1
|
Jagadisan B, Dhawan A. Adeno-associated viral vector gene therapy: Challenges for the paediatric hepatologist. J Pediatr Gastroenterol Nutr 2024; 79:485-494. [PMID: 39073133 DOI: 10.1002/jpn3.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hepatoxicity associated with recombinant adeno-associated virus gene therapy is being increasingly encountered by hepatologists in tertiary and quaternary referral units due to the recent increase of these therapies for neuromuscular and haematological disorders. The challenges in managing the condition stem from a lack of good-quality evidence on the appropriate protocols for immunosuppressants due to lack of representative animal models. There is a need for protocols for diagnosing and treating hepatotoxicity and this possible with further research to understand the problem and its management. The review also highlights the importance of a multidisciplinary team in managing hepatotoxicity and recommends further research to better identify at-risk individuals, define the extent of the problem and assess the long-term effects of liver injury and immunosuppressants.
Collapse
Affiliation(s)
- Barath Jagadisan
- Paediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| |
Collapse
|
2
|
Kistner A, Chichester JA, Wang L, Calcedo R, Greig JA, Cardwell LN, Wright MC, Couthouis J, Sethi S, McIntosh BE, McKeever K, Wadsworth S, Wilson JM, Kakkis E, Sullivan BA. Prednisolone and rapamycin reduce the plasma cell gene signature and may improve AAV gene therapy in cynomolgus macaques. Gene Ther 2024; 31:128-143. [PMID: 37833563 PMCID: PMC10940161 DOI: 10.1038/s41434-023-00423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Adeno-associated virus (AAV) vector gene therapy is a promising approach to treat rare genetic diseases; however, an ongoing challenge is how to best modulate host immunity to improve transduction efficiency and therapeutic outcomes. This report presents two studies characterizing multiple prophylactic immunosuppression regimens in male cynomolgus macaques receiving an AAVrh10 gene therapy vector expressing human coagulation factor VIII (hFVIII). In study 1, no immunosuppression was compared with prednisolone, rapamycin (or sirolimus), rapamycin and cyclosporin A in combination, and cyclosporin A and azathioprine in combination. Prednisolone alone demonstrated higher mean peripheral blood hFVIII expression; however, this was not sustained upon taper. Anti-capsid and anti-hFVIII antibody responses were robust, and vector genomes and transgene mRNA levels were similar to no immunosuppression at necropsy. Study 2 compared no immunosuppression with prednisolone alone or in combination with rapamycin or methotrexate. The prednisolone/rapamycin group demonstrated an increase in mean hFVIII expression and a mean delay in anti-capsid IgG development until after rapamycin taper. Additionally, a significant reduction in the plasma cell gene signature was observed with prednisolone/rapamycin, suggesting that rapamycin's tolerogenic effects may include plasma cell differentiation blockade. Immunosuppression with prednisolone and rapamycin in combination could improve therapeutic outcomes in AAV vector gene therapy.
Collapse
Affiliation(s)
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Affinia Therapeutics, Waltham, MA, USA
| | - Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leah N Cardwell
- Ultragenyx Gene Therapy, Ultragenyx Pharmaceutical Inc., Cambridge, MA, USA
| | | | | | | | | | | | - Samuel Wadsworth
- Ultragenyx Gene Therapy, Ultragenyx Pharmaceutical Inc., Cambridge, MA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | |
Collapse
|
3
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
4
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
5
|
Ilyinskii PO, Roy C, Michaud A, Rizzo G, Capela T, Leung SS, Kishimoto TK. Readministration of high-dose adeno-associated virus gene therapy vectors enabled by ImmTOR nanoparticles combined with B cell-targeted agents. PNAS NEXUS 2023; 2:pgad394. [PMID: 38024395 PMCID: PMC10673641 DOI: 10.1093/pnasnexus/pgad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Tolerogenic ImmTOR nanoparticles encapsulating rapamycin have been demonstrated to mitigate immunogenicity of adeno-associated virus (AAV) gene therapy vectors, enhance levels of transgene expression, and enable redosing of AAV at moderate vector doses of 2 to 5E12 vg/kg. However, recent clinical trials have often pushed AAV vector doses 10-fold to 50-fold higher, with serious adverse events observed at the upper range. Here, we assessed combination therapy of ImmTOR with B cell-targeting drugs for the ability to increase the efficiency of redosing at high vector doses. The combination of ImmTOR with a monoclonal antibody against B cell activation factor (aBAFF) exhibited strong synergy leading to more than a 5-fold to 10-fold reduction of splenic mature B cells and plasmablasts while increasing the fraction of pre-/pro-B cells. In addition, this combination dramatically reduced anti-AAV IgM and IgG antibodies, thus enabling four successive AAV administrations at doses up to 5E12 vg/kg and at least two AAV doses at 5E13 vg/kg, with the transgene expression level in the latter case being equal to that observed in control animals receiving a single vector dose of 1E14 vg/kg. Similar synergistic effects were seen with a combination of ImmTOR and a Bruton's tyrosine kinase inhibitor, ibrutinib. These results suggest that ImmTOR could be combined with B cell-targeting agents to enable repeated vector administrations as a potential strategy to avoid toxicities associated with vector doses above 1E14 vg/kg.
Collapse
Affiliation(s)
| | | | | | - Gina Rizzo
- Selecta Biosciences, Watertown, MA 02472, USA
| | | | | | | |
Collapse
|
6
|
Li L, Vasan L, Kartono B, Clifford K, Attarpour A, Sharma R, Mandrozos M, Kim A, Zhao W, Belotserkovsky A, Verkuyl C, Schmitt-Ulms G. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023; 11:2725. [PMID: 37893099 PMCID: PMC10603849 DOI: 10.3390/biomedicines11102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are gene therapy delivery tools that offer a promising platform for the treatment of neurodegenerative diseases. Keeping up with developments in this fast-moving area of research is a challenge. This review was thus written with the intention to introduce this field of study to those who are new to it and direct others who are struggling to stay abreast of the literature towards notable recent studies. In ten sections, we briefly highlight early milestones within this field and its first clinical success stories. We showcase current clinical trials, which focus on gene replacement, gene augmentation, or gene suppression strategies. Next, we discuss ongoing efforts to improve the tropism of rAAV vectors for brain applications and introduce pre-clinical research directed toward harnessing rAAV vectors for gene editing applications. Subsequently, we present common genetic elements coded by the single-stranded DNA of rAAV vectors, their so-called payloads. Our focus is on recent advances that are bound to increase treatment efficacies. As needed, we included studies outside the neurodegenerative disease field that showcased improved pre-clinical designs of all-in-one rAAV vectors for gene editing applications. Finally, we discuss risks associated with off-target effects and inadvertent immunogenicity that these technologies harbor as well as the mitigation strategies available to date to make their application safer.
Collapse
Affiliation(s)
- Leyao Li
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lakshmy Vasan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan Kartono
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Kevan Clifford
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health (CAMH), 250 College St., Toronto, ON M5T 1R8, Canada
| | - Ahmadreza Attarpour
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Raghav Sharma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Matthew Mandrozos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Claire Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Happi Mbakam C, Tremblay JP. Gene therapy for Duchenne muscular dystrophy: an update on the latest clinical developments. Expert Rev Neurother 2023; 23:905-920. [PMID: 37602688 DOI: 10.1080/14737175.2023.2249607] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is one of the most severe and devastating neuromuscular hereditary diseases with a male newborn incidence of 20 000 cases each year. The disease caused by mutations (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) in the DMD gene, progressively leads to muscle wasting and loss of ambulation. This situation is painful for both patients and their families, calling for an emergent need for effective treatments. AREAS COVERED In this review, the authors describe the state of the gene therapy approach in clinical trials for DMD. This therapeutics included gene replacement, gene substitution, RNA-based therapeutics, readthrough mutation, and the CRISPR approach. EXPERT OPINION Only a few drug candidates have yet been granted conditional approval for the treatment of DMD. Most of these therapies have only a modest capability to restore the dystrophin or improve muscle function, suggesting an important unmet need in the development of DMD therapeutics. Complementary genes and cellular therapeutics need to be explored to both restore dystrophin, improve muscle function, and efficiently reconstitute the muscle fibers in the advanced stage of the disease.
Collapse
Affiliation(s)
- Cedric Happi Mbakam
- CHU de Québec research centre, Laval University, Québec, Canada
- Molecular Medicine Department, Faculty of Medicine, Laval University, Québec, Canada
| | - Jacques P Tremblay
- CHU de Québec research centre, Laval University, Québec, Canada
- Molecular Medicine Department, Faculty of Medicine, Laval University, Québec, Canada
| |
Collapse
|
8
|
Tang Y, Fakhari S, Huntemann ED, Feng Z, Wu P, Feng WY, Lei J, Yuan F, Excoffon KJ, Wang K, Limberis MP, Kolbeck R, Yan Z, Engelhardt JF. Immunosuppression reduces rAAV2.5T neutralizing antibodies that limit efficacy following repeat dosing to ferret lungs. Mol Ther Methods Clin Dev 2023; 29:70-80. [PMID: 36950451 PMCID: PMC10025970 DOI: 10.1016/j.omtm.2023.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The efficacy of redosing the recombinant adeno-associated virus (rAAV) vector rAAV2.5T to ferret lung is limited by AAV neutralizing antibody (NAb) responses. While immunosuppression strategies have allowed for systemic rAAV repeat dosing, their utility for rAAV lung-directed gene therapy is largely unexplored. To this end, we evaluated two immunosuppression (IS) strategies to improve repeat dosing of rAAV2.5T to ferret lungs: (1) a combination of three IS drugs (Tri-IS) with broad coverage against cellular and humoral responses (methylprednisolone [MP], azathioprine, and cyclosporine) and (2) MP alone, which is typically used in systemic rAAV applications. Repeat dosing utilized AAV2.5T-SP183-fCFTRΔR (recombinant ferret CFTR transgene), followed 28 days later by AAV2.5T-SP183-gLuc (for quantification of transgene expression). Both the Tri-IS and MP strategies significantly improved transgene expression following repeat dosing and reduced AAV2.5T NAb responses in the bronchioalveolar lavage fluid (BALF) and plasma, while AAV2.5T binding antibody subtypes and cellular immune responses by ELISpot were largely unchanged by IS. One exception was the reduction in plasma AAV2.5T binding immunoglobulin G (IgG) in both IS groups. Only the Tri-IS strategy significantly suppressed splenocyte expression of IFNA (interferon α [IFN-α]) and IL4. Our studies suggest that IS strategies may be useful in clinical application of rAAV targeting lung genetic diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shahab Fakhari
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric D. Huntemann
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zehua Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Peipei Wu
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Y. Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Junying Lei
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Feng Yuan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Ziying Yan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Bobo TA, Samowitz PN, Robinson MI, Montes LI, Forsberg LJ, Feng R, Nicely NI, Fu H. IgG-cleavage protein allows therapeutic AAV gene delivery in passively immunized MPS IIIA mice. Gene Ther 2023; 30:377-385. [PMID: 36253453 DOI: 10.1038/s41434-022-00368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
The widespread pre-existing αAAV-Abs in humans pose a critical challenge in translation of AAV gene therapy. The IgG degrading enzyme of Streptococci (IdeS) is demonstrated to specifically cleave IgG of humans and other species (not mouse). This study developed a modified new modified IdeS protein product (IdeSop). When incubated in vitro, IdeSop was shown to completely cleave human and rabbit IgGs within 6 h. To test IdeSop in a disease setting, we established a rabbitized αAAV9-Ab+ mouse by an IV infusion of purified acute αAAV9-Ab+ rabbit IgG into MPS IIIA mice, resulting in serum αAAV9-IgG at 1:6,400 and αAAV9-nAbs at 1:800. IdeSop-Ab-cleavage was shown to be dose-dependent. An IV IdeSop infusion at the effective doses resulted in rapid IgG depletion and clearance of pre-existing αAAV9-IgG and αAAV9-nAbs in rabbitized αAAV9-Abs+ MPS IIIA mice. Importantly, an IV injection of a high dose AAV9-hSGSHop vector (5 × 1013vg/kg) at 24 h post IdeSop treatment led to transduction as effective in αAAV9-Abs+ MPS IIIA mice, as in αAAV9-Abs-negative controls. We believe that transient IdeSop administration may offer a great tool to address the pre-existing-αAAV-Abs for the translation of rAAV gene therapy to treat diseases in humans, making effective rAAV gene therapy available to all patients in need.
Collapse
Affiliation(s)
- Tierra A Bobo
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Preston N Samowitz
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael I Robinson
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura I Montes
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence J Forsberg
- Protein Production & Purification Core, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard Feng
- Protein Production & Purification Core, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan I Nicely
- Protein Production & Purification Core, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haiyan Fu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
11
|
Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, Tarcsa E, Fang X, Hofer L, Kavita U, Upreti VV, Gupta S, Loo L, Johnson AJ, Chandode RK, Stubenrauch KG, Vinzing M, Xia CQ, Jawa V. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022; 26:471-494. [PMID: 36092368 PMCID: PMC9418752 DOI: 10.1016/j.omtm.2022.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.
Collapse
|
12
|
Happi Mbakam C, Lamothe G, Tremblay JP. Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Front Med (Lausanne) 2022; 9:859930. [PMID: 35419381 PMCID: PMC8995704 DOI: 10.3389/fmed.2022.859930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked hereditary disease characterized by progressive muscle wasting due to modifications in the DMD gene (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) that result in a lack of functional dystrophin expression. Many therapeutic approaches have so far been attempted to induce dystrophin expression and improve the patient phenotype. In this manuscript, we describe the relevant updates for some therapeutic strategies for DMD aiming to restore dystrophin expression. We also present and analyze in vitro and in vivo ongoing experimental approaches to treat the disease.
Collapse
Affiliation(s)
- Cedric Happi Mbakam
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques P Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
13
|
Helms AS, Thompson AD, Day SM. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl Sci 2022; 7:70-83. [PMID: 35128211 PMCID: PMC8807730 DOI: 10.1016/j.jacbts.2021.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/05/2022]
Abstract
The primary etiology of a diverse range of cardiomyopathies is now understood to be genetic, creating a new paradigm for targeting treatments on the basis of the underlying molecular cause. This review provides a genetic and etiologic context for the traditional clinical classifications of cardiomyopathy, including molecular subtypes that may exhibit differential responses to existing or emerging treatments. The authors describe several emerging cardiomyopathy treatments, including gene therapy, direct targeting of myofilament function, protein quality control, metabolism, and others. The authors discuss advantages and disadvantages of these approaches and indicate areas of high potential for short- and longer term efficacy.
Collapse
Key Words
- AAV, adeno-associated virus
- ACM, arrhythmogenic cardiomyopathy
- ARVC, arrhythmogenic right ventricular cardiomyopathy
- ATPase, adenosine triphosphatase
- DCM, dilated cardiomyopathy
- DMD, Duchenne muscular dystrophy
- DNA, DNA
- DSP, desmoplakin
- FDA, U.S. Food and Drug Administration
- GRT, gene replacement therapy
- GST, gene silencing therapy
- HCM, hypertrophic cardiomyopathy
- HR, homologous recombination
- LNP, lipid nanoparticle
- LVOT, left ventricular outflow tract
- RNA, RNA
- TTR, transthyretin
- arrhythmogenic cardiomyopathy
- dilated cardiomyopathy
- genetics
- hypertrophic cardiomyopathy
- therapeutics
Collapse
Affiliation(s)
- Adam S. Helms
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea D. Thompson
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Wagner DL, Peter L, Schmueck-Henneresse M. Cas9-directed immune tolerance in humans-a model to evaluate regulatory T cells in gene therapy? Gene Ther 2021; 28:549-559. [PMID: 33574580 PMCID: PMC8455332 DOI: 10.1038/s41434-021-00232-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The dichotomic nature of the adaptive immune response governs the outcome of clinical gene therapy. On the one hand, neutralizing antibodies and cytotoxic T cells can have a dramatic impact on the efficacy and safety of human gene therapies. On the other hand, regulatory T cells (Treg) can promote tolerance toward transgenes thereby enabling long-term benefits of in vivo gene therapy after a single administration. Pre-existing antibodies and T cell immunity has been a major obstacle for in vivo gene therapies with viral vectors. As CRISPR-Cas9 gene editing advances toward the clinics, the technology's inherent immunogenicity must be addressed in order to guide clinical treatment decisions. This review summarizes the recent evidence on Cas9-specific immunity in humans-including early results from clinical trials-and discusses the risks for in vivo gene therapies. Finally, we focus on solutions and highlight the potential role of Cas9-specific Treg cells to promote immune tolerance. As a "beneficial alliance" beyond Cas9-immunity, antigen-specific Treg cells may serve as a living and targeted immunosuppressant to increase safety and efficacy of gene therapy.
Collapse
Affiliation(s)
- Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Whitehead M, Osborne A, Yu-Wai-Man P, Martin K. Humoral immune responses to AAV gene therapy in the ocular compartment. Biol Rev Camb Philos Soc 2021; 96:1616-1644. [PMID: 33837614 DOI: 10.1111/brv.12718] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Viral vectors can be utilised to deliver therapeutic genes to diseased cells. Adeno-associated virus (AAV) is a commonly used viral vector that is favoured for its ability to infect a wide range of tissues whilst displaying limited toxicity and immunogenicity. Most humans harbour anti-AAV neutralising antibodies (NAbs) due to subclinical infections by wild-type virus during infancy and these pre-existing NAbs can limit the efficiency of gene transfer depending on the target cell type, route of administration and choice of serotype. Vector administration can also result in de novo NAb synthesis that could limit the opportunity for repeated gene transfer to diseased sites. A number of strategies have been described in preclinical models that could circumvent NAb responses in humans, however, the successful translation of these innovations into the clinical arena has been limited. Here, we provide a comprehensive review of the humoral immune response to AAV gene therapy in the ocular compartment. We cover basic AAV biology and clinical application, the role of pre-existing and induced NAbs, and possible approaches to overcoming antibody responses. We conclude with a framework for a comprehensive strategy for circumventing humoral immune responses to AAV in the future.
Collapse
Affiliation(s)
- Michael Whitehead
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Andrew Osborne
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K.,NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, U.K
| | - Keith Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, U.K.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Chu WS, Ng J. Immunomodulation in Administration of rAAV: Preclinical and Clinical Adjuvant Pharmacotherapies. Front Immunol 2021; 12:658038. [PMID: 33868303 PMCID: PMC8049138 DOI: 10.3389/fimmu.2021.658038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for delivering genetic therapies to target cells. This non-enveloped virus has been trialed in many clinical-stage therapeutic strategies but important obstacle in clinical translation is the activation of both innate and adaptive immune response to the protein capsid, vector genome and transgene product. In addition, the normal population has pre-existing neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between different rAAV serotypes. While extent of response can be influenced by dosing, administration route and target organ(s), these pose concerns over reduction or complete loss of efficacy, options for re-administration, and other unwanted immunological sequalae such as local tissue damage. To reduce said immunological risks, patients are excluded if they harbor anti-AAV antibodies or have received gene therapy previously. Studies have incorporated immunomodulating or suppressive regimens to block cellular and humoral immune responses such as systemic corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two rAAV products with licensed regulatory approval in Europe and the United States. In this review, we will introduce the current pharmacological strategies to immunosuppress or immunomodulate the host immune response to rAAV gene therapy.
Collapse
Affiliation(s)
- Wing Sum Chu
- Pharmacy Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
18
|
Stone D, Kenkel EJ, Loprieno MA, Tanaka M, De Silva Feelixge HS, Kumar AJ, Stensland L, Obenza WM, Wangari S, Ahrens CY, Murnane RD, Peterson CW, Kiem HP, Huang ML, Aubert M, Hu SL, Jerome KR. Gene Transfer in Adeno-Associated Virus Seropositive Rhesus Macaques Following Rapamycin Treatment and Subcutaneous Delivery of AAV6, but Not Retargeted AAV6 Vectors. Hum Gene Ther 2020; 32:96-112. [PMID: 32998579 DOI: 10.1089/hum.2020.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adeno-associated virus (AAV) vectors such as AAV6, which shows tropism for primary human CD4+ T cells in vitro, are being explored for delivery of anti-HIV therapeutic modalities in vivo. However, pre-existing immunity and sequestration in nontarget organs can significantly hinder their performance. To overcome these challenges, we investigated whether immunosuppression would allow gene delivery by AAV6 or targeted AAV6 derivatives in seropositive rhesus macaques. Animals were immune suppressed with rapamycin before intravenous (IV) or subcutaneous (SC) delivery of AAV, and we monitored vector biodistribution, gene transfer, and safety. Macaques received phosphate-buffered saline, AAV6 alone, or an equal dose of AAV6 and an AAV6-55.2 vector retargeted to CD4 through a direct ankyrin repeat protein (DARPin). AAV6 and AAV6-55.2 vector genomes were found in peripheral blood mononuclear cells and most organs up to 28 days postadministration, with the highest levels seen in liver, spleen, lymph nodes (LNs), and muscle, suggesting that retargeting did not prevent vector sequestration. Despite vector genome detection, gene expression from AAV6-55.2 was not detected in any tissue. SC injection of AAV6 facilitated efficient gene expression in muscle adjacent to the injection site, plus low-level gene expression in spleen, LNs, and liver, whereas gene expression following IV injection of AAV6 was predominantly seen in the spleen. AAV vectors were well tolerated, although elevated liver enzymes were detected in three of four AAV-treated animals 14 days after rapamycin withdrawal. One SC-injected animal had muscle inflammation proximal to the injection site, plus detectable T cell responses against transgene and AAV6 capsid at study finish. Overall, our data suggest that rapamycin treatment may offer a possible strategy to express anti-HIV therapeutics such as broadly neutralizing antibodies from muscle. This study provides important safety and efficacy data that will aid study design for future anti-HIV gene therapies.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth J Kenkel
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Michelle A Loprieno
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Motoko Tanaka
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Arjun J Kumar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Laurence Stensland
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Willimark M Obenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Solomon Wangari
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Chul Y Ahrens
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Robert D Murnane
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Christopher W Peterson
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Pei X, Shao W, Xing A, Askew C, Chen X, Cui C, Abajas YL, Gerber DA, Merricks EP, Nichols TC, Li W, Samulski RJ, Li C. Development of AAV Variants with Human Hepatocyte Tropism and Neutralizing Antibody Escape Capacity. Mol Ther Methods Clin Dev 2020; 18:259-268. [PMID: 32637455 PMCID: PMC7329936 DOI: 10.1016/j.omtm.2020.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vectors have been successfully used in patients with bleeding disorders and blindness. For human liver targeting, two major factors restrict effective AAV transduction after systemic administration of AAV vectors: human hepatocyte tropism and neutralizing antibodies (Nabs). In this study, we attempted to isolate AAV variants with the ability to transduce human hepatocytes and escape Nabs using a directed evolution approach in vivo. After four cycles of selection, 14 AAV capsid mutants were identified from a capsid shuffling library selected in the presence of human Intravenous Immunoglobulin (IVIG) and isolated from human hepatocytes xenografted into chimeric mice. AAV neutralization assays using IVIG showed that most of the mutants showed the Nab escape pattern in a manner similar to that of AAV8 or AAV9 and better than that of other AAV serotypes. Different mutants displayed varying capacities to escape Nab activity from individual serum samples collected from healthy subjects or hemophilia patients. The mutant AAV LP2-10 was found in 12 colonies out of 25, which was composed of capsids from AAV serotypes 2, 6, 8, and 9, with VP3 subunits derived from AAV8 swapped with AAV6 from residues 261 to 272. The mutant AAV LP2-10 manifested a higher ability than that of other serotypes to escape Nabs in IVIG and most human serum samples. After injection of AAV vectors encoding a self-complementary GFP cassette into chimeric mice, LP2-10 transduced human hepatocytes with efficiency similar to that of AAV8. In summary, AAV mutants can be isolated in humanized mice with both human hepatocyte tropism and the ability to evade Nab activity.
Collapse
Affiliation(s)
- Xiaolei Pei
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenwei Shao
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Allene Xing
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaojing Chen
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caibin Cui
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yasmina L. Abajas
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David A. Gerber
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy C. Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wuping Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Bezzerides VJ, Prondzynski M, Carrier L, Pu WT. Gene therapy for inherited arrhythmias. Cardiovasc Res 2020; 116:1635-1650. [PMID: 32321160 PMCID: PMC7341167 DOI: 10.1093/cvr/cvaa107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 01/16/2023] Open
Abstract
Inherited arrhythmias are disorders caused by one or more genetic mutations that increase the risk of arrhythmia, which result in life-long risk of sudden death. These mutations either primarily perturb electrophysiological homeostasis (e.g. long QT syndrome and catecholaminergic polymorphic ventricular tachycardia), cause structural disease that is closely associated with severe arrhythmias (e.g. hypertrophic cardiomyopathy), or cause a high propensity for arrhythmia in combination with altered myocardial structure and function (e.g. arrhythmogenic cardiomyopathy). Currently available therapies offer incomplete protection from arrhythmia and fail to alter disease progression. Recent studies suggest that gene therapies may provide potent, molecularly targeted options for at least a subset of inherited arrhythmias. Here, we provide an overview of gene therapy strategies, and review recent studies on gene therapies for catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy caused by MYBPC3 mutations.
Collapse
Affiliation(s)
- Vassilios J Bezzerides
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Maksymilian Prondzynski
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Lucie Carrier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - William T Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Piechnik M, Sawamoto K, Ohnishi H, Kawamoto N, Ago Y, Tomatsu S. Evading the AAV Immune Response in Mucopolysaccharidoses. Int J Mol Sci 2020; 21:E3433. [PMID: 32414007 PMCID: PMC7279460 DOI: 10.3390/ijms21103433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
The humoral immune response elicited by adeno-associated virus (AAV)-mediated gene therapy for the treatment of mucopolysaccharidoses (MPS) poses a significant challenge to achieving therapeutic levels of transgene expression. Antibodies targeting the AAV capsid as well as the transgene product diminish the production of glycosaminoglycan (GAG)-degrading enzymes essential for the treatment of MPS. Patients who have antibodies against AAV capsid increase in number with age, serotype, and racial background and are excluded from the clinical trials at present. In addition, patients who have undergone AAV gene therapy are often excluded from the additional AAV gene therapy with the same serotype, since their acquired immune response (antibody) against AAV will limit further efficacy of treatment. Several methods are being developed to overcome this immune response, such as novel serotype design, antibody reduction by plasmapheresis and immunosuppression, and antibody evasion using empty capsids and enveloped AAV vectors. In this review, we examine the mechanisms of the anti-AAV humoral immune response and evaluate the strengths and weaknesses of current evasion strategies in order to provide an evidence-based recommendation on evading the immune response for future AAV-mediated gene therapies for MPS.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Norio Kawamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
- Department of Pediatrics, Shimane University, Shimane 690-8504, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Mietzsch M, Pénzes JJ, Agbandje-McKenna M. Twenty-Five Years of Structural Parvovirology. Viruses 2019; 11:E362. [PMID: 31010002 PMCID: PMC6521121 DOI: 10.3390/v11040362] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Parvoviruses, infecting vertebrates and invertebrates, are a family of single-stranded DNA viruses with small, non-enveloped capsids with T = 1 icosahedral symmetry. A quarter of a century after the first parvovirus capsid structure was published, approximately 100 additional structures have been analyzed. This first structure was that of Canine Parvovirus, and it initiated the practice of structure-to-function correlation for the family. Despite high diversity in the capsid viral protein (VP) sequence, the structural topologies of all parvoviral capsids are conserved. However, surface loops inserted between the core secondary structure elements vary in conformation that enables the assembly of unique capsid surface morphologies within individual genera. These variations enable each virus to establish host niches by allowing host receptor attachment, specific tissue tropism, and antigenic diversity. This review focuses on the diversity among the parvoviruses with respect to the transcriptional strategy of the encoded VPs, the advances in capsid structure-function annotation, and therapeutic developments facilitated by the available structures.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Judit J Pénzes
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
23
|
Threshold for Pre-existing Antibody Levels Limiting Transduction Efficiency of Systemic rAAV9 Gene Delivery: Relevance for Translation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:453-462. [PMID: 31193101 PMCID: PMC6517378 DOI: 10.1016/j.omtm.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023]
Abstract
Widespread anti-AAV antibodies (Abs) in humans pose a critical challenge for the translation of AAV gene therapies, limiting patient eligibility. In this study, non-human primates (NHPs) with pre-existing αAAV Abs were used to investigate the impact of αAAV9 Ab levels on the transduction efficiency of rAAV9 via systemic delivery. No significant differences were observed in vector genome (vg) biodistribution in animals with ≤1:400 total serum αAAV9-IgG compared to αAAV9-Ab-negative animals, following an intravenous (i.v.) rAAV9-hNAGLUop (codon-optimized human α-N-acetylglucosaminidase coding sequence cDNA) injection. Serum αAAV9-IgG at >1:400 resulted in a >200-fold decrease in vg in the liver, but had no significant effect on vg levels in brain and most of the peripheral tissues. Although tissue NAGLU activities declined significantly, they remained above endogenous levels. Notably, there were higher vg copies but lower NAGLU activity in the spleen in NHPs with >1:400 αAAV9 Abs than in those with ≤1:400 Abs. We demonstrate here the presence of a threshold of pre-existing αAAV9 Abs for diminishing the transduction of i.v.-delivered AAV vectors, supporting the expansion of patient eligibility for systemic rAAV treatments. Our data also indicate that high pre-existing αAAV9 Abs may promote phagocytosis and that phagocytized vectors are not processed for transgene expression, suggesting that effectively suppressing innate immunity may have positive impacts on transduction efficiency in individuals with high Ab titers.
Collapse
|
24
|
Chai Z, Zhang X, Dobbins AL, Rigsbee KM, Wang B, Samulski RJ, Li C. Optimization of Dexamethasone Administration for Maintaining Global Transduction Efficacy of Adeno-Associated Virus Serotype 9. Hum Gene Ther 2019; 30:829-840. [PMID: 30700148 DOI: 10.1089/hum.2018.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids have been commonly used in clinic for their anti-inflammatory and immunosuppressive effects, and it has been proposed that they be used to prevent liver toxicity when systemic administration of adeno-associated virus (AAV) vectors is needed in patients with central nervous system diseases and muscular disorders. Glucocorticoids also enable modulation of vascular permeability. First, this study investigated the impact of dexamethasone on AAV vascular permeability after systemic injection. When a low dose of AAV9 was injected into mice treated with dexamethasone, global transduction and vector biodistribution were not significantly different in most tissues, other than the liver and the heart, when compared to control mice. When AAV9 vectors were used at a high dose, both the transgene expression and the AAV vector genome copy number were significantly decreased in the majority of murine tissues. However, no effect on global transduction was observed when dexamethasone was administered 2 h after AAV vector injection. The study on the kinetics of AAV virus clearance demonstrated that dexamethasone slowed down the clearance of AAV9 in the blood after systemic application. The mechanism study showed that dexamethasone inhibited the enhancement of AAV9 vascular permeability mediated by serum proteins. The findings indicate that dexamethasone is able to inhibit the vascular permeability of AAV and compromise the therapeutic effect after systemic administration of AAV vector. In conclusion, this study provides valuable information for the design of future clinical studies when glucocorticoids are needed to be compatible with the systemic administration of AAV vectors in patients with central nervous system and muscular diseases.
Collapse
Affiliation(s)
- Zheng Chai
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xintao Zhang
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amanda Lee Dobbins
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kelly Michelle Rigsbee
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bing Wang
- 2Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard Jude Samulski
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,3Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chengwen Li
- 1Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,4Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,5Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To construct a framework to understand the different molecular interventions for muscular dystrophy. RECENT FINDINGS The recent approval of antisense oligonucleotides treatment for Duchenne muscular dystrophy and spinal muscular atrophy and current clinical trials using recombinant adeno-associated virus for the treatment of those diseases suggests that we are at a tipping point where we are able to treat and potentially cure muscular dystrophies. Understanding the basic molecular pathogenesis of muscular dystrophies and the molecular biology of the treatment allows for critical evaluation of the proposed therapies.
Collapse
Affiliation(s)
- Ava Y Lin
- Department of Neurology, University of Washington, Box 356465, 1959 NE Pacific Street, Seattle, WA, 98195-6465, USA
| | - Leo H Wang
- Department of Neurology, University of Washington, Box 356465, 1959 NE Pacific Street, Seattle, WA, 98195-6465, USA.
| |
Collapse
|
27
|
Smith JK, Agbandje-McKenna M. Creating an arsenal of Adeno-associated virus (AAV) gene delivery stealth vehicles. PLoS Pathog 2018; 14:e1006929. [PMID: 29723270 PMCID: PMC5933702 DOI: 10.1371/journal.ppat.1006929] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Adeno-associated virus (AAV) gene delivery system is ushering in a new and exciting era in the United States; following the first approved gene therapy (Glybera) in Europe, the FDA has approved a second therapy, Luxturna [1]. However, challenges to this system remain. In viral gene therapy, the surface of the capsid is an important determinant of tissue tropism, impacts gene transfer efficiency, and is targeted by the human immune system. Preexisting immunity is a significant challenge to this approach, and the ability to visualize areas of antibody binding ("footprints") can inform efforts to improve the efficacy of viral vectors. Atomic resolution, smaller proteins, and asymmetric structures are the goals to attain in cryo-electron microscopy and image reconstruction (cryo-EM) as of late. The versatility of the technique and the ability to vitrify a wide range of heterogeneous molecules in solution allow structural biologists to characterize a variety of protein-DNA and protein-protein interactions at lower resolution. Cryo-EM has served as an important means to study key surface areas of the AAV gene delivery vehicle-specifically, those involved with binding neutralizing antibodies (NAbs) [2-4]. This method offers a unique opportunity for visualizing antibody binding "hotspots" on the surface of these and other viral vectors. When combined with mutagenesis, one can eliminate these hotspots to create viral vectors with the ability to avoid preexisting host immune recognition during gene delivery and genetic defect correction in disease treatment. Here, we discuss the use of structure-guided site-directed mutagenesis and directed evolution to create "stealth" AAV vectors with modified surface amino acid sequences that allow NAb avoidance while maintaining natural capsid functions or gaining desired novel tropisms.
Collapse
Affiliation(s)
- J. Kennon Smith
- Department of Biochemistry and Molecular Biology and Center for Structural Biology, the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology and Center for Structural Biology, the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
28
|
Tolerogenic nanoparticles restore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity. Proc Natl Acad Sci U S A 2018; 115:E733-E742. [PMID: 29311317 DOI: 10.1073/pnas.1717063115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein-based drugs are very active in treating cancer, but their efficacy can be limited by the formation of neutralizing antidrug antibodies (ADAs). Recombinant immunotoxins are proteins that are very effective in patients with leukemia, where immunity is suppressed, but induce ADAs, which compromise their activity, in patients with intact immunity. Here we induced a specific, durable, and transferable immune tolerance to recombinant immunotoxins by combining them with nanoparticles containing rapamycin (SVP-R). SVP-R mitigated the formation of inhibitory ADAs in naïve and sensitized mice, resulting in restoration of antitumor activity. The immune tolerance is mediated by colocalization of the SVP-R and immunotoxin to dendritic cells and macrophages in the spleen and is abrogated by depletion of regulatory T cells. Tolerance induced by SVPs was not blocked by checkpoint inhibitors or costimulatory agonist monoclonal antibodies that by themselves enhance ADA formation.
Collapse
|
29
|
Fu H, Meadows AS, Pineda RJ, Kunkler KL, Truxal KV, McBride KL, Flanigan KM, McCarty DM. Differential Prevalence of Antibodies Against Adeno-Associated Virus in Healthy Children and Patients with Mucopolysaccharidosis III: Perspective for AAV-Mediated Gene Therapy. HUM GENE THER CL DEV 2017; 28:187-196. [PMID: 29064732 DOI: 10.1089/humc.2017.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors are promising gene therapy tools. However, pre-existing antibodies (Abs) to many useful AAV serotypes pose a critical challenge for the translation of gene therapies. As part of AAV gene therapy program for treating mucopolysaccharidosis (MPS) III patients, the seroprevalence profiles of AAV1-9 and rh74 were investigated in MPS IIIA/IIIB patients and in healthy children. Using enzyme-linked immunosorbent assay for αAAV-IgG, significantly higher seroprevalence was observed for AAV1 and AAVrh74 in 2- to 7-year-old MPS III patients than in healthy controls. Seroprevalence for the majority of tested AAV serotypes appears to peak before 8 years of age in MPS III subjects, with the exception of increases in αAAV8 and αAAV9 Abs in 8- to 19-year-old MPS IIIA patients. In contrast, significant increases in seroprevalence were observed for virtually all tested AAV serotypes in 8- to 15-year-old healthy children compared to 2- to 7-year-olds. Co-prevalence and Ab level correlation results followed the previously established divergence-based clade positions of AAV1-9. Interestingly, the individuals positive for αAAVrh74-Abs showed the lowest co-prevalence with Abs for AAV1-9 (22-40%). However, all or nearly all (77-100%) of subjects who were seropositive for any of serotypes 1-9 were also positive for αAAVrh74-IgG. Notably, the majority (78%) of αAAV seropositive individuals were also Ab-positive for one to five of the tested AAV serotypes, mostly with low levels of αAAV-Abs (1:50-100), while a minority (22%) were seropositive for six or more AAV serotypes, mostly with high levels of αAAV-IgG for multiple serotypes. In general, the highest IgG levels were reactive to AAV2, AAV3, and AAVrh74. The data illustrate the complex seroprevalence profiles of AAV1-9 and rh74 in MPS patients and healthy children, indicating the potential association of AAV seroprevalence with age and disease conditions. The broad co-prevalence of Abs for different AAV serotypes reinforces the challenge of pre-existing αAAV-Abs for translating AAV gene therapy to clinical applications, regardless of the vector serotype.
Collapse
Affiliation(s)
- Haiyan Fu
- 1 Center for Gene Therapy, Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,4 Department of Pediatrics, School of Medicine The Ohio State University , Columbus, Ohio
| | - Aaron S Meadows
- 1 Center for Gene Therapy, Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Ricardo J Pineda
- 1 Center for Gene Therapy, Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Krista L Kunkler
- 1 Center for Gene Therapy, Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Kristen V Truxal
- 1 Center for Gene Therapy, Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,3 Division of Molecular and Human Genetics, Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,4 Department of Pediatrics, School of Medicine The Ohio State University , Columbus, Ohio
| | - Kim L McBride
- 2 Center for Cardiovascular Research, Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,3 Division of Molecular and Human Genetics, Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,4 Department of Pediatrics, School of Medicine The Ohio State University , Columbus, Ohio
| | - Kevin M Flanigan
- 1 Center for Gene Therapy, Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,4 Department of Pediatrics, School of Medicine The Ohio State University , Columbus, Ohio.,5 Department of Neurology, School of Medicine The Ohio State University , Columbus, Ohio
| | - Douglas M McCarty
- 1 Center for Gene Therapy, Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,4 Department of Pediatrics, School of Medicine The Ohio State University , Columbus, Ohio
| |
Collapse
|