1
|
Stogsdill JA, Harwell CC, Goldman SA. Astrocytes as master modulators of neural networks: Synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci 2023; 1525:41-60. [PMID: 37219367 DOI: 10.1111/nyas.15004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Steven A Goldman
- Sana Biotechnology Inc., Cambridge, Massachusetts, USA
- Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA
- University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
2
|
Okano H. Transplantation of neural progenitor cells into the human CNS. Trends Mol Med 2022; 28:897-899. [PMID: 36182630 DOI: 10.1016/j.molmed.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 10/31/2022]
Abstract
The development of regenerative medicine for spinal cord injury (SCI) and intractable diseases of the nervous system using neural progenitor cells (NPCs) has shown great promise, and several clinical trials have begun. In addition, ex vivo gene therapy using genetically engineered NPCs was recently initiated in the clinical setting by Baloh et al., putatively showing enhanced therapeutic effects. Thus, the era of next-generation NPC transplantation therapy is beginning to dawn.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
3
|
Gala D, Gurusamy V, Patel K, Damodar S, Swaminath G, Ullal G. Stem Cell Therapy for Post-Traumatic Stress Disorder: A Novel Therapeutic Approach. Diseases 2021; 9:diseases9040077. [PMID: 34842629 PMCID: PMC8628773 DOI: 10.3390/diseases9040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Stem cell therapy is a rapidly evolving field of regenerative medicine being employed for the management of various central nervous system disorders. The ability to self-renew, differentiate into specialized cells, and integrate into neuronal networks has positioned stem cells as an ideal mechanism for the treatment of epilepsy. Epilepsy is characterized by repetitive seizures caused by imbalance in the GABA and glutamate neurotransmission following neuronal damage. Stem cells provide benefit by reducing the glutamate excitotoxicity and strengthening the GABAergic inter-neuron connections. Similar to the abnormal neuroanatomic location in epilepsy, post-traumatic stress disorder (PTSD) is caused by hyperarousal in the amygdala and decreased activity of the hippocampus and medial prefrontal cortex. Thus, stem cells could be used to modulate neuronal interconnectivity. In this review, we provide a rationale for the use of stem cell therapy in the treatment of PTSD.
Collapse
|
4
|
Paolillo M, Comincini S, Schinelli S. In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers (Basel) 2021; 13:cancers13102449. [PMID: 34070023 PMCID: PMC8157833 DOI: 10.3390/cancers13102449] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, the thorny issue of glioblastoma models is addressed, with a focus on 3D in vitro models. In the first part of the manuscript, glioblastoma features and classification are recapitulated, in order to highlight the major critical aspects that should be taken into account when choosing a glioblastoma 3D model. In the second part of the review, the 3D models described in the literature are critically discussed, considering the advantages, disadvantages, and feasibility for each experimental model, in the light of the potential issues that researchers want to address. Abstract Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, with an average survival time of about one year from initial diagnosis. In the attempt to overcome the complexity and drawbacks associated with in vivo GBM models, together with the need of developing systems dedicated to screen new potential drugs, considerable efforts have been devoted to the implementation of reliable and affordable in vitro GBM models. Recent findings on GBM molecular features, revealing a high heterogeneity between GBM cells and also between other non-tumor cells belonging to the tumoral niche, have stressed the limitations of the classical 2D cell culture systems. Recently, several novel and innovative 3D cell cultures models for GBM have been proposed and implemented. In this review, we first describe the different populations and their functional role of GBM and niche non-tumor cells that could be used in 3D models. An overview of the current available 3D in vitro systems for modeling GBM, together with their major weaknesses and strengths, is presented. Lastly, we discuss the impact of groundbreaking technologies, such as bioprinting and multi-omics single cell analysis, on the future implementation of 3D in vitro GBM models.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Sergio Comincini
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
5
|
Ghazali ZS, Eskandari M, Bonakdar S, Renaud P, Mashinchian O, Shalileh S, Bonini F, Uckay I, Preynat-Seauve O, Braschler T. Neural priming of adipose-derived stem cells by cell-imprinted substrates. Biofabrication 2021; 13. [PMID: 33126230 DOI: 10.1088/1758-5090/abc66f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Cell-imprinting technology is a novel method for directing stem cell fate using substrates molded from target cells. Here, we fabricated and studied cell-imprinted substrates for neural priming in human adipose-derived stem cells in the absence of chemical cues. We molded polydimethylsiloxane silicone substrates on fixed differentiated neural progenitor cells (ReNcellTMVM). The ReNcellTMcell line consists of immortalized human neural progenitor cells that are capable to differentiate into neural cells. The fabricated cell-imprinted silicone substrates represent the geometrical micro- and nanotopology of the target cell morphology. During the molding procedure, no transfer of cellular proteins was detectable. In the first test with undifferentiated ReNcellTMVM cells, the cell-imprinted substrates could accelerate neural differentiation. With adipose-derived stem cells cultivated on the imprinted substrates, we observed modifications of cell morphology, shifting from spread to elongated shape. Both immunofluorescence and quantitative gene expression analysis showed upregulation of neural stem cell and early neuronal markers. Our study, for the first time, demonstrated the effectiveness of cell-imprinted substrates for neural priming of adipose-derived stem cells for regenerative medicine applications.
Collapse
Affiliation(s)
- Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahnaz Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Iran Pasteur Institute, Tehran, Iran
| | - Philippe Renaud
- STI-IMT-LMIS4, Station 17, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Omid Mashinchian
- Nestlé Research, École Polytechnique Fédérale de Lausanne Innovation Park, 1015 Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Shahriar Shalileh
- School of Electrical and computer engineering, University of Tehran, Tehran, Iran
| | - Fabien Bonini
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilker Uckay
- Orthopedic Surgery Service, Geneva University Hospitals, Geneva, Switzerland
| | | | - Thomas Braschler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Ding K, Lai Z, Yang G, Zeng L. MiR-140-5p targets Prox1 to regulate the proliferation and differentiation of neural stem cells through the ERK/MAPK signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:671. [PMID: 33987369 PMCID: PMC8106095 DOI: 10.21037/atm-21-597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The expression of miR-140-5p increased in the brain tissue of a bilateral common carotid artery ligation model, while the overexpression of miR-140-5p significantly decreased the number of neurons. The luciferase report experiment in the previous study proved that miR-140-5p negatively regulated one of the potential targets of Prospero-related homeobox 1 (Prox1). Therefore, we want to investigate the effect of miR-140-5p on the proliferation and differentiation of neural stem cells (NSCs) and the underlying mechanism. METHODS Primary NSCs were extracted from pregnant ICR mice aged 16-18 days and induced to differentiate. After transient transfection with miR-140-5p mimic and inhibitor into NSCs, the cells were divided into five groups: blank, mimic normal control, mimic, inhibitor normal control, and inhibitor. Cell Counting Kit-8 (CCK-8) and 5-Bromo-2-deoxyUridine (BrDU), Ki-67 were used, and the diameter of neural spheres was measured to observe proliferation ability 48 h later. Doublecortin (DCX), glial fibrillary acidic protein (GFAP), microtubule-associated proteins 2 (MAP-2), synapsin I (SYN1), and postsynaptic density protein-95 (PSD-95) were stained to identify the effect of miR-140-5p on the differentiation ability of NSCs into neural precursor cells, astrocytes, and neurons and the expression of synapse-associated proteins. The expression of miR-140-5p, Prox1, p-ERK1/2, and ERK1/2 was analyzed by real time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. RESULTS While the expression of miR-140-5p decreased after NSC differentiation (P<0.05), the results of CCK-8, BrDU, and Ki-67 staining showed no significant difference in cell viability and the percentage of NSCs with proliferation ability (P>0.05). However, the neural spheres were shorter in the miR-140-5p overexpression group (P<0.05) and the expression of DCX, MAP2, synapsin I, and PSD-95 decreased, while the expression of GFAP increased after differentiation in the mimic group (P<0.05). In addition, the expression of Prox1 decreased and the expression of p-ERK1/2 protein increased (P<0.05), but the expression of ERK1/2 showed no significant difference (P>0.05) in the miR-140-5p overexpression group. CONCLUSIONS MiR-140-5p reduced the proliferation rate of NSCs, inhibited their differentiation into neurons, produced synapse-associated proteins, and promoted their differentiation into astrocytes. MiR-140-5p negatively regulated downstream target Prox1 and activated the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Kaiqi Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
8
|
Li S, Zhao H, Han X, Ni B, He L, Mukama O, de Dieu Habimana J, Lin Z, Huang R, Huang H, Tian C, Tang F, Li Z. Generation of UCiPSC-derived neurospheres for cell therapy and its application. Stem Cell Res Ther 2021; 12:188. [PMID: 33736654 PMCID: PMC7977190 DOI: 10.1186/s13287-021-02238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neural stem cell (NSC) therapy remains one of the most potential approaches for the treatment of neurological disorders. The discovery of human induced pluripotent stem cells (hiPSCs) and the establishment of hiPSC-derived human neural stem cells (hiNSCs) have revolutionized the technique of cell therapy. Meanwhile, it is often required that NSCs are stored and transported to a long distance for research or treatment purposes. Although high survival rates could be maintained, conventional methods for cell transportation (dry ice or liquid nitrogen) are inconvenient and expensive. Therefore, the establishment of a safe, affordable, and low-cost strategy to store and transport easily accessible hiPSCs and hiNSCs, with characteristics that match fetal hNSCs, is incredibly urgent. METHODS We reprogrammed human urinary cells to iPSCs using a non-integrating, virus-free technique and differentiated the iPSCs toward iNSCs/neurospheres and neurons, under Good Manufacturing Practice (GMP)-compatible conditions. The pluripotency of iPSCs and iNSCs was characterized by a series of classical methods (surface markers, karyotype analysis, and in vitro as well as in vivo differentiation capabilities, etc.). RESULTS Here, our results showed that we successfully generated hiNSCs/neurospheres from more available, non-invasive, and more acceptable urinary cells by a virus-free technique. Next, we demonstrated that the iNSCs differentiated into mature cerebral cortical neurons and neural networks. Interestingly, hiNSCs survived longer as neurospheres at ambient temperature (AT) than those cultured in a monolayer. Within 7 days approximately, the neural viability remained at > 80%, while hiNSCs cultured in a monolayer died almost immediately. Neurospheres exposed to AT that were placed under standard culture conditions (37 °C, 5% CO2) recovered their typical morphology, and retained their proliferation and differentiation abilities. CONCLUSIONS In this study, we provided a simple method for the storage of NSCs as neurospheres at AT as an alternative method to more costly and inconvenient traditional methods of cryopreservation. This will enable hiNSCs to be transported over long distances at AT and facilitate the therapeutic application of NSCs as neurospheres without any further treatment.
Collapse
Affiliation(s)
- Shuai Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Ni
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Lang He
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zuoxian Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualin Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Tian
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Feng Tang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China. .,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China. .,Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Pottmeier P, Doszyn O, Peuckert C, Jazin E. Increased Expression of Y-Encoded Demethylases During Differentiation of Human Male Neural Stem Cells. Stem Cells Dev 2020; 29:1497-1509. [PMID: 33040644 DOI: 10.1089/scd.2020.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human neural stem cells (hNSCs) have long been used as an in vitro model to study neurogenesis and as candidates for nervous system therapy. Many parameters have been considered when evaluating the success of transplantation, but sex of donor and recipients is often not discussed. We investigated two commercial NSC lines, the female hNSC-H9 and male hNSC-H14, and we observed faster growth rates in the male cells. At 4 days of differentiation, male cells presented a significant increase in expression of DCX, an immature neuronal marker, while female cells showed a significant increase in RMST, a long noncoding RNA, which is indispensable during neurogenesis. In addition, expression of neural markers MAP2, PSD95, SYP, DCX, and TUJ1 at day 14 of differentiation suggested a similar differentiation potential in both lines. The most significant differences at day 14 of differentiation were the expression levels of RELN, with almost 100-fold difference between the sexes, and MASH1, with more than 1,000-fold increase in male cells. To evaluate whether some of the observed differences may be sex related, we measured the expression of gametologous genes located on the X- and Y-chromosome. Most noticeable was the increase of Y-encoded demethylases KDM6C (UTY) and KDM5D during differentiation of male cells. Our results indicate that attention should be paid to sex when planning neurogenesis and transplantation experiments.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Olga Doszyn
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden.,Department of Molecular Biology, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Abstract
Regenerative therapies, including both gene and cellular therapies, aim to induce regeneration of cells, tissues and organs and restore their functions. In this short Spotlight, we summarize the latest advances in cellular therapies using pluripotent stem cells (PSCs), highlighting the current status of clinical trials using induced (i)PSC-derived cells. We also discuss the different cellular products that might be used in clinical studies, and consider safety issues and other challenges in iPSC-based cell therapy.
Collapse
Affiliation(s)
- Hideyuki Okano
- Keio University School of Medicine, Department of Physiology, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan .,Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Doug Sipp
- Keio University School of Medicine, Department of Physiology, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan.,Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.,RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan.,RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
12
|
Madl CM, LeSavage BL, Khariton M, Heilshorn SC. Neural Progenitor Cells Alter Chromatin Organization and Neurotrophin Expression in Response to 3D Matrix Degradability. Adv Healthc Mater 2020; 9:e2000754. [PMID: 32743903 DOI: 10.1002/adhm.202000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Indexed: 11/09/2022]
Abstract
Neural progenitor cells (NPCs) are promising therapeutic candidates for nervous system regeneration. Significant efforts focus on developing hydrogel-based approaches to facilitate the clinical translation of NPCs, from scalable platforms for stem cell production to injectable carriers for cell transplantation. However, fundamental questions surrounding NPC-hydrogel interactions remain unanswered. While matrix degradability is known to regulate the stemness and differentiation capacity of NPCs, how degradability impacts NPC epigenetic regulation and secretory phenotype remains unknown. To address this question, NPCs encapsulated in recombinant protein hydrogels with tunable degradability are assayed for changes in chromatin organization and neurotrophin expression. In high degradability gels, NPCs maintain expression of stem cell factors, proliferate, and have large nuclei with elevated levels of the stemness-associated activating histone mark H3K4me3. In contrast, NPCs in low degradability gels exhibit more compact, rounded nuclei with peripherally localized heterochromatin, are non-proliferative yet non-senescent, and maintain expression of neurotrophic factors with potential therapeutic relevance. This work suggests that tuning matrix degradability may be useful to direct NPCs toward either a more-proliferative, stem-like phenotype for cell replacement therapies, or a more quiescent-like, pro-secretory phenotype for soluble factor-mediated therapies.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Baxter Laboratory for Stem Cell Biology Department of Microbiology & Immunology Stanford University Stanford CA 94305 USA
| | - Bauer L. LeSavage
- Department of Bioengineering Stanford University Stanford CA 94305 USA
| | | | - Sarah C. Heilshorn
- Department of Materials Science & Engineering Stanford University 476 Lomita Mall, McCullough Room 246 Stanford CA 94305 USA
| |
Collapse
|
13
|
Karakaş N, Bay S, Türkel N, Öztunç N, Öncül M, Bilgen H, Shah K, Şahin F, Öztürk G. Neurons from human mesenchymal stem cells display both spontaneous and stimuli responsive activity. PLoS One 2020; 15:e0228510. [PMID: 32407317 PMCID: PMC7224507 DOI: 10.1371/journal.pone.0228510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have the ability to transdifferentiate into neurons and therefore one of the potential adult stem cell source for neuronal tissue regeneration applications and understanding neurodevelopmental processes. In many studies on human mesenchymal stem cell (hMSC) derived neurons, success in neuronal differentiation was limited to neuronal protein expressions which is not statisfactory in terms of neuronal activity. Established neuronal networks seen in culture have to be investigated in terms of synaptic signal transmission ability to develop a culture model for human neurons and further studying the mechanism of neuronal differentiation and neurological pathologies. Accordingly, in this study, we analysed the functionality of bone marrow hMSCs differentiated into neurons by a single step cytokine-based induction protocol. Neurons from both primary hMSCs and hMSC cell line displayed spontaneous activity (≥75%) as demonstrated by Ca++ imaging. Furthermore, when electrically stimulated, hMSC derived neurons (hMd-Neurons) matched the response of a typical neuron in the process of maturation. Our results reveal that a combination of neuronal inducers enhance differentiation capacity of bone marrow hMSCs into high yielding functional neurons with spontaneous activity and mature into electrophysiologically active state. Conceptually, we suggest these functional hMd-Neurons to be used as a tool for disease modelling of neuropathologies and neuronal differentiation studies.
Collapse
Affiliation(s)
- Nihal Karakaş
- Medical Biology Department, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- * E-mail:
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Nezaket Türkel
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Nurşah Öztunç
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- Medical Biology and Genetics Program, Graduate School of Health Sciences, İstanbul Medipol University, İstanbul, Turkey
| | - Merve Öncül
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Hülya Bilgen
- Center for Bone Marrow Transplantation, İstanbul Medipol University Hospital, İstanbul, Turkey
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Woman’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fikrettin Şahin
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- Physiology Department, International School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
14
|
Borhani-Haghighi M, Mohamadi Y. Intranasal administration of conditioned medium derived from mesenchymal stem cells-differentiated oligodendrocytes ameliorates experimental autoimmune encephalomyelitis. J Chem Neuroanat 2020; 106:101792. [PMID: 32353514 DOI: 10.1016/j.jchemneu.2020.101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
In multiple sclerosis, myelin sheaths around the axons are degenerated due to uncontrolled inflammation in the central nervous system. Oligodendrocytes (OLs) are myelin-forming cells that secrete trophic factors necessary for myelin protection. Beneficial features of conditioned medium (CM) derived from different stem cells are nowadays under investigation in treating neurodegenerative diseases. Here, we used the differentiation capacity of Wharton's jelly mesenchymal stem cells (WJMSCs) to obtain OLs. Then, the study aimed to evaluate the status of inflammation and myelination in male experimental autoimmune encephalomyelitis (EAE) mice after intranasal administration of CM derived from OLs (OL-CM). Inflammation was studied by evaluating gliosis, inflammatory cell infiltration and expression of inflammation indicators including NLRP3 inflammasome, interleukin-1β, interleukin-18, glial fibrillary acidic protein, and ionized calcium binding adaptor molecule 1. Remyelination was studied by luxol fast blue staining and evaluating the expression of myelin indicators including myelin basic protein and oligodendrocyte transcription factor. In addition, we followed the trend of body weight and functional recovery during the 28-day study. ELISA assay revealed that OL-CM contained brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and ciliary neurotrophic factor. Data showed that OL-CM moderated inflammation, augmented remyelination, and gained normal body weight. Notably, these anti-inflammatory and regenerative effects of OL-CM improved neurological functions in EAE mice. In conclusion, the current study offered a new choice for treating multiple sclerosis using noninvasive intranasal administration of CM harvested from easily achievable WJMSCs-differentiated OLs.
Collapse
Affiliation(s)
- Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
15
|
Xu G, Wu F, Gu X, Zhang J, You K, Chen Y, Getachew A, Zhuang Y, Zhong X, Lin Z, Guo D, Yang F, Pan T, Wei H, Li YX. Direct Conversion of Human Urine Cells to Neurons by Small Molecules. Sci Rep 2019; 9:16707. [PMID: 31723223 PMCID: PMC6854089 DOI: 10.1038/s41598-019-53007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Transdifferentiation of other cell type into human neuronal cells (hNCs) provides a platform for neural disease modeling, drug screening and potential cell-based therapies. Among all of the cell donor sources, human urine cells (hUCs) are convenient to obtain without invasive harvest procedure. Here, we report a novel approach for the transdifferentiation of hUCs into hNCs. Our study demonstrated that a combination of seven small molecules (CAYTFVB) cocktail induced transdifferentiation of hUCs into hNCs. These chemical-induced neuronal cells (CiNCs) exhibited typical neuron-like morphology and expressed mature neuronal markers. The neuronal-like morphology revealed in day 1, and the Tuj1-positive CiNCs reached to about 58% in day 5 and 38.36% Tuj1+/MAP2+ double positive cells in day 12. Partial electrophysiological properties of CiNCs was obtained using patch clamp. Most of the CiNCs generated using our protocol were glutamatergic neuron populations, whereas motor neurons, GABAergic or dopaminergic neurons were merely detected. hUCs derived from different donors were converted into CiNCs in this work. This method may provide a feasible and noninvasive approach for reprogramming hNCs from hUCs for disease models and drug screening.
Collapse
Affiliation(s)
- Guosheng Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangzhou Blood Center, Guangzhou, China
| | - Feima Wu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Gu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Anteneh Getachew
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofen Zhong
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zuoxian Lin
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dongsheng Guo
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongcheng Wei
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
16
|
Badhiwala JH, Wilson JR, Kwon BK, Casha S, Fehlings MG. A Review of Clinical Trials in Spinal Cord Injury Including Biomarkers. J Neurotrauma 2019; 35:1906-1917. [PMID: 29888678 DOI: 10.1089/neu.2018.5935] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute traumatic spinal cord injury (SCI) entered the arena of prospective, randomized clinical trials almost 40 years ago, with the undertaking of the National Acute Spinal Cord Study (NASCIS) I trial. Since then, a number of clinical trials have been conducted in the field, spurred by the devastating physical, social, and economic consequences of acute SCI for patients, families, and society at large. Many of these have been controversial and attracted criticism. The current review provides a critical summary of select past and current clinical trials in SCI, focusing in particular on the findings of prospective, randomized controlled trials, the challenges and barriers encountered, and the valuable lessons learned that can be applied to future trials.
Collapse
Affiliation(s)
- Jetan H Badhiwala
- 1 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Ontario, Canada
| | - Jefferson R Wilson
- 1 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Ontario, Canada
| | - Brian K Kwon
- 2 Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | - Steven Casha
- 3 Section of Neurosurgery, Department of Clinical Neurosciences, University of Calgary , Calgary, Alberta, Canada
| | - Michael G Fehlings
- 1 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
17
|
Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Evans A, Kern R. Novel Approach to Stem Cell Therapy in Parkinson's Disease. Stem Cells Dev 2019; 27:951-957. [PMID: 29882481 DOI: 10.1089/scd.2018.0001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this commentary we discuss International Stem Cell Corporation's (ISCO's) approach to developing a pluripotent stem cell based treatment for Parkinson's disease (PD). In 2016, ISCO received approval to conduct the world's first clinical study of a pluripotent stem cell based therapy for PD. The Australian regulatory agency Therapeutic Goods Administration (TGA) and the Melbourne Health's Human Research Ethics Committee (HREC) independently reviewed ISCO's extensive preclinical data and granted approval for the evaluation of a novel human parthenogenetic derived neural stem cell (NSC) line, ISC-hpNSC, in a PD phase 1 clinical trial ( ClinicalTrials.gov NCT02452723). This is a single-center, open label, dose escalating 12-month study with a 5-year follow-up evaluating a number of objective and patient-reported safety and efficacy measures. A total of 6 years of safety and efficacy data will be collected from each patient. Twelve participants are recruited in this study with four participants per single dose cohort of 30, 50, and 70 million ISC-hpNSC. The grafts are placed bilaterally in the caudate nucleus, putamen, and substantia nigra by magnetic resonance imaging-guided stereotactic surgery. Participants are 30-70 years old with idiopathic PD ≤13 years duration and unified PD rating scale motor score (Part III) in the "OFF" state ≤49. This trial is fully funded by ISCO with no economic involvement from the patients. It is worth noting that ISCO underwent an exhaustive review process and successfully answered the very comprehensive, detailed, and specific questions posed by the TGA and HREC. The regulatory/ethic review process is based on applying scientific and clinical expertise to decision-making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines or novel therapies.
Collapse
Affiliation(s)
| | | | - Glenn Sherman
- 1 International Stem Cell Corporation , Carlsbad, California
| | | | - Andrew Evans
- 2 Royal Melbourne Hospital , Parkville, Australia
| | - Russell Kern
- 1 International Stem Cell Corporation , Carlsbad, California.,3 Cyto Therapeutics , Melbourne, Australia
| |
Collapse
|
18
|
Human orbital adipose tissue-derived mesenchymal stem cells possess neuroectodermal differentiation and repair ability. Cell Tissue Res 2019; 378:531-542. [PMID: 31377878 DOI: 10.1007/s00441-019-03072-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are used extensively in cell therapy for repair and regeneration of several organs and tissues. Cell therapy is a valuable option to treat neurodegenerative diseases and MSCs have been shown to improve neuronal function through direct differentiation or secretion of neurotrophic factors. In the present study, we isolated and characterized stem cells from medial and central orbital adipose tissue and found that they could be grown in a monolayer culture. The orbital adipose tissue-derived cells were identical to bone marrow-derived MSCs in their cell surface marker expression, gene expression and multilineage differentiation abilities. The orbital adipose-derived MSCs (OAMSCs) express several neurotrophic factors, possess neuroectodermal differentiation ability and secreted factors from OAMSCs abrogated neuronal cell damage induced by oxidative stress. Thus, OAMSCs might be a valuable cell source for treatment of neurological diseases and to reverse oxidative damage in the neuronal cells.
Collapse
|
19
|
Madl CM, LeSavage BL, Dewi RE, Lampe KJ, Heilshorn SC. Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801716. [PMID: 30828535 PMCID: PMC6382308 DOI: 10.1002/advs.201801716] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Indexed: 05/14/2023]
Abstract
Neural progenitor cells (NPCs) are a promising cell source to repair damaged nervous tissue. However, expansion of therapeutically relevant numbers of NPCs and their efficient differentiation into desired mature cell types remains a challenge. Material-based strategies, including culture within 3D hydrogels, have the potential to overcome these current limitations. An ideal material would enable both NPC expansion and subsequent differentiation within a single platform. It has recently been demonstrated that cell-mediated remodeling of 3D hydrogels is necessary to maintain the stem cell phenotype of NPCs during expansion, but the role of matrix remodeling on NPC differentiation and maturation remains unknown. By culturing NPCs within engineered protein hydrogels susceptible to degradation by NPC-secreted proteases, it is identified that a critical amount of remodeling is necessary to enable NPC differentiation, even in highly degradable gels. Chemical induction of differentiation after sufficient remodeling time results in differentiation into astrocytes and neurotransmitter-responsive neurons. Matrix remodeling modulates expression of the transcriptional co-activator Yes-associated protein, which drives expression of NPC stemness factors and maintains NPC differentiation capacity, in a cadherin-dependent manner. Thus, cell-remodelable hydrogels are an attractive platform to enable expansion of NPCs followed by differentiation of the cells into mature phenotypes for therapeutic use.
Collapse
Affiliation(s)
| | | | - Ruby E. Dewi
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Kyle J. Lampe
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVA22904USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
20
|
Willadsen M, Chaise M, Yarovoy I, Zhang AQ, Parashurama N. Engineering molecular imaging strategies for regenerative medicine. Bioeng Transl Med 2018; 3:232-255. [PMID: 30377663 PMCID: PMC6195904 DOI: 10.1002/btm2.10114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The reshaping of the world's aging population has created an urgent need for therapies for chronic diseases. Regenerative medicine offers a ray of hope, and its complex solutions include material, cellular, or tissue systems. We review basics of regenerative medicine/stem cells and describe how the field of molecular imaging, which is based on quantitative, noninvasive, imaging of biological events in living subjects, can be applied to regenerative medicine in order to interrogate tissues in innovative, informative, and personalized ways. We consider aspects of regenerative medicine for which molecular imaging will benefit. Next, genetic and nanoparticle-based cell imaging strategies are discussed in detail, with modalities like magnetic resonance imaging, optical imaging (near infra-red, bioluminescence), raman microscopy, and photoacoustic microscopy), ultrasound, computed tomography, single-photon computed tomography, and positron emission tomography. We conclude with a discussion of "next generation" molecular imaging strategies, including imaging host tissues prior to cell/tissue transplantation.
Collapse
Affiliation(s)
- Matthew Willadsen
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Marc Chaise
- Jacobs School of Medicine and Biomedical Sciences University at Buffalo State University of New York 955 Main St., Buffalo, New York 14203
| | - Iven Yarovoy
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - An Qi Zhang
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228.,Department of Biomedical Engineering University at Buffalo, State University of New York, Bonner Hall Buffalo New York 14228.,Clinical and Translation Research Center (CTRC) University at Buffalo, State University of New York 875 Ellicott St., Buffalo, New York 14203
| |
Collapse
|
21
|
Rosati J, Ferrari D, Altieri F, Tardivo S, Ricciolini C, Fusilli C, Zalfa C, Profico DC, Pinos F, Bernardini L, Torres B, Manni I, Piaggio G, Binda E, Copetti M, Lamorte G, Mazza T, Carella M, Gelati M, Valente EM, Simeone A, Vescovi AL. Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death Dis 2018; 9:937. [PMID: 30224709 PMCID: PMC6141489 DOI: 10.1038/s41419-018-0990-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Establishing specific cell lineages from human induced pluripotent stem cells (hiPSCs) is vital for cell therapy approaches in regenerative medicine, particularly for neurodegenerative disorders. While neural precursors have been induced from hiPSCs, the establishment of hiPSC-derived human neural stem cells (hiNSCs), with characteristics that match foetal hNSCs and abide by cGMP standards, thus allowing clinical applications, has not been described. We generated hiNSCs by a virus-free technique, whose properties recapitulate those of the clinical-grade hNSCs successfully used in an Amyotrophic Lateral Sclerosis (ALS) phase I clinical trial. Ex vivo, hiNSCs critically depend on exogenous mitogens for stable self-renewal and amplification and spontaneously differentiate into astrocytes, oligodendrocytes and neurons upon their removal. In the brain of immunodeficient mice, hiNSCs engraft and differentiate into neurons and glia, without tumour formation. These findings now warrant the establishment of clinical-grade, autologous and continuous hiNSC lines for clinical trials in neurological diseases such as Huntington’s, Parkinson’s and Alzheimer’s, among others.
Collapse
Affiliation(s)
- Jessica Rosati
- Cellular Reprogramming Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy
| | - Filomena Altieri
- Cellular Reprogramming Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Silvia Tardivo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Ricciolini
- Stem Cell Laboratory, Cell Factory e Biobank, Terni Hospital, Via Tristano di Joannuccio 1, 05100, Terni, Italy
| | - Caterina Fusilli
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Cristina Zalfa
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy
| | - Daniela C Profico
- Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Francesca Pinos
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy
| | - Laura Bernardini
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Barbara Torres
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, Regina Elena National Cancer Institute, Rome, Italy
| | - Elena Binda
- Cancer Stem Cells Unit (ICS), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Massimiliano Copetti
- Biostatistic Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Giuseppe Lamorte
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Gelati
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy.,Stem Cell Laboratory, Cell Factory e Biobank, Terni Hospital, Via Tristano di Joannuccio 1, 05100, Terni, Italy.,Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100, Pavia, Italy
| | - Antonio Simeone
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via P. Castellino 111, 80131, Naples, Italy.,IRCSS Neuromed, 86077, Pozzilli, Isernia, Italy
| | - Angelo L Vescovi
- Cellular Reprogramming Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy. .,Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy. .,Stem Cell Laboratory, Cell Factory e Biobank, Terni Hospital, Via Tristano di Joannuccio 1, 05100, Terni, Italy.
| |
Collapse
|
22
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
23
|
Polgar S, Karimi L, Buultjens M, Morris ME, Busse M. Assessing the Efficacy of Cell Transplantation for Parkinson's Disease: A Patient-Centered Approach. JOURNAL OF PARKINSON'S DISEASE 2018; 8:375-383. [PMID: 29889080 PMCID: PMC6130410 DOI: 10.3233/jpd-181309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evidence from a growing number of preclinical studies indicate that recently discovered stem cell lines may be translated into viable cellular therapies for people with Parkinson's disease. OBJECTIVES In a brief but critical review, we examine the use of primary and secondary outcome measures currently used to evaluate the efficacy of cellular therapies. METHODS The current practice of relying on a single primary outcome measure does not appear to provide the evidence required for demonstrating the robust, life-changing recovery anticipated with the successful implementation of cellular therapies. RESULTS We propose a 360-degree assessment protocol, which includes co-primary and composite outcome measures to provide accurate and comprehensive evidence of treatment efficacy, from the perspectives of both the researchers and the patients.
Collapse
Affiliation(s)
- Stephen Polgar
- School of Allied Health, La Trobe University, Bundoora, Melbourne, Australia
| | - Leila Karimi
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Australia
- School of Health Policy and Management, Ilia State University, Georgia
| | - Melissa Buultjens
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Australia
| | - Meg E. Morris
- La Trobe Centre for Sport and Exercise Medicine Research, School Allied Health, La Trobe University and Healthscope, Bundoora, Melbourne, Australia
| | - Monica Busse
- Centre For Trials Research, Cardiff University, Cardiff, UK
| |
Collapse
|
24
|
Levine BL, Fesnak AD, Riviere I. Showcasing Clinical Development and Production of Cellular Therapies. Mol Ther 2017; 25:827-828. [PMID: 28341560 DOI: 10.1016/j.ymthe.2017.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Bruce L Levine
- University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|