1
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
3
|
Meinen S, Brinkmann S, Viebrock K, Elbardisy B, Menzel H, Krull R, Dietzel A. 2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor. BIOSENSORS 2024; 14:438. [PMID: 39329813 PMCID: PMC11429511 DOI: 10.3390/bios14090438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Microbioreactors increase information output in biopharmaceutical screening applications because they can be operated in parallel without consuming large quantities of the pharmaceutical formulations being tested. A capillary wave microbioreactor (cwMBR) has recently been reported, allowing cost-efficient parallelization in an array that can be activated for mixing as a whole. Although impedance spectroscopy can directly distinguish between dead and viable cells, the monitoring of cells in suspension within bioreactors is challenging because the signal is influenced by the potentially varying properties of the culture medium. In order to address this challenge, an impedance sensor consisting of two sets of microelectrodes in a cwMBR is presented. Only one set of electrodes was covered by a two-photon cross-linked hydrogel to become insensitive to the influence of cells while remaining sensitive to the culture medium. With this impedance sensor, the biomass of Saccharomyces cerevisiae could be measured in a range from 1 to 20 g L-1. In addition, the sensor can compensate for a change in the conductivity of the suspension of 5 to 15 mS cm-1. Moreover, the two-photon cross-linking of hydroxyethyl starch methacrylate hydrogel, which has been studied in detail, recommends itself for even much broader sensing applications in miniaturized bioreactors and biosensors.
Collapse
Affiliation(s)
- Sven Meinen
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Steffen Brinkmann
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Kevin Viebrock
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Bassant Elbardisy
- Institute of Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Henning Menzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Rainer Krull
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Schwegler N, Gebert T, Villiou M, Colombo F, Schamberger B, Selhuber-Unkel C, Thomas F, Blasco E. Multimaterial 3D Laser Printing of Cell-Adhesive and Cell-Repellent Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401344. [PMID: 38708807 DOI: 10.1002/smll.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 05/07/2024]
Abstract
Here, a straightforward method is reported for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability, and rapid and precise 3D fabrication. The printable cell-adhesive polyethylene glycol (PEG) based material includes an Arg-Gly-Asp (RGD) containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design. Remarkably, minimal amounts of RGD peptide (< 0.1 wt%) suffice for imparting cell-adhesiveness, while maintaining identical mechanical properties in the 3D printed microstructures to those of the cell-repellent, PEG-based material. Fluorescent labeling of the RGD peptide facilitates visualization of its presence in cell-adhesive areas. To demonstrate the broad applicability of the system, the fabrication of cell-adhesive 2.5D and 3D structures is shown, fostering the adhesion of fibroblast cells within these architectures. Thus, this approach allows for the printing of high-resolution, true 3D structures suitable for diverse applications, including cellular studies in complex environments.
Collapse
Affiliation(s)
- Niklas Schwegler
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tanisha Gebert
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Maria Villiou
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Federico Colombo
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Barbara Schamberger
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Sakorikar T, Mihaliak N, Krisnadi F, Ma J, Kim TI, Kong M, Awartani O, Dickey MD. A Guide to Printed Stretchable Conductors. Chem Rev 2024; 124:860-888. [PMID: 38291556 DOI: 10.1021/acs.chemrev.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.
Collapse
Affiliation(s)
- Tushar Sakorikar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikolas Mihaliak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tae-Il Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, South Korea
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Wen F, Wang Y, Tu B, Cui L. Superfast Gelation of Spider Silk-Based Artificial Silk Protein. Gels 2024; 10:69. [PMID: 38247791 PMCID: PMC10815891 DOI: 10.3390/gels10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Spider silk proteins (spidroins) have garnered attention in biomaterials research due to their ability to self-assemble into hydrogels. However, reported spidroin hydrogels require high protein concentration and prolonged gelation time. Our study engineered an artificial spidroin that exhibits unprecedented rapid self-assembly into hydrogels at physiologically relevant conditions, achieving gelation at a low concentration of 6 mg/mL at 37 °C without external additives. Remarkably, at a 30 mg/mL concentration, our engineered protein forms hydrogels within 30 s, a feature we termed "superfast gelation". This rapid formation is modulated by ions, pH, and temperature, offering versatility in biomedical applications. The hydrogel's capacity to encapsulate proteins and support E. coli growth while inducing RFP expression provides a novel platform for drug delivery and bioengineering applications. Our findings introduce a superfast, highly adaptable, and cytocompatible hydrogel that self-assembles under mild conditions, underscoring the practical implication of rapid gelation in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Fan Wen
- CCZU-JITRI Joint Bio-X Lab, School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Wang
- CCZU-JITRI Joint Bio-X Lab, School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bowen Tu
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou 213000, China
| | - Lun Cui
- CCZU-JITRI Joint Bio-X Lab, School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
- Biomaterials Lab, Changzhou AiRiBio Healthcare Co., Ltd., Changzhou 213164, China
| |
Collapse
|
7
|
Wang C, Zhou Y. Sacrificial biomaterials in 3D fabrication of scaffolds for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35312. [PMID: 37572033 DOI: 10.1002/jbm.b.35312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Three-dimensional (3D) printing technology has progressed exceedingly in the area of tissue engineering. Despite the tremendous potential of 3D printing, building scaffolds with complex 3D structure, especially with soft materials, still exist as a challenge due to the low mechanical strength of the materials. Recently, sacrificial materials have emerged as a possible solution to address this issue, as they could serve as temporary support or templates to fabricate scaffolds with intricate geometries, porous structures, and interconnected channels without deformation or collapse. Here, we outline the various types of scaffold biomaterials with sacrificial materials, their pros and cons, and mechanisms behind the sacrificial material removal, compare the manufacturing methods such as salt leaching, electrospinning, injection-molding, bioprinting with advantages and disadvantages, and discuss how sacrificial materials could be applied in tissue-specific applications to achieve desired structures. We finally conclude with future challenges and potential research directions.
Collapse
Affiliation(s)
- Chi Wang
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| | - Yingge Zhou
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
8
|
Popescu RC, Calin BS, Tanasa E, Vasile E, Mihailescu M, Paun IA. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization. Front Bioeng Biotechnol 2023; 11:1273277. [PMID: 38170069 PMCID: PMC10758856 DOI: 10.3389/fbioe.2023.1273277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politehnica University from Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, Magurele, Romania
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
| | - Eugenia Tanasa
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Mona Mihailescu
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| |
Collapse
|
9
|
Wei SY, Chen PY, Hsieh CC, Chen YS, Chen TH, Yu YS, Tsai MC, Xie RH, Chen GY, Yin GC, Melero-Martin JM, Chen YC. Engineering large and geometrically controlled vascularized nerve tissue in collagen hydrogels to restore large-sized volumetric muscle loss. Biomaterials 2023; 303:122402. [PMID: 37988898 PMCID: PMC11606314 DOI: 10.1016/j.biomaterials.2023.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Developing scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use. Previous studies attempted to mitigate this issue by concentrating collagen pre-polymer solutions or synthesizing covalently crosslinked collagen hydrogels. However, these methods only partially reduce hydrogel contraction while hindering blood vessel formation within the hydrogels. To address this challenge, we introduced additional support in the form of a supportive spacer to counteract the contraction forces of populated cells and prevent hydrogel contraction. This approach was found to promote cell spreading, resist hydrogel contraction, control hydrogel/tissue geometry, and even facilitate the engineering of functional blood vessels and host nerve growth in just one week. Subsequently, implanting these engineered tissues into muscle defect sites resulted in timely anastomosis with the host vasculature, leading to enhanced myogenesis, increased muscle innervation, and the restoration of injured muscle functionality. Overall, this innovative strategy expands the applicability of collagen hydrogels in fabricating large vascularized nerve tissue constructs for repairing volumetric muscle loss (∼63 %) and restoring muscle function.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, PA, USA
| | - Yu-Shan Yu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Pohlit H, Bohlin J, Katiyar N, Hilborn J, Tenje M. Technology platform for facile handling of 3D hydrogel cell culture scaffolds. Sci Rep 2023; 13:12829. [PMID: 37550357 PMCID: PMC10406881 DOI: 10.1038/s41598-023-39081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Hydrogels are used extensively as cell-culture scaffolds for both 2D and 3D cell cultures due to their biocompatibility and the ease in which their mechanical and biological properties can be tailored to mimic natural tissue. The challenge when working with hydrogel-based scaffolds is in their handling, as hydrogels that mimic e.g. brain tissue, are both fragile and brittle when prepared as thin (sub-mm) membranes. Here, we describe a method for facile handling of thin hydrogel cell culture scaffolds by molding them onto a polycaprolactone (PCL) mesh support attached to a commonly used Transwell set-up in which the original membrane has been removed. In addition to demonstrating the assembly of this set-up, we also show some applications for this type of biological membrane. A polyethylene glycol (PEG)-gelatin hydrogel supports cell adhesion, and the structures can be used for biological barrier models comprising either one or multiple hydrogel layers. Here, we demonstrate the formation of a tight layer of an epithelial cell model comprising MDCK cells cultured over 9 days by following the build-up of the transepithelial electrical resistances. Second, by integrating a pure PEG hydrogel into the PCL mesh, significant swelling is induced, which leads to the formation of a non-adherent biological scaffold with a large curvature that is useful for spheroid formation. In conclusion, we demonstrate the development of a handling platform for hydrogel cell culture scaffolds for easy integration with conventional measurement techniques and miniaturized organs-on-chip systems.
Collapse
Affiliation(s)
- Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jan Bohlin
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Neeraj Katiyar
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Kopeć K, Podgórski R, Ciach T, Wojasiński M. System for Patterning Polydopamine and VAPG Peptide on Polytetrafluoroethylene and Biodegradable Polyesters for Patterned Growth of Smooth Muscle Cells In Vitro. ACS OMEGA 2023; 8:22055-22066. [PMID: 37360448 PMCID: PMC10285958 DOI: 10.1021/acsomega.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Biomaterial's surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly(l-lactic acid-co-D,l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs). We proved that the fabrication of PDA patterns allows for the selective adhesion of mouse fibroblast and human SMCs to PDA-patterned surfaces after only 30 min of in vitro cultivation. After 7 days of SMC culture, we observed the proliferation of cells only along the patterns on PTFE but over the entire surface of the PLA and PLGA, regardless of patterning. This means that the presented approach is beneficial for application to materials resistant to cell adhesion and proliferation. The additional attachment of the VAPG peptide to the PDA patterns did not bring measurable benefits due to the high increase in adhesion and patterned cell proliferation by PDA itself.
Collapse
Affiliation(s)
- Kamil Kopeć
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Rafał Podgórski
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
- Warsaw
University of Technology, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Michał Wojasiński
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
12
|
Ishibashi Y, Haraguchi R, Aoki S, Oishi Y, Narita T. Effect of UV Irradiation of Pre-Gel Solutions on the Formation of Collagen Gel Tubes. Gels 2023; 9:458. [PMID: 37367129 DOI: 10.3390/gels9060458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Hollow collagen gels are promising materials for drug/cell delivery systems to promote tissue regeneration because they may be able to function as carriers for these types of loads. Controlling the cavity size and swelling suppression is essential to expand the applications and improve the usability of such gel-like systems. We investigated the effects of UV-treated collagen solutions as a pre-gel aqueous mixture on the formation and properties of the hollow collagen gels in terms of their preparation range limits, morphology, and swelling ratio. The UV treatment thickened the pre-gel solutions, which allowed hollowing at lower collagen concentrations. This treatment also prevents the over-swelling of the hollow collagen rods in PBS buffer solutions. The UV-treated collagen solutions provided a large lumen space in the prepared collagen hollow fiber rods with a limited swelling ratio, allowing vascular endothelial cells and ectodermal cells to be cultured separately in the outer and inner lumen.
Collapse
Affiliation(s)
- Yu Ishibashi
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Ryota Haraguchi
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Saga University, Saga 849-8501, Japan
| | - Yushi Oishi
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Takayuki Narita
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| |
Collapse
|
13
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
14
|
Wachendörfer M, Buhl EM, Messaoud GB, Richtering W, Fischer H. pH and Thrombin Concentration Are Decisive in Synthesizing Stiff, Stable, and Open-Porous Fibrin-Collagen Hydrogel Blends without Chemical Cross-Linker. Adv Healthc Mater 2023; 12:e2203302. [PMID: 36546310 PMCID: PMC11468609 DOI: 10.1002/adhm.202203302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Eva Miriam Buhl
- Electron Microscopy FacilityInstitute of PathologyRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Ghazi Ben Messaoud
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
15
|
Lemma ED, Tabone R, Richler K, Schneider AK, Bizzarri C, Weth F, Niemeyer CM, Bastmeyer M. Selective Positioning of Different Cell Types on 3D Scaffolds via DNA Hybridization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36787205 DOI: 10.1021/acsami.2c23202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) microscaffolds for cell biology have shown their potential in mimicking physiological environments and simulating complex multicellular constructs. However, controlling the localization of cells precisely on microfabricated structures is still complex and usually limited to two-dimensional assays. Indeed, the implementation of an efficient method to selectively target different cell types to specific regions of a 3D microscaffold would represent a decisive step toward cell-by-cell assembly of complex cellular arrangements. Here, we use two-photon lithography (2PL) to fabricate 3D microarchitectures with functional photoresists. UV-mediated click reactions are used to functionalize their surfaces with single-stranded DNA oligonucleotides, using sequential repetition to decorate different scaffold regions with individual DNA addresses. Various immortalized cell lines and stem cells modified by grafting complementary oligonucleotides onto the phospholipid membranes can then be immobilized onto complementary regions of the 3D structures by selective hybridization. This allows controlled cocultures to be established with spatially separated arrays of eukaryotic cells in 3D.
Collapse
Affiliation(s)
- Enrico Domenico Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Roberta Tabone
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Kai Richler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Ann-Kathrin Schneider
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Franco Weth
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Nguyen KD, Dejean S, Nottelet B, Gautrot JE. Mechanical Evaluation of Hydrogel-Elastomer Interfaces Generated through Thiol-Ene Coupling. ACS APPLIED POLYMER MATERIALS 2023; 5:1364-1373. [PMID: 36817337 PMCID: PMC9926487 DOI: 10.1021/acsapm.2c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The formation of hybrid hydrogel-elastomer scaffolds is an attractive strategy for the formation of tissue engineering constructs and microfabricated platforms for advanced in vitro models. The emergence of thiol-ene coupling, in particular radical-based, for the engineering of cell-instructive hydrogels and the design of elastomers raises the possibility of mechanically integrating these structures without relying on the introduction of additional chemical moieties. However, the bonding of hydrogels (thiol-ene radical or more classic acrylate/methacrylate radical-based) to thiol-ene elastomers and alkene-functional elastomers has not been characterized in detail. In this study, we quantify the tensile mechanical properties of hybrid hydrogel samples formed of two elastomers bonded to a hydrogel material. We examine the impact of radical thiol-ene coupling on the crosslinking of both elastomers (silicone or polyesters) and hydrogels (based on thiol-ene crosslinking or diacrylate chemistry) and on the mechanics and failure behavior of the resulting hybrids. This study demonstrates the strong bonding of thiol-ene hydrogels to alkene-presenting elastomers with a range of chemistries, including silicones and polyesters. Overall, thiol-ene coupling appears as an attractive tool for the generation of strong, mechanically integrated, hybrid structures for a broad range of applications.
Collapse
Affiliation(s)
- Khai D.
Q. Nguyen
- Institute
of Bioengineering, Queen Mary, University
of London, Mile End Road, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary, University of London, Mile End Road, London E1 4NS, U.K.
| | - Stéphane Dejean
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Benjamin Nottelet
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Julien E. Gautrot
- Institute
of Bioengineering, Queen Mary, University
of London, Mile End Road, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary, University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
17
|
Zhao H, Pan S, Natalia A, Wu X, Ong CAJ, Teo MCC, So JBY, Shao H. A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nat Biomed Eng 2023; 7:135-148. [PMID: 36303008 DOI: 10.1038/s41551-022-00954-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
The utility of mechanical metamaterials for biomedical applications has seldom been explored. Here we show that a metamaterial that is mechanically responsive to antibody-mediated biorecognition can serve as an optical interferometric mask to molecularly profile extracellular vesicles in ascites fluid from patients with cancer. The metamaterial consists of a hydrogel responsive to temperature and redox activity functionalized with antibodies to surface biomarkers on extracellular vesicles, and is patterned into micrometric squares on a gold-coated glass substrate. Through plasmonic heating, the metamaterial is maintained in a transition state between a relaxed form and a buckled state. Binding of extracellular vesicles from the patient samples to the antibodies on the hydrogel causes it to undergo crosslinking, induced by free radicals generated via the activity of horseradish peroxidase conjugated to the antibodies. Hydrogel crosslinking causes the metamaterial to undergo fast chiral re-organization, inducing amplified changes in its mechanical deformation and diffraction patterns, which are detectable by a smartphone camera. The mechanical metamaterial may find broad utility in the sensitive optical immunodetection of biomolecules.
Collapse
Affiliation(s)
- Haitao Zhao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Sijun Pan
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Xingjie Wu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Chin-Ann J Ong
- Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | - Melissa C C Teo
- Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | - Jimmy B Y So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore. .,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
18
|
Dos Santos LMS, de Oliveira JM, da Silva ECO, Fonseca VML, Silva JP, Barreto E, Dantas NO, Silva ACA, Jesus-Silva AJ, Mendonça CR, Fonseca EJS. Mechanical and morphological responses of osteoblast-like cells to two-photon polymerized microgrooved surfaces. J Biomed Mater Res A 2023; 111:234-244. [PMID: 36239143 DOI: 10.1002/jbm.a.37454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Laura M S Dos Santos
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | | | - Elaine C O da Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Vitor M L Fonseca
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Juliane P Silva
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Emiliano Barreto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | | | - Anielle C A Silva
- Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Alcenísio J Jesus-Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Cléber R Mendonça
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| |
Collapse
|
19
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
20
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
21
|
Saghir S, Imenes K, Schiavone G. Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook. Front Bioeng Biotechnol 2023; 11:1150147. [PMID: 37034261 PMCID: PMC10079906 DOI: 10.3389/fbioe.2023.1150147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Recent research aiming at the development of electroceuticals for the treatment of medical conditions such as degenerative diseases, cardiac arrhythmia and chronic pain, has given rise to microfabricated implanted bioelectronic devices capable of interacting with host biological tissues in synergistic modalities. Owing to their multimodal affinity to biological tissues, hydrogels have emerged as promising interface materials for bioelectronic devices. Here, we review the state-of-the-art and forefront in the techniques used by research groups for the integration of hydrogels into the microfabrication processes of bioelectronic devices, and present the manufacturability challenges to unlock their further clinical deployment.
Collapse
|
22
|
Ortiz-Cárdenas JE, Zatorski JM, Arneja A, Montalbine AN, Munson JM, Luckey CJ, Pompano RR. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiol-ene and methacryloyl hydrogels in a microfluidic device. ORGANS-ON-A-CHIP 2022; 4:100018. [PMID: 35535262 PMCID: PMC9078144 DOI: 10.1016/j.ooc.2022.100018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Micropatterning techniques for 3D cell cultures enable the recreation of tissue-level structures, but the combination of patterned hydrogels with organs-on-chip to generate organized 3D cultures under microfluidic perfusion remains challenging. To address this technological gap, we developed a user-friendly in-situ micropatterning protocol that integrates photolithography of crosslinkable, cell-laden hydrogels with a simple microfluidic housing, and tested the impact of crosslinking chemistry on stability and spatial resolution. Working with gelatin functionalized with photo-crosslinkable moieties, we found that inclusion of cells at high densities (≥ 107/mL) did not impede thiol-norbornene gelation, but decreased the storage moduli of methacryloyl hydrogels. Hydrogel composition and light dose were selected to match the storage moduli of soft tissues. To generate the desired pattern on-chip, the cell-laden precursor solution was flowed into a microfluidic chamber and exposed to 405 nm light through a photomask. The on-chip 3D cultures were self-standing and the designs were interchangeable by simply swapping out the photomask. Thiol-ene hydrogels yielded highly accurate feature sizes from 100 - 900 μm in diameter, whereas methacryloyl hydrogels yielded slightly enlarged features. Furthermore, only thiol-ene hydrogels were mechanically stable under perfusion overnight. Repeated patterning readily generated multi-region cultures, either separately or adjacent, including non-linear boundaries that are challenging to obtain on-chip. As a proof-of-principle, primary human T cells were patterned on-chip with high regional specificity. Viability remained high (> 85%) after 12-hr culture with constant perfusion. We envision that this technology will enable researchers to pattern 3D co-cultures to mimic organ-like structures that were previously difficult to obtain.
Collapse
Affiliation(s)
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, VA, USA 22904
| | - Alyssa N. Montalbine
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA, USA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
- Department of Chemistry, Carter Immunology Center, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
| |
Collapse
|
23
|
Zhang G, Qiu H, Elkhodary KI, Tang S, Peng D. Modeling Tunable Fracture in Hydrogel Shell Structures for Biomedical Applications. Gels 2022; 8:515. [PMID: 36005116 PMCID: PMC9407534 DOI: 10.3390/gels8080515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are nowadays widely used in various biomedical applications, and show great potential for the making of devices such as biosensors, drug- delivery vectors, carriers, or matrices for cell cultures in tissue engineering, etc. In these applications, due to the irregular complex surface of the human body or its organs/structures, the devices are often designed with a small thickness, and are required to be flexible when attached to biological surfaces. The devices will deform as driven by human motion and under external loading. In terms of mechanical modeling, most of these devices can be abstracted as shells. In this paper, we propose a mixed graph-finite element method (FEM) phase field approach to model the fracture of curved shells composed of hydrogels, for biomedical applications. We present herein examples for the fracture of a wearable biosensor, a membrane-coated drug, and a matrix for a cell culture, each made of a hydrogel. Used in combination with experimental material testing, our method opens a new pathway to the efficient modeling of fracture in biomedical devices with surfaces of arbitrary curvature, helping in the design of devices with tunable fracture properties.
Collapse
Affiliation(s)
- Gang Zhang
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Wuhan 430205, China
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430200, China
| | - Hai Qiu
- School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Khalil I. Elkhodary
- The Department of Mechanical Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shan Tang
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, International Research Center for Computational Mechanics, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Dan Peng
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
24
|
Wachendörfer M, Schräder P, Buhl EM, Palkowitz AL, Ben Messaoud G, Richtering W, Fischer H. A defined heat pretreatment of gelatin enables control of hydrolytic stability, stiffness, and microstructural architecture of fibrin-gelatin hydrogel blends. Biomater Sci 2022; 10:5552-5565. [PMID: 35969162 DOI: 10.1039/d2bm00214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibrin-gelatin hydrogel blends exhibit high potential for tissue engineering in vitro applications. However, the means to tailor these blends in order to control their properties, thus opening up a broad range of new target applications, have been insufficiently explored. We hypothesized that a controlled heat treatment of gelatin prior to blend synthesis enables control of hydrolytic swelling and shrinking, stiffness, and microstructural architecture of fibrin-gelatin based hydrogel blends while providing tremendous long-term stability. We investigated these hydrogel blends' compressive strength, in vitro degradation stability, and microstructure in order to test this hypothesis. In addition, we examined the gel's ability to support endothelial cell proliferation and stretching of encapsulated smooth muscle cells. This research showed that a controlled heat pretreatment of the gelatin component strongly influenced the stiffness, swelling, shrinking, and microstructural architecture of the final blends regardless of identical gelatin mass fractions. All blends offered high long-term hydrolytic stability. In conclusion, the results of this study open the possibility to use this technique in order to tune low-concentrated, open-porous fibrin-based hydrogels, even in long-term tissue engineering in vitro experiments.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Philipp Schräder
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
25
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
26
|
Yadav S, Majumder A. Biomimicked large-area anisotropic grooves from Dracaena sanderianaleaf enhances cellular alignment and subsequent differentiation. BIOINSPIRATION & BIOMIMETICS 2022; 17:056002. [PMID: 35728757 DOI: 10.1088/1748-3190/ac7afe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Cellular alignment is important for the proper functioning of different tissues such as muscles or blood vessel walls. Hence, in tissue engineering, sufficient effort has been made to control cellular orientation and alignment. It has been shown that micro-and nanoscale anisotropic topological features on cell culture substrates can control cellular orientation. Such substrates are fabricated using various lithography techniques such as photolithography and soft lithography. Although such techniques are suitable for creating patterns in small areas to establish a proof-of-concept, patterning large areas with intricate features is an unsolved problem. In this work, we report that a replica of the groove-like anisotropic patterns of the abaxial side of aDracaena sanderiana(bamboo) leaf can be used for large-area patterning of cells. We imprinted the leaf on polydimethylsiloxane (PDMS) and characterised its surface topography using scanning electron microscopy. We further cultured bone marrow human mesenchymal cells (BM-hMSCs), skeletal muscle cells (C2C12), and neuroblastoma cells (SHSY5Y) on the patterned PDMS on which the cells orient along the direction of the grooved pattern. Further, we observed enhanced neuronal differentiation of SHSY5Y cells on biomimicked pattern compared to flat PDMS as measured by percentage of cells with neurites, neurite length and the expression of neuronal differentiation marker beta-III tubulin (TUJ1). This process is simple, frugal, and can be adopted by laboratories with resource constraints. This one-step technique to fabricate large-area anisotropic surface patterns from bamboo leaves can be used as a platform to study cellular alignment and its effect on various cellular functions, including differentiation.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
27
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
28
|
Kim SJ, Byun H, Lee S, Kim E, Lee GM, Huh SJ, Joo J, Shin H. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Acta Biomater 2022; 142:60-72. [PMID: 35085797 DOI: 10.1016/j.actbio.2022.01.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell spheroids have been encapsulated in hydrogels for various applications because spheroids demonstrate higher cell activity than individual cells in suspension. However, there is limited information on the effect of distance between spheroids (inter-spheroid distance) on fusion or migration in a hydrogel. In this study, we developed temperature-responsive hydrogels with surface microwell patterns to culture adipose-derived stem cell (ASC) spheroids and deliver them into a Matrigel for the investigation of the effect of inter-spheroid distance on spheroid behavior. The ASC spheroids were encapsulated successfully in a Matrigel, denoted as sandwich culture, with a specific inter-spheroid distance ranging from 100 to 400 µm. Interestingly, ASCs migrated from the host spheroid and formed a bridge-like structure between spheroids, denoted as a cellular bridge, only when the inter-spheroid distance was 200 µm. Thus, we performed a sandwich culture of human umbilical vein endothelial cells (HUVECs) and ASCs in co-cultured spheroids in the Matrigel to create a homogeneous endothelial cell network in the hydrogel. The HUVECs sprouted through the ASC cellular bridge and directly interacted with the adjacent spheroid when the inter-spheroid distance was 200 µm. Similar results were obtained from an in vivo study. Thus, our study suggests the appropriate inter-spheroid distance for effective spheroid encapsulation in a hydrogel. STATEMENT OF SIGNIFICANCE: Recently, spheroid-based 3D tissue culture techniques such as spheroid encapsulation or 3D printing are being intensively investigated for various purposes. However, there is limited research regarding the effect of the inter-spheroid distance on spheroid communication. Here, we demonstrate a spatially arranged spheroid encapsulation method within a Matrigel by using a temperature-responsive hydrogel. Human adipose-derived stem cell spheroids are encapsulated with a precisely controlled inter-spheroid distance from 100 to 400 µm and show different tendencies in cell migration and spheroid fusion. Our results suggest that the inter-spheroid distance affects spheroid communication, and thus, the inter-spheroid distance needs to be considered carefully according to the purpose.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Gyeong Min Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
29
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
30
|
Novel Quick Cell Patterning Using Light-Responsive Gas-Generating Polymer and Fluorescence Microscope. MICROMACHINES 2022; 13:mi13020320. [PMID: 35208444 PMCID: PMC8875422 DOI: 10.3390/mi13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023]
Abstract
Conventional cell patterning methods are mainly based on hydrophilic/hydrophobic differences or chemical coating for cell adhesion/non-adhesion with wavering strength as it varies with the substrate surface conditions, including the cell type and the extracellular matrix components (ECMs) coating; thus, the versatility and stability of cell patterning methods must be improved. In this study, we propose a new cell patterning method using a light-responsive gas-generating polymer (LGP) and a conventional fluorescence microscope. Herein, cells and cellular tissues are easily released from the substrate surface by the nitrogen gas bubbles generated from LGP by the excitation light for fluorescence observation without harming the cells. The LGP-implanted chip was fabricated by packing LGP into a polystyrene (PS) microarray chip with a concave pattern. HeLa cells were spread on the LGP-implanted chips coated with three different ECMs (fibronectin, collagen, and poly-D-lysine), and all HeLa cells on the three LGP patterns were released. The pattern error between the LGP pattern and the remaining HeLa cells was 8.81 ± 4.24 μm, less than single-cell size. In addition, the LGP-implanted chip method can be applied to millimeter-scale patterns, with less than 30 s required for cell patterning. Therefore, the proposed method is a simple and rapid cell patterning method with high cell patterning accuracy of less than the cell size error, high scalability, versatility, and stability unaffected by the cell type or the ECM coating.
Collapse
|
31
|
Barhouse PS, Andrade MJ, Smith Q. Home Away From Home: Bioengineering Advancements to Mimic the Developmental and Adult Stem Cell Niche. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.832754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inherent self-organizing capacity of pluripotent and adult stem cell populations has advanced our fundamental understanding of processes that drive human development, homeostasis, regeneration, and disease progression. Translating these principles into in vitro model systems has been achieved with the advent of organoid technology, driving innovation to harness patient-specific, cell-laden regenerative constructs that can be engineered to augment or replace diseased tissue. While developmental organization and regenerative adult stem cell niches are tightly regulated in vivo, in vitro analogs lack defined architecture and presentation of physicochemical cues, leading to the unhindered arrangement of mini-tissues that lack complete physiological mimicry. This review aims to highlight the recent integrative engineering approaches that elicit spatio-temporal control of the extracellular niche to direct the structural and functional maturation of pluripotent and adult stem cell derivatives. While the advances presented here leverage multi-pronged strategies ranging from synthetic biology to microfabrication technologies, the methods converge on recreating the biochemical and biophysical milieu of the native tissue to be modeled or regenerated.
Collapse
|
32
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Porras Hernández AM, Barbe L, Pohlit H, Tenje M, Antfolk M. Confocal imaging dataset to assess endothelial cell orientation during extreme glucose conditions. Sci Data 2022; 9:26. [PMID: 35087120 PMCID: PMC8795398 DOI: 10.1038/s41597-022-01130-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Confocal microscopy offers a mean to extract quantitative data on spatially confined subcellular structures. Here, we provide an imaging dataset of confocal z-stacks on endothelial cells spatially confined on lines with different widths, visualizing the nucleus, F-actin, and zonula occludens-1 (ZO-1), as well as the lines. This dataset also includes confocal images of spatially confined endothelial cells challenged with different glucose conditions. We have validated the image quality by established analytical means using the MeasureImageQuality module of the CellProfilerTM software. We envision that this dataset could be used to extract data on both a population and a single cell level, as well as a learning set for the development of new image analysis tools.
Collapse
Affiliation(s)
- Ana María Porras Hernández
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent Barbe
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Maria Antfolk
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res 2021; 117:2742-2754. [PMID: 33729461 PMCID: PMC8683705 DOI: 10.1093/cvr/cvab088] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions. The opportunities to discover novel targets and to perform drug testing with chip-based platforms have substantially enhanced, thanks to the utilization of patient-derived cells and precise control of their microenvironment. These organ models will provide an important asset for future approaches to personalized cardiovascular medicine and improved patient care. However, certain technical and biological challenges remain, making the global utilization of OoCs to tackle unanswered questions in cardiovascular science still rather challenging. This review article aims to introduce and summarize published work on hearts- and vessels-on chips but also to provide an outlook and perspective on how these advanced in vitro systems can be used to tailor disease models with patient-specific characteristics.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Maria Sabater-Lleal
- Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Genomics of Complex Diseases Group, Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aisen Vivas
- BIOS/Lab on a Chip, University of Twente, Enschede, The Netherlands
- Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| | - Sofia Johansson
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
- Molecular Vascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. MICROMACHINES 2021; 12:1443. [PMID: 34945293 PMCID: PMC8707724 DOI: 10.3390/mi12121443] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The advent of the miniaturization approach has influenced the research trends in almost all disciplines. Bioengineering is one of the fields benefiting from the new possibilities of microfabrication techniques, especially in cell and tissue culture, disease modeling, and drug discovery. The limitations of existing 2D cell culture techniques, the high time and cost requirements, and the considerable failure rates have led to the idea of 3D cell culture environments capable of providing physiologically relevant tissue functions in vitro. Organ-on-chips are microfluidic devices used in this context as a potential alternative to in vivo animal testing to reduce the cost and time required for drug evaluation. This emerging technology contributes significantly to the development of various research areas, including, but not limited to, tissue engineering and drug discovery. However, it also brings many challenges. Further development of the technology requires interdisciplinary studies as some problems are associated with the materials and their manufacturing techniques. Therefore, in this paper, organ-on-chip technologies are presented, focusing on the design and fabrication requirements. Then, state-of-the-art materials and microfabrication techniques are described in detail to show their advantages and also their limitations. A comparison and identification of gaps for current use and further studies are therefore the subject of the final discussion.
Collapse
Affiliation(s)
- Alireza Tajeddin
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
| | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34596, Istanbul, Turkey
| |
Collapse
|
36
|
In Vitro Evaluation of a Composite Gelatin-Hyaluronic Acid-Alginate Porous Scaffold with Different Pore Distributions for Cartilage Regeneration. Gels 2021; 7:gels7040165. [PMID: 34698179 PMCID: PMC8544390 DOI: 10.3390/gels7040165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
Although considerable achievements have been made in the field of regenerative medicine, since self-repair is not an advanced ability of articular cartilage, the regeneration of osteochondral defects is still a challenging problem in musculoskeletal diseases. Cartilage regeneration aims to design a scaffold with appropriate pore structure and biological and mechanical properties for the growth of chondrocytes. In this study, porous scaffolds made of gelatin, hyaluronic acid, alginate, and sucrose in different proportions of 2 g (SL2) and 4 g (SL4) were used as porogens in a leaching process. Sucrose with particle size ranges of 88–177 μm (Hμ) and 44–74 μm (SHμ) was added to the colloid, and the individually cross-linked hydrogel scaffolds with controllable pore size for chondrocyte culture were named Hμ-SL2, Hμ-SL4, SHμ-SL2 and SHμ-SL4. The perforation, porosity, mechanical strength, biocompatibility, and proliferation characteristics of the hydrogel scaffold and its influence on chondrocyte differentiation are discussed. Results show that the addition of porogen increases the porosity of the hydrogel scaffold. Conversely, when porogens with the same particle size are added, the pore size decreases as the amount of porogen increases. The perforation effect of the hydrogel scaffolds formed by the porogen is better at 88–177 μm compared with that at 44–74 μm. Cytotoxicity analysis showed that all the prepared hydrogel scaffolds were non-cytotoxic, indicating that no cross-linking agent residues that could cause cytotoxicity were found. In the proliferation and differentiation of the chondrocytes, the SHμ-SL4 hydrogel scaffold with the highest porosity and strength did not achieve the best performance. However, due to the compromise between perforation pores, pore sizes, and strength, as well as considering cell proliferation and differentiation, Hμ-SL4 scaffold provided a more suitable environment for the chondrocytes than other groups; therefore, it can provide the best chondrocyte growth environment for this study. The development of hydrogels with customized pore properties for defective cartilage is expected to meet the requirements of the ultimate clinical application.
Collapse
|
37
|
Micro-scaffolds as synthetic cell niches: recent advances and challenges. Curr Opin Biotechnol 2021; 73:290-299. [PMID: 34619481 DOI: 10.1016/j.copbio.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023]
Abstract
Micro-fabrication and nano-fabrication provide useful approaches to address fundamental biological questions by mimicking the physiological microenvironment in which cells carry out their functions. In particular, 2D patterns and 3D scaffolds obtained via lithography, direct laser writing, and other techniques allow for shaping hydrogels, synthetic polymers and biologically derived materials to create structures for (single) cell culture. Applications of micro-scaffolds mimicking cell niches include stem cell self-renewal, differentiation, and lineage specification. This review moves from technological aspects of scaffold microfabrication for cell biological applications to a broad overview of advances in (stem) cell research: achievements for embryonic, induced pluripotent, mesenchymal, and neural stem cells are treated in detail, while a particular section is dedicated to micro-scaffolds used to study single cells in basic cell biology.
Collapse
|
38
|
Argentiere S, Siciliano PA, Blasi L. How Microgels Can Improve the Impact of Organ-on-Chip and Microfluidic Devices for 3D Culture: Compartmentalization, Single Cell Encapsulation and Control on Cell Fate. Polymers (Basel) 2021; 13:3216. [PMID: 34641032 PMCID: PMC8512905 DOI: 10.3390/polym13193216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The Organ-on-chip (OOC) devices represent the new frontier in biomedical research to produce micro-organoids and tissues for drug testing and regenerative medicine. The development of such miniaturized models requires the 3D culture of multiple cell types in a highly controlled microenvironment, opening new challenges in reproducing the extracellular matrix (ECM) experienced by cells in vivo. In this regard, cell-laden microgels (CLMs) represent a promising tool for 3D cell culturing and on-chip generation of micro-organs. The engineering of hydrogel matrix with properly balanced biochemical and biophysical cues enables the formation of tunable 3D cellular microenvironments and long-term in vitro cultures. This focused review provides an overview of the most recent applications of CLMs in microfluidic devices for organoids formation, highlighting microgels' roles in OOC development as well as insights into future research.
Collapse
Affiliation(s)
| | | | - Laura Blasi
- Institute for Microelectronics and Microsystems IMM-CNR, Via Monteroni, University Campus, 73100 Lecce, Italy; (S.A.); (P.A.S.)
| |
Collapse
|
39
|
Kim SJ, Lee S, Kim C, Shin H. One-step harvest and delivery of micropatterned cell sheets mimicking the multi-cellular microenvironment of vascularized tissue. Acta Biomater 2021; 132:176-187. [PMID: 33571713 DOI: 10.1016/j.actbio.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Techniques for harvest and delivery of cell sheets have been improving for decades. However, cell sheets with complicated patterns closely related to natural tissue architecture were hardly achieved. Here, we developed an efficient method to culture and harvest cell sheets with complex shape (noted as microtissues) using temperature-responsive hydrogel consisting of expandable polyethylene oxide polymer at low temperature. Firstly, a temperature-responsive hydrogel surface with honeycomb patterns (50 and 100 µm in width) were developed through microcontact printing of polydopamine (PD). The human dermal fibroblasts (HDFBs) and human umbilical vein endothelial cells (HUVECs) spontaneously formed honeycomb-shaped microtissues on the patterned hydrogel surface. The microtissues on the hydrogel were able to be harvested and directly delivered to the desired target through thermal expansion of the hydrogel at 4 °C with an efficiency close to 80% within 10 min which is faster than conventional method based on poly(N-isopropylacrylamide). The microtissues maintained their original honeycomb network and intact structures. Honeycomb-patterned cell sheets also were fabricated through serial seeding of various cell lines, including HDFBs, HUVECs, and human adipose-derived stem cells, in which cells were attached along the honeycomb pattern. The underlying honeycomb patterns in the cell sheets were successfully maintained for 3 days, even after delivery. In addition, patterned cell sheets were successfully delivered in vivo while maintaining an intact structure for 7 days. Together, our findings demonstrate that micropatterned temperature-responsive hydrogel is an efficient method of one-step culturing and delivery of complex microtissues and should prove useful in various tissue engineering applications. STATEMENT OF SIGNIFICANCE: Scaffold-free cell delivery techniques, including cell sheet engineering, have been developed for decades. However, there is limited research regarding culture and delivery of microtissues with complex architecture mimicking natural tissue. Herein, we developed a micro-patterned hydrogel platform for the culture and delivery of honeycomb-shaped microtissues. Honeycomb patterns were chemically engineered on the temperature-responsive hydrogel through microcontact printing of polydopamine to selectively allow for human dermal fibroblast or human umbilical vein endothelial cell adhesion. They spontaneously formed honeycomb-shaped microtissues within 24 hr upon cell seeding and directly delivered to various target area including in vivo via thermal expansion of the hydrogel at 4 °C, suggesting that the micro-patterned hydrogel can be an efficient tool for culture and delivery of complex microtissue.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chunggoo Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
40
|
Kolesnik K, Xu M, Lee PVS, Rajagopal V, Collins DJ. Unconventional acoustic approaches for localized and designed micromanipulation. LAB ON A CHIP 2021; 21:2837-2856. [PMID: 34268539 DOI: 10.1039/d1lc00378j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acoustic fields are ideal for micromanipulation, being biocompatible and with force gradients approaching the scale of single cells. They have accordingly found use in a variety of microfluidic devices, including for microscale patterning, separation, and mixing. The bulk of work in acoustofluidics has been predicated on the formation of standing waves that form periodic nodal positions along which suspended particles and cells are aligned. An evolving range of applications, however, requires more targeted micromanipulation to create unique patterns and effects. To this end, recent work has made important advances in improving the flexibility with which acoustic fields can be applied, impressively demonstrating generating arbitrary arrangements of pressure fields, spatially localizing acoustic fields and selectively translating individual particles in ways that are not achievable via traditional approaches. In this critical review we categorize and examine these advances, each of which open the door to a wide range of applications in which single-cell fidelity and flexible micromanipulation are advantageous, including for tissue engineering, diagnostic devices, high-throughput sorting and microfabrication.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
42
|
Dimitriou P, Li J, Tornillo G, McCloy T, Barrow D. Droplet Microfluidics for Tumor Drug-Related Studies and Programmable Artificial Cells. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000123. [PMID: 34267927 PMCID: PMC8272004 DOI: 10.1002/gch2.202000123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Indexed: 05/11/2023]
Abstract
Anticancer drug development is a crucial step toward cancer treatment, that requires realistic predictions of malignant tissue development and sophisticated drug delivery. Tumors often acquire drug resistance and drug efficacy, hence cannot be accurately predicted in 2D tumor cell cultures. On the other hand, 3D cultures, including multicellular tumor spheroids (MCTSs), mimic the in vivo cellular arrangement and provide robust platforms for drug testing when grown in hydrogels with characteristics similar to the living body. Microparticles and liposomes are considered smart drug delivery vehicles, are able to target cancerous tissue, and can release entrapped drugs on demand. Microfluidics serve as a high-throughput tool for reproducible, flexible, and automated production of droplet-based microscale constructs, tailored to the desired final application. In this review, it is described how natural hydrogels in combination with droplet microfluidics can generate MCTSs, and the use of microfluidics to produce tumor targeting microparticles and liposomes. One of the highlights of the review documents the use of the bottom-up construction methodologies of synthetic biology for the formation of artificial cellular assemblies, which may additionally incorporate both target cancer cells and prospective drug candidates, as an integrated "droplet incubator" drug assay platform.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jin Li
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Giusy Tornillo
- Hadyn Ellis BuildingCardiff UniversityMaindy RoadCardiffCF24 4HQUK
| | - Thomas McCloy
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - David Barrow
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
43
|
Leclech C, Barakat AI. Is there a universal mechanism of cell alignment in response to substrate topography? Cytoskeleton (Hoboken) 2021; 78:284-292. [PMID: 33843154 DOI: 10.1002/cm.21661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Cell alignment and elongation in the direction of anisotropic and aligned topographies are key manifestations of cellular contact guidance and are observed in many cell types. Whether this observation occurs through a universal mechanism remains to be established. In this Views article, we begin by presenting the most widely accepted model of topography-driven cell alignment which posits that anisotropic topographies impose lateral constraints on the growth of focal adhesions and actin stress fibers, thereby driving anisotropic force generation and cellular elongation and alignment. We then discuss particular scenarios where alternative or complementary mechanisms of cell alignment appear to be at play. These include the cases of specific cell types such as amoeboid-like cells and neurons as well as certain topography sizes. Finally, we review the role of the actin cytoskeleton in modulating topography-driven cell alignment and underscore the need for elucidating the role that other cytoskeletal elements play. We close by identifying key open questions the responses to which will significantly enhance our understanding of the role of cellular contact guidance in health and disease.
Collapse
Affiliation(s)
- Claire Leclech
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
44
|
Fornell A, Pohlit H, Shi Q, Tenje M. Acoustic focusing of beads and cells in hydrogel droplets. Sci Rep 2021; 11:7479. [PMID: 33820916 PMCID: PMC8021569 DOI: 10.1038/s41598-021-86985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
The generation of hydrogel droplets using droplet microfluidics has emerged as a powerful tool with many applications in biology and medicine. Here, a microfluidic system to control the position of particles (beads or astrocyte cells) in hydrogel droplets using bulk acoustic standing waves is presented. The chip consisted of a droplet generator and a 380 µm wide acoustic focusing channel. Droplets comprising hydrogel precursor solution (polyethylene glycol tetraacrylate or a combination of polyethylene glycol tetraacrylate and gelatine methacrylate), photoinitiator and particles were generated. The droplets passed along the acoustic focusing channel where a half wavelength acoustic standing wave field was generated, and the particles were focused to the centre line of the droplets (i.e. the pressure nodal line) by the acoustic force. The droplets were cross-linked by exposure to UV-light, freezing the particles in their positions. With the acoustics applied, 89 ± 19% of the particles (polystyrene beads, 10 µm diameter) were positioned in an area ± 10% from the centre line. As proof-of-principle for biological particles, astrocytes were focused in hydrogel droplets using the same principle. The viability of the astrocytes after 7 days in culture was 72 ± 22% when exposed to the acoustic focusing compared with 70 ± 19% for samples not exposed to the acoustic focusing. This technology provides a platform to control the spatial position of bioparticles in hydrogel droplets, and opens up for the generation of more complex biological hydrogel structures.
Collapse
Affiliation(s)
- Anna Fornell
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden.,MAXIV Laboratory, Lund University, 22484, Lund, Sweden
| | - Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Qian Shi
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
45
|
Akcay G, Luttge R. Stiff-to-Soft Transition from Glass to 3D Hydrogel Substrates in Neuronal Cell Culture. MICROMACHINES 2021; 12:mi12020165. [PMID: 33567528 PMCID: PMC7915240 DOI: 10.3390/mi12020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Over the past decade, hydrogels have shown great potential for mimicking three- dimensional (3D) brain architectures in vitro due to their biocompatibility, biodegradability, and wide range of tunable mechanical properties. To better comprehend in vitro human brain models and the mechanotransduction processes, we generated a 3D hydrogel model by casting photo-polymerized gelatin methacryloyl (GelMA) in comparison to poly (ethylene glycol) diacrylate (PEGDA) atop of SH-SY5Y neuroblastoma cells seeded with 150,000 cells/cm2 according to our previous experience in a microliter-sized polydimethylsiloxane (PDMS) ring serving for confinement. 3D SH-SY5Y neuroblastoma cells in GelMA demonstrated an elongated, branched, and spreading morphology resembling neurons, while the cell survival in cast PEGDA was not supported. Confocal z-stack microscopy confirmed our hypothesis that stiff-to-soft material transitions promoted neuronal migration into the third dimension. Unfortunately, large cell aggregates were also observed. A subsequent cell seeding density study revealed a seeding cell density above 10,000 cells/cm2 started the formation of cell aggregates, and below 1500 cells/cm2 cells still appeared as single cells on day 6. These results allowed us to conclude that the optimum cell seeding density might be between 1500 and 5000 cells/cm2. This type of hydrogel construct is suitable to design a more advanced layered mechanotransduction model toward 3D microfluidic brain-on-a-chip applications.
Collapse
|
46
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Young AT, White OC, Daniele MA. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Macromol Biosci 2020; 20:e2000183. [PMID: 32856384 DOI: 10.1002/mabi.202000183] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Synthetically modified proteins, such as gelatin methacryloyl (GelMA), are growing in popularity for bioprinting and biofabrication. GelMA is a photocurable macromer that can rapidly form hydrogels, while also presenting bioactive peptide sequences for cellular adhesion and proliferation. The mechanical properties of GelMA are highly tunable by modifying the degree of substitution via synthesis conditions, though the effects of source material and thermal gelation have not been comprehensively characterized for lower concentration gels. Herein, the effects of animal source and processing sequence are investigated on scaffold mechanical properties. Hydrogels of 4-6 wt% are characterized. Depending on the temperature at crosslinking, the storage moduli for GelMA derived from pigs, cows, and cold-water fish range from 723 to 7340 Pa, 516 to 3484 Pa, and 294 to 464 Pa, respectively. The maximum storage moduli are achieved only by coordinated physical gelation and chemical crosslinking. In this method, the classic thermo-reversible gelation of gelatin occurs when GelMA is cooled below a thermal transition temperature, which is subsequently "locked in" by chemical crosslinking via photocuring. The effects of coordinated physical gelation and chemical crosslinking are demonstrated by precise photopatterning of cell-laden microstructures, inducing different cellular behavior depending on the selected mechanical properties of GelMA.
Collapse
Affiliation(s)
- Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC, 27695, USA
| | - Olivia C White
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC, 27695, USA.,Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA
| |
Collapse
|