differentiation, with a Gaussian measurement model accounting for data errors and noise. We developed an inference algorithm based on an extended Kalman filter, a nonlinear optimization, and a Rauch-Tung-Striebel smoother. Simulations show that our proposed method outperforms the state-of-the-art and scales to complex structures of cell differentiations in terms of nodes size and network depth. The application of our method to five in vivo gene therapy studies reveals different dynamics of cell differentiation. Our tool can provide statistical support to biologists and clinicians to better understand cell differentiation and haematopoietic reconstitution after a gene therapy treatment. The equations of the state-space model can be modified to infer other dynamics besides cell differentiation. AVAILABILITY AND IMPLEMENTATION The stochastic framework is implemented in the R package Karen which is available for download at https://cran.r-project.org/package=Karen. The code that supports the findings of this study is openly available at https://github.com/delcore-luca/CellDifferentiationNetworks.
Collapse
Affiliation(s)
- Luca Del Core
- University of Groningen – Bernoulli Institute, 9747AG Groningen, The Netherlands
- University of Nottingham – School of Mathematical Sciences, Nottingham NG72RD, United Kingdom
| | - Danilo Pellin
- Harvard Medical School, Boston, MA 02115, United States
| | - Ernst C Wit
- University of Groningen – Bernoulli Institute, 9747AG Groningen, The Netherlands
- Università della Svizzera italiana – Institute of Computing, 6962 Lugano, Switzerland
| | - Marco A Grzegorczyk
- University of Groningen – Bernoulli Institute, 9747AG Groningen, The Netherlands
| |
Collapse
|
28
|
Kim J, Park M, Baek G, Kim JI, Kwon E, Kang BC, Kim JI, Kang HJ. Tagmentation-based analysis reveals the clonal behavior of CAR-T cells in association with lentivector integration sites. Mol Ther Oncolytics 2023; 30:1-13. [PMID: 37360944 PMCID: PMC10285042 DOI: 10.1016/j.omto.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Integration site (IS) analysis is essential in ensuring safety and efficacy of gene therapies when integrating vectors are used. Although clinical trials of gene therapy are rapidly increasing, current methods have limited use in clinical settings because of their lengthy protocols. Here, we describe a novel genome-wide IS analysis method, "detection of the integration sites in a time-efficient manner, quantifying clonal size using tagmentation sequencing" (DIStinct-seq). In DIStinct-seq, a bead-linked Tn5 transposome is used, allowing the sequencing library to be prepared within a single day. We validated the quantification performance of DIStinct-seq for measuring clonal size with clones of known IS. Using ex vivo chimeric antigen receptor (CAR)-T cells, we revealed the characteristics of lentiviral IS. We then applied it to CAR-T cells collected at various times from tumor-engrafted mice, detecting 1,034-6,233 IS. Notably, we observed that the highly expanded clones had a higher integration frequency in the transcription units and vice versa in genomic safe harbors (GSH). Also, in GSH, persistent clones had more frequent IS. Together with these findings, the new IS analysis method will help to improve the safety and efficacy of gene therapies.
Collapse
Affiliation(s)
- Jaeryuk Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Miyoung Park
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Children’s Hospital, Seoul, Republic of Korea
| | - Gyungwon Baek
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Children’s Hospital, Seoul, Republic of Korea
| | - Joo-Il Kim
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Center for Animal Resource and Development; Seoul National University College of Medicine, Seoul, Republic of Korea
- Designed Animal Resource Center, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Hyoung Jin Kang
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Children’s Hospital, Seoul, Republic of Korea
- Wide River Institute of Immunology, Hongcheon, Republic of Korea
| |
Collapse
|
29
|
Calviño C, Ceballos C, Alfonso A, Jauregui P, Calleja-Cervantes ME, San Martin-Uriz P, Rodriguez-Marquez P, Martin-Mallo A, Iglesias E, Abizanda G, Rodriguez-Diaz S, Martinez-Turrillas R, Illarramendi J, Viguria MC, Redondo M, Rifon J, Villar S, Lasarte JJ, Inoges S, Lopez-Diaz de Cerio A, Hernaez M, Prosper F, Rodriguez-Madoz JR. Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia. Front Immunol 2023; 14:1270843. [PMID: 37795087 PMCID: PMC10546312 DOI: 10.3389/fimmu.2023.1270843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment.
Collapse
MESH Headings
- Animals
- Humans
- Aged
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Immunotherapy, Adoptive/methods
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
Collapse
Affiliation(s)
- Cristina Calviño
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Candela Ceballos
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Ana Alfonso
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Patricia Jauregui
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Maria E. Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Paula Rodriguez-Marquez
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Angel Martin-Mallo
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Elena Iglesias
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Gloria Abizanda
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Rebeca Martinez-Turrillas
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Jorge Illarramendi
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Maria C. Viguria
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Margarita Redondo
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Jose Rifon
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Sara Villar
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Juan J. Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ascension Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mikel Hernaez
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Data Science and Artificial Intelligence Institute (DATAI), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Juan R. Rodriguez-Madoz
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
30
|
Bastone AL, Dziadek V, John-Neek P, Mansel F, Fleischauer J, Agyeman-Duah E, Schaudien D, Dittrich-Breiholz O, Schwarzer A, Schambach A, Rothe M. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol Ther Methods Clin Dev 2023; 30:515-533. [PMID: 37693949 PMCID: PMC10491817 DOI: 10.1016/j.omtm.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.
Collapse
Affiliation(s)
- Antonella L. Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Bruggemans A, Vansant G, Van de Velde P, Debyser Z. The HIV-2 OGH double reporter virus shows that HIV-2 is less cytotoxic and less sensitive to reactivation from latency than HIV-1 in cell culture. J Virus Erad 2023; 9:100343. [PMID: 37701289 PMCID: PMC10493508 DOI: 10.1016/j.jve.2023.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
A better understanding of HIV-1 latency is a research priority in HIV cure research. Conversely, little is known about the latency characteristics of HIV-2, the closely related human lentivirus. Though both viruses cause AIDS, HIV-2 infection progresses more slowly with significantly lower viral loads, even when corrected for CD4+ T cell counts. Hence a direct comparison of latency characteristics between HIV-1 and HIV-2 could provide important clues towards a functional cure. Transduction of SupT1 cells with single-round HIV-1 and HIV-2 viruses with an enhanced green fluorescent protein (eGFP) reporter showed higher levels of eGFP expression for HIV-2 than HIV-1, while HIV-1 expression appeared more cytotoxic. To compare HIV-1 and HIV-2 gene expression, latency and reactivation in more detail, we have generated HIV-2 OGH, a replication deficient, near full- length, double reporter virus that discriminates latently and productively infected cells in cell culture. This construct is based on HIV-1 OGH, and to our knowledge, first of its kind for HIV-2. Using this construct we have observed a higher eGFP expression for HIV-2, but higher losses of HIV-1 transduced cells in SupT1 and Jurkat cells and a reduced sensitivity of HIV-2 for reactivation with TNF-α. In addition, we have analysed HIV-2 integration sites and their epigenetic environment. HIV-1 and HIV-2 share a preference for actively transcribed genes in gene-dense regions and favor active chromatin marks while disfavoring methylation markers associated with heterochromatin. In conclusion the HIV-2 OGH construct provides an interesting tool for studying HIV-2 expression, latency and reactivation. As simian immunodeficiency virus (SIV) and HIV-2 have been proposed to model a functional HIV cure, a better understanding of the mechanisms governing HIV-2 and SIV latency will be important to move forward. Further research is needed to investigate if HIV-2 uses similar mechanisms as HIV-1 to achieve its integration site selectivity.
Collapse
Affiliation(s)
- Anne Bruggemans
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | - Gerlinde Vansant
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
32
|
Fleischauer J, Bastone AL, Selich A, John-Neek P, Weisskoeppel L, Schaudien D, Schambach A, Rothe M. TGF β Inhibitor A83-01 Enhances Murine HSPC Expansion for Gene Therapy. Cells 2023; 12:1978. [PMID: 37566057 PMCID: PMC10416825 DOI: 10.3390/cells12151978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Murine hematopoietic stem and progenitor cells (HSPCs) are commonly used as model systems during gene therapeutic retroviral vector development and preclinical biosafety assessment. Here, we developed cell culture conditions to maintain stemness and prevent differentiation during HSPC culture. We used the small compounds A83-01, pomalidomide, and UM171 (APU). Highly purified LSK SLAM cells expanded in medium containing SCF, IL-3, FLT3-L, and IL-11 but rapidly differentiated to myeloid progenitors and mast cells. The supplementation of APU attenuated the differentiation and preserved the stemness of HSPCs. The TGFβ inhibitor A83-01 was identified as the major effector. It significantly inhibited the mast-cell-associated expression of FcεR1α and the transcription of genes regulating the formation of granules and promoted a 3800-fold expansion of LSK cells. As a functional readout, we used expanded HSPCs in state-of-the-art genotoxicity assays. Like fresh cells, APU-expanded HSPCs transduced with a mutagenic retroviral vector developed a myeloid differentiation block with clonal restriction and dysregulated oncogenic transcriptomic signatures due to vector integration near the high-risk locus Mecom. Thus, expanded HSPCs might serve as a novel cell source for retroviral vector testing and genotoxicity studies.
Collapse
Affiliation(s)
- Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Antonella Lucia Bastone
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Luisa Weisskoeppel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Department of Inhalation Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
33
|
Yan A, Baricordi C, Nguyen Q, Barbarossa L, Loperfido M, Biasco L. IS-Seq: a bioinformatics pipeline for integration sites analysis with comprehensive abundance quantification methods. BMC Bioinformatics 2023; 24:286. [PMID: 37464281 DOI: 10.1186/s12859-023-05390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Integration site (IS) analysis is a fundamental analytical platform for evaluating the safety and efficacy of viral vector based preclinical and clinical Gene Therapy (GT). A handful of groups have developed standardized bioinformatics pipelines to process IS sequencing data, to generate reports, and/or to perform comparative studies across different GT trials. Keeping up with the technological advances in the field of IS analysis, different computational pipelines have been published over the past decade. These pipelines focus on identifying IS from single-read sequencing or paired-end sequencing data either using read-based or using sonication fragment-based methods, but there is a lack of a bioinformatics tool that automatically includes unique molecular identifiers (UMI) for IS abundance estimations and allows comparing multiple quantification methods in one integrated pipeline. RESULTS Here we present IS-Seq a bioinformatics pipeline that can process data from paired-end sequencing of both old restriction sites-based IS collection methods and new sonication-based IS retrieval systems while allowing the selection of different abundance estimation methods, including read-based, Fragment-based and UMI-based systems. CONCLUSIONS We validated the performance of IS-Seq by testing it against the most popular analytical workflow available in the literature (INSPIIRED) and using different scenarios. Lastly, by performing extensive simulation studies and a comprehensive wet-lab assessment of our IS-Seq pipeline we could show that in clinically relevant scenarios, UMI quantification provides better accuracy than the currently most widely used sonication fragment counts as a method for IS abundance estimation.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Biasco
- AVROBIO, Inc., Cambridge, MA, USA.
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
34
|
Oziolor EM, Kumpf SW, Qian J, Gosink M, Sheehan M, Rubitski DM, Newman L, Whiteley LO, Lanz TA. Comparing molecular and computational approaches for detecting viral integration of AAV gene therapy constructs. Mol Ther Methods Clin Dev 2023; 29:395-405. [PMID: 37251978 PMCID: PMC10209688 DOI: 10.1016/j.omtm.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Many current gene therapy targets use recombinant adeno-associated virus (AAV). The majority of delivered AAV therapeutics persist as episomes, separate from host DNA, yet some viral DNA can integrate into host DNA in different proportions and at genomic locations. The potential for viral integration leading to oncogenic transformation has led regulatory agencies to require investigation into AAV integration events following gene therapy in preclinical species. In the present study, tissues were collected from cynomolgus monkeys and mice 6 and 8 weeks, respectively, following administration of an AAV vector delivering transgene cargo. We compared three different next-generation sequencing approaches (shearing extension primer tag selection ligation-mediated PCR, targeted enrichment sequencing [TES], and whole-genome sequencing) to contrast the specificity, scope, and frequency of integration detected by each method. All three methods detected dose-dependent insertions with a limited number of hotspots and expanded clones. While the functional outcome was similar for all three methods, TES was the most cost-effective and comprehensive method of detecting viral integration. Our findings aim to inform the direction of molecular efforts to ensure a thorough hazard assessment of AAV viral integration in our preclinical gene therapy studies.
Collapse
Affiliation(s)
- Elias M. Oziolor
- Global Computational Safety Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Steven W. Kumpf
- Global Discovery, Investigative and Translational Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Jessie Qian
- Global Discovery, Investigative and Translational Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Mark Gosink
- Global Computational Safety Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Mark Sheehan
- Global Discovery, Investigative and Translational Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - David M. Rubitski
- Global Discovery, Investigative and Translational Sciences, Pfizer Inc., Groton, CT 06340, USA
| | - Leah Newman
- Global Discovery, Investigative and Translational Sciences, Pfizer Inc., Groton, CT 06340, USA
| | | | - Thomas A. Lanz
- Global Discovery, Investigative and Translational Sciences, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
35
|
Prout J, Tian M, Palladino A, Wright J, Thompson JF. LNA blockers for improved amplification selectivity. Sci Rep 2023; 13:4858. [PMID: 36964235 PMCID: PMC10038989 DOI: 10.1038/s41598-023-31871-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
LNA-containing oligonucleotides bind DNA more tightly than standard DNA, so they can interact with targeted sequences and affect multiple processes. When a desired DNA is present at low concentrations relative to nearly identical undesired DNAs, LNAs can block amplification of unwanted DNAs. Using a short rAAV and synthetic DNA sequence as a model, we studied the length, number, and positioning of LNA bases to improve blocker effectiveness. Oligonucleotides 18-24 bases long with LNAs at every other position were most effective. Highly degenerate targets were used to characterize the impact of mismatches on blocking. Mismatches at LNA ends had little impact on blocking activity. Single and double mismatches were tolerated with longer blockers, especially if the mismatches were near LNA ends. Shorter LNAs were more selective, with > 1 mismatch preventing effective blocking. Neither the strand to which a blocker bound nor the distance between the blocker and priming sites greatly impacted blocking efficiency. We used these findings to design blockers of wild-type DNA versus the single-base A1AT PiZ allele. Blockers are most specific when the mismatch is located away from the LNA 5' end. Pairs of partially overlapping blockers on opposite strands with a centrally-located mismatch have maximal activity and specificity.
Collapse
Affiliation(s)
- Jaime Prout
- Department of Genomics and Computational Biology, Homology Medicines, Inc., Bedford, MA, 01730, USA
| | - Michael Tian
- Department of Genomics and Computational Biology, Homology Medicines, Inc., Bedford, MA, 01730, USA
| | - Alicia Palladino
- Department of Genomics and Computational Biology, Homology Medicines, Inc., Bedford, MA, 01730, USA
| | - Jason Wright
- Department of Genomics and Computational Biology, Homology Medicines, Inc., Bedford, MA, 01730, USA
| | - John F Thompson
- Department of Genomics and Computational Biology, Homology Medicines, Inc., Bedford, MA, 01730, USA.
| |
Collapse
|
36
|
Cornetta K, Lin TY, Pellin D, Kohn DB. Meeting FDA Guidance recommendations for replication-competent virus and insertional oncogenesis testing. Mol Ther Methods Clin Dev 2023; 28:28-39. [PMID: 36588821 PMCID: PMC9791246 DOI: 10.1016/j.omtm.2022.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Integrating vectors are associated with alterations in cellular function related to disruption of normal gene function. This has been associated with clonal expansion of cells and, in some instances, cancer. These events have been associated with replication-defective vectors and suggest that the inadvertent exposure to a replication-competent virus arising during vector manufacture would significantly increase the risk of treatment-related adverse events. These risks have led regulatory agencies to require specific monitoring for replication-competent viruses, both prior to and after treatment of patients with gene therapy products. Monitoring the risk of cell expansion and malignancy is also required. In this review, we discuss the rational potential approaches and challenges to meeting the US FDA expectations listed in current guidance documents.
Collapse
Affiliation(s)
- Kenneth Cornetta
- Gene Therapy Testing Laboratory, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- National Gene Vector Biorepository, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tsai-Yu Lin
- Gene Therapy Testing Laboratory, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- National Gene Vector Biorepository, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Donald B. Kohn
- Departments of Microbiology, Immunology and Molecular Genetics, and Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
37
|
Sasu BJ, Opiteck GJ, Gopalakrishnan S, Kaimal V, Furmanak T, Huang D, Goswami A, He Y, Chen J, Nguyen A, Balakumaran A, Shah NN, Hamadani M, Bone KM, Prashad S, Bowen MA, Pertel T, Embree HD, Gidwani SG, Chang D, Moore A, Leonard M, Amado RG. Detection of chromosomal alteration after infusion of gene-edited allogeneic CAR T cells. Mol Ther 2023; 31:676-685. [PMID: 36518079 PMCID: PMC10014221 DOI: 10.1016/j.ymthe.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
A chromosome 14 inversion was found in a patient who developed bone marrow aplasia following treatment with allogeneic chimeric antigen receptor (CAR) Tcells containing gene edits made with transcription activator-like effector nucleases (TALEN). TALEN editing sites were not involved at either breakpoint. Recombination signal sequences (RSSs) were found suggesting recombination-activating gene (RAG)-mediated activity. The inversion represented a dominant clone detected in the context of decreasing absolute CAR Tcell and overall lymphocyte counts. The inversion was not associated with clinical consequences and wasnot detected in the drug product administered to this patient or in any drug product used in this or other trials using the same manufacturing processes. Neither was the inversion detected in this patient at earlier time points or in any other patient enrolled in this or other trials treated with this or other product lots. This case illustrates that spontaneous, possibly RAG-mediated, recombination events unrelated to gene editing can occur in adoptive cell therapy studies, emphasizes the need for ruling out off-target gene editing sites, and illustrates that other processes, such as spontaneous V(D)J recombination, can lead to chromosomal alterations in infused cells independent of gene editing.
Collapse
Affiliation(s)
- Barbra J Sasu
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - Vivek Kaimal
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Tom Furmanak
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - David Huang
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | - Ying He
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Jiamin Chen
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Anh Nguyen
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | - Nirav N Shah
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kathleen M Bone
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sacha Prashad
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | - Thomas Pertel
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - David Chang
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Alison Moore
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Mark Leonard
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Rafael G Amado
- Allogene Therapeutics, South San Francisco, CA 94080, USA.
| |
Collapse
|
38
|
Pais G, Spinozzi G, Cesana D, Benedicenti F, Albertini A, Bernardo ME, Gentner B, Montini E, Calabria A. ISAnalytics enables longitudinal and high-throughput clonal tracking studies in hematopoietic stem cell gene therapy applications. Brief Bioinform 2023; 24:bbac551. [PMID: 36545803 PMCID: PMC9910212 DOI: 10.1093/bib/bbac551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Longitudinal clonal tracking studies based on high-throughput sequencing technologies supported safety and long-term efficacy and unraveled hematopoietic reconstitution in many gene therapy applications with unprecedented resolution. However, monitoring patients over a decade-long follow-up entails a constant increase of large data volume with the emergence of critical computational challenges, unfortunately not addressed by currently available tools. Here we present ISAnalytics, a new R package for comprehensive and high-throughput clonal tracking studies using vector integration sites as markers of cellular identity. Once identified the clones externally from ISAnalytics and imported in the package, a wide range of implemented functionalities are available to users for assessing the safety and long-term efficacy of the treatment, here described in a clinical trial use case for Hurler disease, and for supporting hematopoietic stem cell biology in vivo with longitudinal analysis of clones over time, proliferation and differentiation. ISAnalytics is conceived to be metadata-driven, enabling users to focus on biological questions and hypotheses rather than on computational aspects. ISAnalytics can be fully integrated within laboratory workflows and standard procedures. Moreover, ISAnalytics is designed with efficient and scalable data structures, benchmarked with previous methods, and grants reproducibility and full analytical control through interactive web-reports and a module with Shiny interface. The implemented functionalities are flexible for all viral vector-based clonal tracking applications as well as genetic barcoding or cancer immunotherapies.
Collapse
Affiliation(s)
- Giulia Pais
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Giulio Spinozzi
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Daniela Cesana
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Fabrizio Benedicenti
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Alessandra Albertini
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Maria Ester Bernardo
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bernhard Gentner
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Eugenio Montini
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Andrea Calabria
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| |
Collapse
|
39
|
Saleh AH, Rothe M, Barber DL, McKillop WM, Fraser G, Morel CF, Schambach A, Auray-Blais C, West ML, Khan A, Fowler DH, Rupar CA, Foley R, Medin JA, Keating A. Persistent hematopoietic polyclonality after lentivirus-mediated gene therapy for Fabry disease. Mol Ther Methods Clin Dev 2023; 28:262-271. [PMID: 36816757 PMCID: PMC9932294 DOI: 10.1016/j.omtm.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The safety and efficacy of lentivirus-mediated gene therapy was recently demonstrated in five male patients with Fabry disease-a rare X-linked lysosomal storage disorder caused by GLA gene mutations that result in multiple end-organ complications. To evaluate the risks of clonal dominance and leukemogenesis, which have been reported in multiple gene therapy trials, we conducted a comprehensive DNA insertion site analysis of peripheral blood samples from the five patients in our gene therapy trial. We found that patients had a polyclonal integration site spectrum and did not find evidence of a dominant clone in any patient. Although we identified vector integrations near proto-oncogenes, these had low percentages of contributions to the overall pool of integrations and did not persist over time. Overall, we show that our trial of lentivirus-mediated gene therapy for Fabry disease did not lead to hematopoietic clonal dominance and likely did not elevate the risk of leukemogenic transformation.
Collapse
Affiliation(s)
- Amr H. Saleh
- University Health Network, Toronto, ON, Canada,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dwayne L. Barber
- University Health Network, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Graeme Fraser
- Department of Oncology, McMaster University and Juravinski Hospital and Cancer Centre, Hamilton, ON, Canada
| | - Chantal F. Morel
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University, Health Network, Toronto, ON, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany,Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, CIUSSS de l’Estrie-CHUS, Hospital Fleurimont, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michael L. West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Aneal Khan
- Department of Medical Genetics, Metabolics and Pediatrics, Alberta Children’s Hospital, Cumming School of Medicine, Research Institute, University of Calgary, Calgary, AB, Canada
| | | | - C. Anthony Rupar
- Departments of Pathology and Laboratory Medicine and Pediatrics, Western University, London, ON, Canada,Children’s Health Research Institute, London, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University and Juravinski, Hospital and Cancer Centre, Hamilton, ON, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Armand Keating
- University Health Network, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Princess Margaret Cancer Centre, 610 University Avenue, 700U 6-325 Toronto, ON M5G 2M9, Canada,Corresponding author Armand Keating, MD, Princess Margaret Cancer Centre, 610 University Avenue, 700U 6-325 Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
40
|
Plaza-Jennings AL, Valada A, O'Shea C, Iskhakova M, Hu B, Javidfar B, Ben Hutta G, Lambert TY, Murray J, Kassim B, Chandrasekaran S, Chen BK, Morgello S, Won H, Akbarian S. HIV integration in the human brain is linked to microglial activation and 3D genome remodeling. Mol Cell 2022; 82:4647-4663.e8. [PMID: 36525955 PMCID: PMC9831062 DOI: 10.1016/j.molcel.2022.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
To explore genome organization and function in the HIV-infected brain, we applied single-nuclei transcriptomics, cell-type-specific chromosomal conformation mapping, and viral integration site sequencing (IS-seq) to frontal cortex from individuals with encephalitis (HIVE) and without (HIV+). Derepressive changes in 3D genomic compartment structures in HIVE microglia were linked to the transcriptional activation of interferon (IFN) signaling and cell migratory pathways, while transcriptional downregulation and repressive compartmentalization of neuronal health and signaling genes occurred in both HIVE and HIV+ microglia. IS-seq recovered 1,221 brain integration sites showing distinct genomic patterns compared with peripheral lymphocytes, with enrichment for sequences newly mobilized into a permissive chromatin environment after infection. Viral transcription occurred in a subset of highly activated microglia comprising 0.33% of all nuclei in HIVE brain. Our findings point to disrupted microglia-neuronal interactions in HIV and link retroviral integration to remodeling of the microglial 3D genome during infection.
Collapse
Affiliation(s)
- Amara L Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Callan O'Shea
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Iskhakova
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benxia Hu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriella Ben Hutta
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tova Y Lambert
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacinta Murray
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bibi Kassim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandhya Chandrasekaran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Morgello
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hyejung Won
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
41
|
Maetzig T, Lieske A, Dörpmund N, Rothe M, Kleppa MJ, Dziadek V, Hassan JJ, Dahlke J, Borchert D, Schambach A. Real-Time Characterization of Clonal Fate Decisions in Complex Leukemia Samples by Fluorescent Genetic Barcoding. Cells 2022; 11:cells11244045. [PMID: 36552809 PMCID: PMC9776743 DOI: 10.3390/cells11244045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Clonal heterogeneity in acute myeloid leukemia (AML) forms the basis for treatment failure and relapse. Attempts to decipher clonal evolution and clonal competition primarily depend on deep sequencing approaches. However, this prevents the experimental confirmation of the identified disease-relevant traits on the same cell material. Here, we describe the development and application of a complex fluorescent genetic barcoding (cFGB) lentiviral vector system for the labeling and subsequent multiplex tracking of up to 48 viable AML clones by flow cytometry. This approach allowed the visualization of longitudinal changes in the in vitro growth behavior of multiplexed color-coded AML clones for up to 137 days. Functional studies of flow cytometry-enriched clones documented their stably inherited increase in competitiveness, despite the absence of growth-promoting mutations in exome sequencing data. Transplantation of aliquots of a color-coded AML cell mix into mice revealed the initial engraftment of similar clones and their subsequent differential distribution in the animals over time. Targeted RNA-sequencing of paired pre-malignant and de novo expanded clones linked gene sets associated with Myc-targets, embryonic stem cells, and RAS signaling to the foundation of clonal expansion. These results demonstrate the potency of cFGB-mediated clonal tracking for the deconvolution of verifiable driver-mechanisms underlying clonal selection in leukemia.
Collapse
Affiliation(s)
- Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-7808
| | - Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Dörpmund
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jacob Jalil Hassan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Dahlke
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Dorit Borchert
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Shao L, Shi R, Zhao Y, Liu H, Lu A, Ma J, Cai Y, Fuksenko T, Pelayo A, Shah NN, Kochenderfer JN, Norberg SM, Hinrichs C, Highfill SL, Somerville RP, Panch SR, Jin P, Stroncek DF. Genome-wide profiling of retroviral DNA integration and its effect on clinical pre-infusion CAR T-cell products. J Transl Med 2022; 20:514. [DOI: 10.1186/s12967-022-03729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear.
Methods
We used a modified viral integration sites analysis (VISA) pipeline to evaluate viral integration events around the whole genome in pre-infusion CAR T-cell products. We compared the differences of integration pattern between lentiviral and γ-retroviral products. We also explored whether the integration sites correlated with clinical outcomes.
Results
We found that γ-retroviral vectors were more likely to insert than lentiviral vectors into promoter, untranslated, and exon regions, while lentiviral vector integration sites were more likely to occur in intron and intergenic regions. Some integration events affected gene expression at the transcriptional and post-transcriptional level. Moreover, γ-retroviral vectors showed a stronger impact on the host transcriptome. Analysis of individuals with different clinical outcomes revealed genes with differential enrichment of integration events. These genes may affect biological functions by interrupting amino acid sequences and generating abnormal proteins, instead of by affecting mRNA expression. These results suggest that vector integration is associated with CAR T-cell efficacy and clinical responses.
Conclusion
We found differences in integration patterns, insertion hotspots and effects on gene expression vary between lentiviral and γ-retroviral vectors used in CAR T-cell products and established a foundation upon which we can conduct further analyses.
Collapse
|
43
|
Ivančić D, Mir-Pedrol J, Jaraba-Wallace J, Rafel N, Sanchez-Mejias A, Güell M. INSERT-seq enables high-resolution mapping of genomically integrated DNA using Nanopore sequencing. Genome Biol 2022; 23:227. [PMID: 36284361 PMCID: PMC9594898 DOI: 10.1186/s13059-022-02778-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Comprehensive characterisation of genome engineering technologies is relevant for their development and safe use in human gene therapy. Short-read based methods can overlook insertion events in repetitive regions. We develop INSERT-seq, a method that combines targeted amplification of integrated DNA, UMI-based correction of PCR bias and Oxford Nanopore long-read sequencing for robust analysis of DNA integration. The experimental pipeline improves the number of mappable insertions at repetitive regions by 4.8–7.3% and larger repeats are processed with a computational peak calling pipeline. INSERT-seq is a simple, cheap and robust method to quantitatively characterise DNA integration in diverse ex vivo and in vivo samples.
Collapse
Affiliation(s)
- Dimitrije Ivančić
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain ,grid.473715.30000 0004 6475 7299The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Júlia Mir-Pedrol
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Jessica Jaraba-Wallace
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Núria Rafel
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Avencia Sanchez-Mejias
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Marc Güell
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
44
|
Rodriguez-Marquez P, Calleja-Cervantes ME, Serrano G, Oliver-Caldes A, Palacios-Berraquero ML, Martin-Mallo A, Calviño C, Español-Rego M, Ceballos C, Lozano T, San Martin-Uriz P, Vilas-Zornoza A, Rodriguez-Diaz S, Martinez-Turrillas R, Jauregui P, Alignani D, Viguria MC, Redondo M, Pascal M, Martin-Antonio B, Juan M, Urbano-Ispizua A, Rodriguez-Otero P, Alfonso-Pierola A, Paiva B, Lasarte JJ, Inoges S, Lopez-Diaz de Cerio A, San-Miguel J, Fernandez de Larrea C, Hernaez M, Rodriguez-Madoz JR, Prosper F. CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome. SCIENCE ADVANCES 2022; 8:eabo0514. [PMID: 36179026 PMCID: PMC9524842 DOI: 10.1126/sciadv.abo0514] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/17/2022] [Indexed: 05/23/2023]
Abstract
Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response.
Collapse
Affiliation(s)
| | - Maria E. Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Guillermo Serrano
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Aina Oliver-Caldes
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | | | - Angel Martin-Mallo
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Cristina Calviño
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Marta Español-Rego
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Candela Ceballos
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Rebeca Martinez-Turrillas
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Patricia Jauregui
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Diego Alignani
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Maria C. Viguria
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Margarita Redondo
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Mariona Pascal
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Beatriz Martin-Antonio
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
- Immunotherapy platform Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Paula Rodriguez-Otero
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Ana Alfonso-Pierola
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Bruno Paiva
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Juan J. Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Ascension Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Jesus San-Miguel
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Carlos Fernandez de Larrea
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Mikel Hernaez
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Data Science and Artificial Intelligence Institute (DATAI), Universidad de Navarra, Pamplona, Spain
| | - Juan R. Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
45
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
46
|
BET-Independent Murine Leukemia Virus Integration Is Retargeted
In Vivo
and Selects Distinct Genomic Elements for Lymphomagenesis. Microbiol Spectr 2022; 10:e0147822. [PMID: 35852337 PMCID: PMC9431007 DOI: 10.1128/spectrum.01478-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction. Here, we compared the replication of W390A MLV to that of wild-type (WT) MLV in adult BALB/c mice to study the role of BET proteins in replication, integration, and tumorigenesis in vivo. Comparing WT and W390A MLV infections revealed similar viral loads in the blood, thymus, and spleen cells. Interestingly, W390A MLV integration was retargeted away from GC-enriched genomic regions. However, both WT MLV- and W390A MLV-infected mice developed T-cell lymphoma after similar latencies represented by an enlarged thymus and spleen and multiorgan tumor infiltration. Integration site sequencing from splenic tumor cells revealed clonal expansion in all WT MLV- and W390A MLV-infected mice. However, the integration profiles of W390A MLV and WT MLV differed significantly. Integrations were enriched in enhancers and promoters, but compared to the WT, W390A MLV integrated less frequently into enhancers and more frequently into oncogene bodies such as Notch1 and Ppp1r16b. We conclude that host factors direct MLV in vivo integration site selection. Although BET proteins target WT MLV integration preferentially toward enhancers and promoters, insertional lymphomagenesis can occur independently from BET, likely due to the intrinsically strong enhancer/promoter of the MLV long terminal repeat (LTR). IMPORTANCE In this study, we have shown that the in vivo replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor. In addition, our results show that BET-independent murine leukemia virus uncouples insertional mutagenesis from gene enhancers, although lymphomagenesis still occurs despite the lack of an interaction with BET proteins. Our findings also have implications for the engineering of BET-independent MLV-based vectors for gene therapy, which may not be a safe alternative.
Collapse
|
47
|
Clonal reconstruction from co-occurrence of vector integration sites accurately quantifies expanding clones in vivo. Nat Commun 2022; 13:3712. [PMID: 35764632 PMCID: PMC9240075 DOI: 10.1038/s41467-022-31292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022] Open
Abstract
High transduction rates of viral vectors in gene therapies (GT) and experimental hematopoiesis ensure a high frequency of gene delivery, although multiple integration events can occur in the same cell. Therefore, tracing of integration sites (IS) leads to mis-quantification of the true clonal spectrum and limits safety considerations in GT. Hence, we use correlations between repeated measurements of IS abundances to estimate their mutual similarity and identify clusters of co-occurring IS, for which we assume a clonal origin. We evaluate the performance, robustness and specificity of our methodology using clonal simulations. The reconstruction methods, implemented and provided as an R-package, are further applied to experimental clonal mixes and preclinical models of hematopoietic GT. Our results demonstrate that clonal reconstruction from IS data allows to overcome systematic biases in the clonal quantification as an essential prerequisite for the assessment of safety and long-term efficacy of GT involving integrative vectors. High transduction rates of viral vectors ensure good gene delivery; however multiple integration events can occur in the same cell. Here the authors use correlations between repeated measurements of integration site abundances to estimate their mutual similarity and identify clusters of co-occurring sites.
Collapse
|
48
|
Corre G, Seye A, Frin S, Ferrand M, Winkler K, Luc C, Dorange F, Rocca CJ, Galy A. Lentiviral standards to determine the sensitivity of assays that quantify lentiviral vector copy numbers and genomic insertion sites in cells. Gene Ther 2022; 29:536-543. [PMID: 35194185 PMCID: PMC9482878 DOI: 10.1038/s41434-022-00315-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
With an increasing number of gene therapy clinical trials and drugs reaching the market, it becomes important to standardize the methods that evaluate the efficacy and safety of gene therapy. We herein report the generation of lentiviral standards which are stable, cloned human cells prepared from the diploid HCT116 cell line and which carry a known number of lentiviral vector copies in their genome. These clones can be used as reference cellular materials for the calibration or qualification of analytical methods that quantify vector copy numbers in cells (VCN) or lentiviral vector genomic integration sites (IS). Cellular standards were used to show the superior precision of digital droplet PCR (ddPCR) over quantitative PCR (qPCR) for VCN determination. This enabled us to develop a new sensitive and specific VCN ddPCR method specific for the integrated provirus and not recognizing the transfer plasmid. The cellular standards, were also useful to assess the sensitivity and limits of a ligation-mediated PCR (LM-PCR) method to measure IS showing that at least 1% abundance of a single IS can be detected in a polyclonal population but that not all IS can be amplified with similar efficiency. Thus, lentiviral standards should be systematically used in all assays that assess lentiviral gene therapy efficacy and safety.
Collapse
Affiliation(s)
- Guillaume Corre
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Ababacar Seye
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Sophie Frin
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Maxime Ferrand
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | | | | | | | - Céline J Rocca
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France. .,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France. .,ART-TG, Inserm US35, Inserm, Corbeil-Essonnes, France.
| |
Collapse
|
49
|
Ghassemi S, Durgin JS, Nunez-Cruz S, Patel J, Leferovich J, Pinzone M, Shen F, Cummins KD, Plesa G, Cantu VA, Reddy S, Bushman FD, Gill SI, O'Doherty U, O'Connor RS, Milone MC. Rapid manufacturing of non-activated potent CAR T cells. Nat Biomed Eng 2022; 6:118-128. [PMID: 35190680 PMCID: PMC8860360 DOI: 10.1038/s41551-021-00842-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Chimaeric antigen receptor (CAR) T cells can generate durable clinical responses in B-cell haematologic malignancies. The manufacturing of these T cells typically involves their activation, followed by viral transduction and expansion ex vivo for at least 6 days. However, the activation and expansion of CAR T cells leads to their progressive differentiation and the associated loss of anti-leukaemic activity. Here we show that functional CAR T cells can be generated within 24 hours from T cells derived from peripheral blood without the need for T-cell activation or ex vivo expansion, and that the efficiency of viral transduction in this process is substantially influenced by the formulation of the medium and the surface area-to-volume ratio of the culture vessel. In mouse xenograft models of human leukaemias, the rapidly generated non-activated CAR T cells exhibited higher anti-leukaemic in vivo activity per cell than the corresponding activated CAR T cells produced using the standard protocol. The rapid manufacturing of CAR T cells may reduce production costs and broaden their applicability.
Collapse
Affiliation(s)
- Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph S Durgin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selene Nunez-Cruz
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jai Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marilia Pinzone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Shen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine D Cummins
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vito Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome. Nat Med 2022; 28:71-80. [PMID: 35075289 PMCID: PMC8799465 DOI: 10.1038/s41591-021-01641-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Patients with Wiskott–Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no. NCT02333760) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos. NCT01347346 and NCT01347242), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS. Long-term monitoring of patients with Wiskott–Aldrich syndrome following lentiviral gene therapy shows a safe profile and a reduction in the frequency of autoimmune manifestations and bleeding events, despite incomplete platelet reconstitution.
Collapse
|