1
|
Fu X, Xu C, Yang T, Chen J, Niu T. Novel therapeutic targets for atherosclerosis: Targeting the FOSB-MECP2-Commd1 pathway. Int Immunopharmacol 2025; 144:113575. [PMID: 39566383 DOI: 10.1016/j.intimp.2024.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Atherosclerosis (AS) is a systemic disease and represents the primary underlying pathology of cardiovascular diseases. In this study, we aim to elucidate the roles of FBJ osteosarcoma oncogene B (FOSB) in AS development. ApoE-/- mice were used and fed a high-fat diet to establish an AS model. We observed elevated expression of FOSB in aortic tissues, which was associated with increased lipid deposition, macrophage recruitment. Knockdown of FOSB mitigated these AS-related pathological changes, and decreased the levels of TNF-α, IL-6 and IL-1β in aortic tissues and ox-LDL-induced RAW264.7 cells. Further investigations revealed that FOSB enhances the transcriptional activity of MECP2 by binding to its promoter region. MECP2 was found to be upregulated in aortic tissues and ox-LDL-induced RAW264.7 cells, exacerbating ox-LDL-induced cellular damage. Additionally, our study identifies Commd1 as a downstream target of MECP2. Overexpression of Commd1 reduced levels of TNF-α and IL-6, alleviating ox-LDL-induced inflammation and lipid deposition. In summary, our findings unveil a complex molecular interplay involving FOSB, MECP2, and Commd1 in AS pathogenesis. This study not only enhances our understanding of AS molecular mechanisms but also proposes potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jie Chen
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tiesheng Niu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
2
|
Zhang L, Xiang Y, Cao C, Tan J, Li F, Yang X. Ciliary neurotrophic factor promotes the development of homocysteine-induced vascular endothelial injury through inflammation mediated by the JAK2/STAT3 signaling pathway. Exp Cell Res 2024; 440:114103. [PMID: 38848951 DOI: 10.1016/j.yexcr.2024.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1β, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Endocrinology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Yan Xiang
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; Ouyang Road Community Health Service Center, Hongkou District, Shanghai, China
| | - Chengxiu Cao
- Department of Endocrinology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Jiaorong Tan
- Department of Endocrinology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Fei Li
- Department of Endocrinology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Xin Yang
- Department of Endocrinology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China.
| |
Collapse
|
3
|
Zheng S, Liu Y. Progress in the Study of Fra-2 in Respiratory Diseases. Int J Mol Sci 2024; 25:7143. [PMID: 39000247 PMCID: PMC11240912 DOI: 10.3390/ijms25137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Fos-related antigen-2 (Fra-2) is a member of the activating protein-1 (AP-1) family of transcription factors. It is involved in controlling cell growth and differentiation by regulating the production of the extracellular matrix (ECM) and coordinating the balance of signals within and outside the cell. Fra-2 is not only closely related to bone development, metabolism, and immune system and eye development but also in the progression of respiratory conditions like lung tumors, asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). The increased expression and activation of Fra-2 in various lung diseases has been shown in several studies. However, the specific molecular mechanisms through which Fra-2 affects the development of respiratory diseases are not yet understood. The purpose of this research is to summarize and delineate advancements in the study of the involvement of transcription factor Fra-2 in disorders related to the respiratory system.
Collapse
Affiliation(s)
- Shuping Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
4
|
Zhou G, Liu Y, Wu H, Zhang D, Yang Q, Li Y. Research Progress on Histone Deacetylases Regulating Programmed Cell Death in Atherosclerosis. J Cardiovasc Transl Res 2024; 17:308-321. [PMID: 37821683 DOI: 10.1007/s12265-023-10444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Histone deacetylases (HDACs) are epigenetic modifying enzyme that is closely related to chromatin structure and gene transcription, and numerous studies have found that HDACs play an important regulatory role in atherosclerosis disease. Apoptosis, autophagy and programmed necrosis as the three typical programmed cell death modalities that can lead to cell loss and are closely related to the developmental process of atherosclerosis. In recent years, accumulating evidence has shown that the programmed cell death mediated by HDACs is increasingly important in the pathophysiology of atherosclerosis. This paper first gives a brief overview of HDACs, the mechanism of programmed cell death, and their role in atherosclerosis, and then further elaborates on the role and mechanism of HDACs in regulating apoptosis, autophagy, and programmed necrosis in atherosclerosis, respectively, to provide new effective measures and theoretical basis for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gang Zhou
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Yanfang Liu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Hui Wu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China.
- Department of Cardiology, Yichang Central People's Hospital, Yiling Road 183, Yichang, 443003, Hubei, China.
| | - Dong Zhang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Qingzhuo Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Yi Li
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| |
Collapse
|
5
|
Yu Y, Zhou M, Long X, Yin S, Hu G, Yang X, Jian W, Yu R. Study on the mechanism of action of colchicine in the treatment of coronary artery disease based on network pharmacology and molecular docking technology. Front Pharmacol 2023; 14:1147360. [PMID: 37405052 PMCID: PMC10315633 DOI: 10.3389/fphar.2023.1147360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Objective: This is the first study to explore the mechanism of colchicine in treating coronary artery disease using network pharmacology and molecular docking technology, aiming to predict the key targets and main approaches of colchicine in treating coronary artery disease. It is expected to provide new ideas for research on disease mechanism and drug development. Methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Swiss Target Prediction and PharmMapper databases were used to obtain drug targets. GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), DrugBank and DisGeNET databases were utilized to gain disease targets. The intersection of the two was taken to access the intersection targets of colchicine for the treatment of coronary artery disease. The Sting database was employed to analyze the protein-protein interaction network. Gene Ontology (GO) functional enrichment analysis was performed using Webgestalt database. Reactom database was applied for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking was simulated using AutoDock 4.2.6 and PyMOL2.4 software. Results: A total of 70 intersecting targets of colchicine for the treatment of coronary artery disease were obtained, and there were interactions among 50 targets. GO functional enrichment analysis yielded 13 biological processes, 18 cellular components and 16 molecular functions. 549 signaling pathways were obtained by KEGG enrichment analysis. The molecular docking results of key targets were generally good. Conclusion: Colchicine may treat coronary artery disease through targets such as Cytochrome c (CYCS), Myeloperoxidase (MPO) and Histone deacetylase 1 (HDAC1). The mechanism of action may be related to the cellular response to chemical stimulus and p75NTR-mediated negative regulation of cell cycle by SC1, which is valuable for further research exploration. However, this research still needs to be verified by experiments. Future research will explore new drugs for treating coronary artery disease from these targets.
Collapse
Affiliation(s)
- Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Manli Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Long
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shuang Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gang Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Weixiong Jian
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Chinese Medicine Diagnostics in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Chen J, Zhu Z, Xu S, Li J, Huang L, Tan W, Zhang Y, Zhao Y. HDAC1 participates in polycystic ovary syndrome through histone modification to regulate H19/miR-29a-3p/NLRP3-mediated granulosa cell pyroptosis. Mol Cell Endocrinol 2023; 573:111950. [PMID: 37207962 DOI: 10.1016/j.mce.2023.111950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Histone deacetylase 1 (HDAC1) is known to participate in the molecular etiology of polycystic ovary syndrome (PCOS). However, its role in granulosa cell (GC) pyroptosis remains unclear. This study sought to investigate the mechanism of HDAC1 in PCOS-induced GC pyroptosis through histone modification. Clinical serum samples and the general data of study subjects were collected. PCOS mouse models were established using dehydroepiandrosterone and cell models were established in HGL5 cells using dihydrotestosterone. Expressions of HDAC1, H19, miR-29a-3p, and NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-related proteins and levels of hormones and inflammatory cytokines were determined. Ovarian damage was observed by hematoxylin-eosin staining. Functional rescue experiments were conducted to verify the role of H19/miR-29a-3p/NLRP3 in GC pyroptosis in PCOS. HDAC1 and miR-29a-3p were downregulated whereas H19 and NLRP3 were upregulated in PCOS. HDAC1 upregulation attenuated ovarian damage and hormone disorders in PCOS mice and suppressed pyroptosis in ovarian tissues and HGL5 cells. HDAC1 inhibited H3K9ac on the H19 promoter and H19 competitively bound to miR-29a-3p to improve NLRP3 expression. Overexpressed H19 or NLRP3 or inhibited miR-29a-3p reversed the inhibition of GC pyroptosis by HDAC1 upregulation. Overall, HDAC1 suppressed GC pyroptosis in PCOS through deacetylation to regulate the H19/miR-29a-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Jiying Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Zhiying Zhu
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Shi Xu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lilan Huang
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Wenqing Tan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yanli Zhao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
7
|
Zhou H, Song WH. LncRNA HCG11 Accelerates Atherosclerosis via Regulating the miR-224-3p/JAK1 Axis. Biochem Genet 2023; 61:372-389. [PMID: 35931919 DOI: 10.1007/s10528-022-10261-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/03/2022] [Indexed: 01/24/2023]
Abstract
Atherosclerosis (AS) is the typical cardiovascular disease, which is the main underlying inducement of cardiovascular diseases. Aberrant expression of long noncoding RNA HLA complex group 11 (HCG11) was engaged with atherosclerosis. The objective of the present research was to explore the role and the potential mechanism of HCG11 in AS. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce the AS model in vitro. The cell viability was detected by MTT assay. Flow cytometry was performed to determine cell pyroptosis. Gene and protein levels were detected by qPCR or Western blot assay. The interaction between HCG11, miR-224-3p, and Janus kinase 1 (JAK1) was validated by dual-luciferase reporter assays. Ox-LDL treatment aggravated cell pyroptosis and inflammation in HUVECs. And the levels of HCG11 and JAK1 was enhanced in ox-LDL-induced HUVECs, while miR-224-3p expression was reduced. Additionally, knockdown of HCG11 or miR-224-3p overexpression reversed the ox-LDL-induced cell viability decline and the increase of cell pyroptosis and inflammation-related proteins, including gasdermin D N-terminal (GSDMD-N), Caspase-1, NOD-like receptor family pyrin domain-containing 3 (NLRP3), interleukin 18 (IL-18), and interleukin 1beta (IL-1β). Moreover, HCG11 could modulate the JAK1 expression via targeting miR-224-3p. The inhibitory effect of HCG11 silencing on cell pyroptosis and inflammation was reversed by miR-224-3p knockdown. Furthermore, overexpression of miR-224-3p could repress the ox-LDL-induced cell pyroptosis and inflammation via regulating JAK1 expression. Knockdown of HCG11 alleviated cell pyroptosis and inflammation induced by ox-LDL via targeting the miR-224-3p/JAK1 axis, indicating that HCG11 could be the latent target of diagnosis or treatment for AS.
Collapse
Affiliation(s)
- Hua Zhou
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China
| | - Wei-Hong Song
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
8
|
Tarhriz V, Abkhooie L, Sarabi MM. Regulation of HIF-1 by MicroRNAs in Various Cardiovascular Diseases. Curr Cardiol Rev 2023; 19:51-56. [PMID: 37005512 PMCID: PMC10518879 DOI: 10.2174/1573403x19666230330105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 04/04/2023] Open
Abstract
Today, we see an increase in death due to cardiovascular diseases all over the world, which has a lot to do with the regulation of oxygen homeostasis. Also, hypoxia-inducing factor 1 (HIF-1) is considered a vital factor in hypoxia and its physiological and pathological changes. HIF- 1 is involved in cellular activities, including proliferation, differentiation, and cell death in endothelial cells (ECs) and cardiomyocytes. Similar to HIF-1α, which acts as a protective element against various diseases in the cardiovascular system, the protective role of microRNAs (miRNAs) has also been proved using animal models. The number of miRNAs identified in the regulation of gene expression responsive to hypoxia and the importance of investigating the involvement of the non-coding genome in cardiovascular diseases is increasing, which shows the issue's importance. In this study, the molecular regulation of HIF-1 by miRNAs is considered to improve therapeutic approaches in clinical diagnoses of cardiovascular diseases.
Collapse
Affiliation(s)
- Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
9
|
Wang L, Tan L, Ding X, Meng X. Circ_0003204 downregulation protected vascular smooth muscle cells from ox-LDL-induced injury by acting on miR-637/FOSL2 axis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
A Comprehensive Review on Distribution, Pharmacological Properties, and Mechanisms of Action of Sesamin. J CHEM-NY 2022. [DOI: 10.1155/2022/4236525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sesamin is a kind of fat-soluble lignan extracted from sesame seeds or other plants. It has attracted more and more attention because of its extensive pharmacological activities. In this study, we systematically summarized the pharmacological activities of sesamin including antioxidant, anti-inflammatory, anticancer, protection of liver and kidney, prevention of diabetes, hypertension, and atherosclerosis. Studies focus on the abilities of sesamin to attenuate oxidative stress by reducing the levels of ROS and MDA, to inhibit the release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, etc.), and to induce apoptosis and autophagy in cancer cells through a variety of signaling pathways such as NF-κB, JNK, p38 MAPK, PI3K/AKT, caspase-3, and p53. By inhibiting the production of ROS, sesamin can also enhance the biological activities of NO in blood vessels, improve endothelial dysfunction and hypertension, and change the process of atherosclerotic lesion formation. In line with this, the various pharmacological properties of sesamin have been discussed in this review so that we can have a deeper understanding of the pharmacological activities of sesamin and clear the future development direction of sesamin.
Collapse
|
11
|
Dunaway LS, Pollock JS. HDAC1: an environmental sensor regulating endothelial function. Cardiovasc Res 2022; 118:1885-1903. [PMID: 34264338 PMCID: PMC9239577 DOI: 10.1093/cvr/cvab198] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The histone deacetylases (HDACs) are a family of enzymes that catalyse lysine deacetylation of both histone and non-histone proteins. Here, we review, summarize, and provide perspectives on the literature regarding one such HDAC, HDAC1, in endothelial biology. In the endothelium, HDAC1 mediates the effects of external and environmental stimuli by regulating major endothelial functions such as angiogenesis, inflammatory signalling, redox homeostasis, and nitric oxide signalling. Angiogenesis is most often, but not exclusively, repressed by endothelial HDAC1. The regulation of inflammatory signalling is more complex as HDAC1 promotes or suppresses inflammatory signalling depending upon the environmental stimuli. HDAC1 is protective in models of atherosclerosis where loss of HDAC1 results in increased cytokine and cell adhesion molecule (CAM) abundance. In other models, HDAC1 promotes inflammation by increasing CAMs and repressing claudin-5 expression. Consistently, from many investigations, HDAC1 decreases antioxidant enzyme expression and nitric oxide production in the endothelium. HDAC1 decreases antioxidant enzyme expression through the deacetylation of histones and transcription factors, and also regulates nitric oxide production through regulating both the expression and activity of nitric oxide synthase 3. The HDAC1-dependent regulation of endothelial function through the deacetylation of both histone and non-histone proteins ultimately impacts whole animal physiology and health.
Collapse
Affiliation(s)
- Luke S Dunaway
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Kaul Genetics Building Room 802A, 720 20th Street South, Birmingham, AL 35233, USA
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Kaul Genetics Building Room 802A, 720 20th Street South, Birmingham, AL 35233, USA
| |
Collapse
|
12
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Duan X, Miao Z, Chen J. LncRNA KCNQ1OT1 attenuates myocardial injury induced by hip fracture via regulating of miR-224-3p/GATA4 axis. Int Immunopharmacol 2022; 107:108627. [PMID: 35217336 DOI: 10.1016/j.intimp.2022.108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This article aims to discuss the role of l KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in myocardial injury caused by a hip fracture and further investigate its potential molecular mechanisms. METHODS X-Ray and H&E staining are used to observe hip fracture and pathological changes of myocardial tissue. ELISA and kits are used to detect inflammatory cytokines, lactate dehydrogenase (LDH), and creatine kinase (CK) in serum. The proliferation and apoptosis of H9c2 are determined by CCK-8 and flow cytometry. RT-qPCR and Western blot are applied to quantitatively assess the expression of related genes. Bioinformatics analysis is performed to search the downstream target of KCNQ1OT1 and miR-224-3p. Furthermore, the interaction is verified by a luciferase reporter assay. RESULTS A hip fracture model was successfully established. The high expression of inflammatory cytokines and cardiac injury markers indicated that hip fracture successfully induced myocardial injury. In TNF-ɑ treated cardiomyocyte model, high expression of KCNQ1OT1 promoted H9c2 cell proliferation and inhibited apoptosis. Furthermore, in the myocardial injury model rats induced by hip fracture, a high expression of KCNQ1OT1 reduced pathological damage in the myocardial tissue. Further research illustrated that miR-224-3p was the direct target of KCNQ1OT1, and GATA4 was the direct target of miR-224-3p. Importantly, functional research findings indicated that KCNQ1OT1 regulated myocardial injury caused by hip fracture via targeting the miR-224-3p/GATA4 axis. CONCLUSION Our study demonstrates that the KCNQ1OT1 suppresses myocardial injury via mediating miR-224-3p/GATA4, which provides a latent target for myocardial injury treatment.
Collapse
Affiliation(s)
- Xuzhou Duan
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, 168 Changhai Road, Yangpu District 200433, Shanghai, China
| | - Zhijing Miao
- Department of Cardiology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, 181 Friendship Road, Baoshan District 201901, Shanghai, China
| | - Jia Chen
- Department of Cardiology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, 181 Friendship Road, Baoshan District 201901, Shanghai, China.
| |
Collapse
|
14
|
Zhang T, Feng C, Zhang X, Sun B, Bian Y. Abnormal expression of long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) participates in the pathological mechanism of atherosclerosis by regulating miR-224-3p. Bioengineered 2022; 13:2648-2657. [PMID: 35067166 PMCID: PMC8974166 DOI: 10.1080/21655979.2021.2023995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Study shows that long non-coding RNA (lncRNA) plays a regulatory role in cardiovascular diseases, and the mechanism of rhabdomyosarcoma 2-associated transcript (RMST) in atherosclerosis (AS) is still unclear. This study aimed to evaluate the expression of RMST and its possible role in the occurrence of AS. RMST and miR-224-3p level in serum and human umbilical vein endothelial cells (HUVECs) were determined by real-time quantitative PCR (RT-qPCR). In vitro atherosclerotic cell model was achieved by treating HUVECs with ox-LDL. Receiver operating characteristic (ROC) curve assessed the diagnostic value of RMST in AS, and Pearson correlation coefficient estimated the correlation of RMST with carotid intima-media thickness (CIMT) and carotid-femoral pulse wave velocity (cfPWV). Cell counting kit-8 (CCK-8) assay and Enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the effect of RMST on cell viability and inflammatory response. The luciferase analysis was used to validate the relationship between RMST and miR-224-3p. The results showed that in serum and HUVECs, RMST levels were increased, while miR-224-3p level was decreased. ROC curve suggested that RMST had clinical diagnostic value for AS. Besides, CIMT and cfPWV were positively correlated with RMST levels, respectively. In HUVECs, RMST-knockdown notably improved the cell viability and inhibited the production of inflammatory factors. Moreover, miR-224-3p was the target of RMST. In conclusion, RMST has the potential to be a diagnostic marker for AS. RMST-knockdown contributes to the enhancement of cell viability and the inhibition of inflammatory response, which may provide new insights into the conquest of AS.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Endocrinology, People’s Hospital of Rizhao, Shandong, China
| | - Cuina Feng
- Department of Cardiology, Affiliated Hospital of Hebei University, Hebei, China
| | - Xiang Zhang
- Department of Cardiology, People’s Hospital of Rizhao, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Shandong, China
| | - Ying Bian
- Department of General Breast Surgery, Affiliated Hospital of Hebei University, Hebei, China
| |
Collapse
|
15
|
Zhang Y, Liu H. Safety of Total Knee Arthroplasty in the Treatment of Knee Osteoarthritis and Its Effect on Postoperative Pain and Quality of Life of Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6951578. [PMID: 35024014 PMCID: PMC8716239 DOI: 10.1155/2021/6951578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Objective To explore the safety of total knee arthroplasty (TKA) in the treatment of knee osteoarthritis (KOA) and its impact on patients' postoperative pain and quality of life. Methods A total of 60 KOA patients admitted to our hospital from January 2019 to January 2020 were selected as the research objects. The knee joint scores (HSS) before and after TKA were compared, and the patients' quality of life was evaluated using the Osteoarthritis Index of Western Ontario and McMaster University (WOMAC). At the same time, the number of patients with complications was recorded, and the efficacy of TKA was comprehensively analyzed. Results The postoperative HSS score was significantly higher than the preoperative score (P < 0.05), the postoperative pain score increased with time, and the pain gradually decreased. The postoperative WOMAC score was significantly lower than the preoperative score (P < 0.001), and the score at 6 months after surgery was significantly lower than that at 3 months after surgery (P < 0.001). There were no complications such as severe prosthesis fracture, secondary sepsis, and patellar tendon rupture, and the total incidence of complications was 11.7%. The effective rate of treatment at 6 months after operation was 98.3%, which was significantly higher than that at 3 months after operation (P < 0.05). Conclusion Total knee arthroplasty can improve the knee joint function of patients with knee osteoarthritis, with low postoperative pain, low complication rate, and good quality of life for patients. It is worthy of promotion and application.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Joint Surgery, Ningbo No. 6 Hospital, Ningbo 315100, Zhejiang, China
| | - Hua Liu
- Department of Joint Surgery, Ningbo No. 6 Hospital, Ningbo 315100, Zhejiang, China
| |
Collapse
|
16
|
Wang S, Li J, Chen A, Song H. Differentiated expression of long non-coding RNA-small nucleolar RNA host gene 8 in atherosclerosis and its molecular mechanism. Bioengineered 2021; 12:7167-7176. [PMID: 34558393 PMCID: PMC8806704 DOI: 10.1080/21655979.2021.1979441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular diseases, and the incidence is increasing year by year. Many studies have shown that long non-coding RNA plays a vital role in the pathogenesis of AS. This study aimed to explore the role and mechanism of lncRNA-small nucleolar RNA host gene 8 (SNHG8) in AS. The expressions of serum lncSNHG8 and miR-224-3p were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic meaning of lncSNHG8 in AS was estimated by Receiver operating characteristic (ROC) curve. The correlation between lncSNHG8 and various clinical indicators, as well as miR-244-3p was evaluated by Pearson correlation coefficient analysis. Cell proliferation and migration were estimated by cell counting kit-8 (CCK-8) and Transwell assay. The interaction between lncSNHG8 and miR-224-3p was proved by luciferase reporter gene assay. The expression level of lncSNHG8 was increased in AS patients, while miR-224-3p expression was decreased. The ROC curve indicated that lncSNHG8 with high serum expression had the ability to distinguish AS. Pearson correlation coefficient exhibited that the level of miR-224-3p was negatively correlated with the level of lncSNHG8. The results of cell experiments indicated that inhibition of the expression of lncSNHG8 significantly inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs). Luciferase reporter gene experiments confirmed that there was a target relationship between lncSNHG8 and miR-224-3p. In conclusion, lncSNHG8 had high diagnostic value for AS. It promoted the proliferation and migration of VSMCs by adsorption and inhibition of miR-224-3p.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Emergency Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - Jianchao Li
- Department of Emergency Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - Aimei Chen
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - He Song
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong China
| |
Collapse
|
17
|
Transcriptome sequencing provides insights into the mechanism of hypoxia adaption in bighead carp (Hypophthalmichthys nobilis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100891. [PMID: 34404015 DOI: 10.1016/j.cbd.2021.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Hypoxia negatively affects the behavior, immunology, physiology, and growth of fish. Therefore, uncovering the genetic mechanisms underlying hypoxia adaptation and tolerance in fish prior to any genetic improvement is essential. Bighead carp is one of the most important freshwater fish species in aquaculture worldwide; however, this species does not have a strong ability to tolerate hypoxia. In this study, the dissolved oxygen level (0.6 mg/L) was maintained above the asphyxiation point of bighead carp for a long time to simulate hypoxia stress. The liver, gills, and heart were sampled before (0 h) and after (1 h, 2 h, 4 h) the hypoxia tests. Glutathione peroxidase (GPx) and catalase (CAT) activities and malondialdehyde (MDA) levels in the liver were significantly (p < 0.05) elevated at 1 h after hypoxic stress. By observing tissue morphology, the cell structure of the liver and gill tissues was found to change to varying degrees before and after hypoxia stress. Transcriptome sequencing was performed on 36 samples of gill, liver, and heart at four time points, and a total of 293.55G of data was obtained. In the early phase (0-1 h), differentially expressed genes (DEGs, 807 genes upregulated, 654 genes downregulated) were mainly enriched in signal transduction, such as cytokine-cytokine receptor interactions and ECM-receptor interactions. In the middle phase (0-2 h), DEGs (1201 genes upregulated and 2036 genes downregulated) were mainly enriched in regulation and adaptation, such as the MAPK and FoxO signaling pathways. Finally, in the later phase (0-4 h), DEGs (3975 genes upregulated and 4412 genes downregulated) were mainly enriched in tolerance and apoptosis, such as the VEGF signaling pathway and apoptosis. The genes with the most remarkable upregulation at different time points in the three tissues had some similarities. Genetic differences in these genes may be responsible for the differences in hypoxia tolerance among individuals. Altogether, our study provides new insights into the molecular mechanisms of hypoxia adaptation in fish. Further, the key regulatory genes identified provide genetic resources for breeding hypoxia-tolerant bighead carp species.
Collapse
|