1
|
Grimwood RM, Reyes EMR, Cooper J, Welch J, Taylor G, Makan T, Lim L, Dubrulle J, McInnes K, Holmes EC, Geoghegan JL. From islands to infectomes: host-specific viral diversity among birds across remote islands. BMC Ecol Evol 2024; 24:84. [PMID: 38926829 PMCID: PMC11209962 DOI: 10.1186/s12862-024-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Accelerating biodiversity loss necessitates monitoring the potential pathogens of vulnerable species. With a third of New Zealand's avifauna considered at risk of extinction, a greater understanding of the factors that influence microbial transmission in this island ecosystem is needed. We used metatranscriptomics to determine the viruses, as well as other microbial organisms (i.e. the infectomes), of seven bird species, including the once critically endangered black robin (Petroica traversi), on two islands in the remote Chatham Islands archipelago, New Zealand. RESULTS We identified 19 likely novel avian viruses across nine viral families. Black robins harboured viruses from the Flaviviridae, Herpesviridae, and Picornaviridae, while introduced starlings (Sturnus vulgaris) and migratory seabirds (Procellariiformes) carried viruses from six additional viral families. Potential cross-species virus transmission of a novel passerivirus (family: Picornaviridae) between native (black robins and grey-backed storm petrels) and introduced (starlings) birds was also observed. Additionally, we identified bacterial genera, apicomplexan parasites, as well as a novel megrivirus linked to disease outbreaks in other native New Zealand birds. Notably, island effects were outweighed by host taxonomy as a significant driver of viral composition, even among sedentary birds. CONCLUSIONS These findings underscore the value of surveillance of avian populations to identify and minimise escalating threats of disease emergence and spread in these island ecosystems. Importantly, they contribute to our understanding of the potential role of introduced and migratory birds in the transmission of microbes and associated diseases, which could impact vulnerable island-endemic species.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Enzo M R Reyes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jamie Cooper
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jemma Welch
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Graeme Taylor
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Troy Makan
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Lauren Lim
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jérémy Dubrulle
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Kate McInnes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
- Institute of Environmental Science and Research, Wellington, 5018, New Zealand.
| |
Collapse
|
2
|
Sadiq S, Harvey E, Mifsud JCO, Minasny B, McBratney AB, Pozza LE, Mahar JE, Holmes EC. Australian terrestrial environments harbour extensive RNA virus diversity. Virology 2024; 593:110007. [PMID: 38346363 DOI: 10.1016/j.virol.2024.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
Australia is home to a diverse range of unique native fauna and flora. To address whether Australian ecosystems also harbour unique viruses, we performed meta-transcriptomic sequencing of 16 farmland and sediment samples taken from the east and west coasts of Australia. We identified 2460 putatively novel RNA viruses across 18 orders, the vast majority of which belonged to the microbe-associated phylum Lenarviricota. In many orders, such as the Nodamuvirales and Ghabrivirales, the novel viruses identified here comprised entirely new clades. Novel viruses also fell between established genera or families, such as in the Cystoviridae and Picornavirales, while highly divergent lineages were identified in the Sobelivirales and Ghabrivirales. Viral read abundance and alpha diversity were influenced by sampling site, soil type and land use, but not by depth from the surface. In sum, Australian soils and sediments are home to remarkable viral diversity, reflecting the biodiversity of local fauna and flora.
Collapse
Affiliation(s)
- Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Budiman Minasny
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alex B McBratney
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liana E Pozza
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
4
|
Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol 2022; 9:veac124. [PMID: 36694816 PMCID: PMC9854234 DOI: 10.1093/ve/veac124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Mary E Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 Singapore
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
5
|
French RK, Stone ZL, Parker KA, Holmes EC. Novel viral and microbial species in a translocated Toutouwai (Petroica longipes) population from Aotearoa/New Zealand. ONE HEALTH OUTLOOK 2022; 4:16. [PMID: 36224666 PMCID: PMC9558408 DOI: 10.1186/s42522-022-00072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Translocation is a common tool in wildlife management and its implementation has resulted in many conservation successes. During translocations, any associated infectious agents are moved with their wildlife hosts. Accordingly, translocations can present a risk of infectious disease emergence, although they also provide an opportunity to restore natural infectious communities ('infectome') and mitigate the long-term risks of reduced natural resistance. METHODS We used metatranscriptomic sequencing to characterise the cloacal infectome of 41 toutouwai (North Island robin, Petroica longipes) that were translocated to establish a new population within the North Island of New Zealand. We also screened for pathogenic bacteria, fungi and parasites. RESULTS Although we did not detect any known avian diseases, which is a positive outcome for the translocated toutouwai population, we identified a number of novel viruses of interest, including a novel avian hepatovirus, as well as a divergent calici-like virus and four hepe-like viruses of which the host species is unknown. We also revealed a novel spirochete bacterium and a coccidian eukaryotic parasite. CONCLUSIONS The presumably non-pathogenic viruses and microbial species identified here support the idea that most microorganisms likely do not cause disease in their hosts, and that translocations could serve to help restore and maintain native infectious communities. We advise greater surveillance of infectious communities of both native and non-native wildlife before and after translocations to better understand the impact, positive or negative, that such movements may have on both host and infectome ecology.
Collapse
Affiliation(s)
- Rebecca K French
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Zoë L Stone
- Zoology and Ecology Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Kevin A Parker
- Parker Conservation Ltd, 549 Rocks Road, Nelson, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Metatranscriptomic Comparison of Viromes in Endemic and Introduced Passerines in New Zealand. Viruses 2022; 14:v14071364. [PMID: 35891346 PMCID: PMC9321414 DOI: 10.3390/v14071364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
New Zealand/Aotearoa has many endemic passerine birds vulnerable to emerging infectious diseases. Yet little is known about viruses in passerines, and in some countries, including New Zealand, the virome of wild passerines has been only scarcely researched. Using metatranscriptomic sequencing we characterised the virome of New Zealand endemic and introduced species of passerine. Accordingly, we identified 34 possible avian viruses from cloacal swabs of 12 endemic and introduced bird species not showing signs of disease. These included a novel siadenovirus, iltovirus, and avastrovirus in the Eurasian blackbird (Turdus merula, an introduced species), song thrush (Turdus philomelos, introduced) and silvereye/tauhou (Zosterops lateralis, introduced), respectively. This is the first time novel viruses from these genera have been identified in New Zealand, likely reflecting prior undersampling. It also represents the first identification of an iltovirus and siadenovirus in blackbirds and thrushes globally. These three viruses were only found in introduced species and may pose a risk to endemic species if they were to jump species boundaries, particularly the iltoviruses and siadenoviruses that have a prior history of disease associations. Further virus study and surveillance are needed in New Zealand avifauna, particularly in Turdus populations and endemic species.
Collapse
|