1
|
Hua X, Wei X. Liver X receptors: From pharmacology to nanoparticle-based drug delivery. Eur J Pharmacol 2023; 956:175953. [PMID: 37541371 DOI: 10.1016/j.ejphar.2023.175953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Liver X receptors (LXRs) are master regulators of various biological processes, including metabolism, inflammation, development, and reproduction. As well-known nuclear oxysterol receptors of the nuclear receptor (NR) family, LXRs have two homologous subtypes, LXRα (NR1H3) and LXRβ (NR1H2). Since the mid-1990s, numerous LXR-targeted drugs have been designed to treat diseases such as atherosclerosis, systemic lupus erythematosus, and cancer. These modulators include agonists and antagonists, and the selectivity of them have been development from diverse aspects, including subtype-specific, cell-specific, tissue-specific types. Meanwhile, advanced delivery systems are also exploreed to facilitate the application of LXR drugs in clinical setting. One of the most promising delivery systems involves the use of nanoparticles and is expected to increase the clinical potential of LXR modulators. This review discusses our current understanding of LXR biology and pharmacology, focusing on the development of modulators for LXRα and/or LXRβ, and the nanoparticle-based delivery systems for promising LXR modulators with potential for use as drugs.
Collapse
Affiliation(s)
- Xiaofen Hua
- Department of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, James Clerk Maxwell Building, 57 Waterloo Road, London, SE1 8WA, UK
| | - Xiduan Wei
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Melnik T, Ben Ameur S, Kanfar N, Vinet L, Delie F, Jordan O. Bioadhesive Hyaluronic Acid/Dopamine Hydrogels for Vascular Applications Prepared by Initiator-Free Crosslinking. Int J Mol Sci 2022; 23:5706. [PMID: 35628516 PMCID: PMC9146728 DOI: 10.3390/ijms23105706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Intimal hyperplasia, a vascular pathology characterized by vessel wall thickening, is implicated in vein graft failures. For efficient prevention, a biodegradable drug delivery system should be applied externally to the graft for an extended time. Finding a gel suitable for such a system is challenging. We have synthesized HA-Dopamine conjugates (HA-Dop) with several degrees of substitution (DS) and used two crosslinking methods: initiator-free crosslinking by basic pH shift or commonly used crosslinking by a strong oxidizer, sodium periodate. The rheological properties, bioadhesion to vascular tissue, cytocompatibility with fibroblasts have been compared for both methods. Our results suggest that initiator-free crosslinking provides HA-Dop gels with more adequate properties with regards to vascular application than crosslinking by strong oxidizer. We have also established the cytocompatibility of the initiator-free crosslinked HA-Dop gels and the cytotoxicity of dopamine-sodium periodate combinations. Furthermore, we have incorporated a drug with anti-restenotic effect in perivascular application, atorvastatin, into the gel, which showed adequate release profile for intimal hyperplasia prevention. The oxidizer-free formulation with improved bioadhesion holds promise as an efficient and safe drug delivery system for vascular applications.
Collapse
Affiliation(s)
- Tamara Melnik
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (T.M.); (S.B.A.); (N.K.); (L.V.); (F.D.)
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Senda Ben Ameur
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (T.M.); (S.B.A.); (N.K.); (L.V.); (F.D.)
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Nasreddine Kanfar
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (T.M.); (S.B.A.); (N.K.); (L.V.); (F.D.)
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Laurent Vinet
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (T.M.); (S.B.A.); (N.K.); (L.V.); (F.D.)
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
- Service of Vascular Surgery, Department of Heart and Vessels, University Hospital, Rue du Bugnon 36, 1011 Lausanne, Switzerland
| | - Florence Delie
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (T.M.); (S.B.A.); (N.K.); (L.V.); (F.D.)
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (T.M.); (S.B.A.); (N.K.); (L.V.); (F.D.)
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
4
|
Mousavi Motlagh SS, Seyedhamzeh M, Ahangari Cohan R, Shafiee Ardestani M, Vaziri B, Azadmanesh K, Saberi S, Masoumi V. Novel G-CSF conjugated anionic globular dendrimer: Preparation and biological activity assessment. Pharmacol Res Perspect 2021; 9:e00826. [PMID: 34269522 PMCID: PMC8283867 DOI: 10.1002/prp2.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
The most crucial role of granulocyte colony-stimulating factor (G-CSF) in the body is to increase the strength of immune system. In recent years, research on the use of nanoparticles in pharmaceuticals has been considered, most of which have been for drug-loading purposes. In this study, a novel G-CSF conjugated dendrimer was synthesized and characterized using different techniques. In vitro cytotoxicity was assessed on A549 and L929 cells, while abnormal toxicity was studied in mice. In vitro and in vivo biological activities were assessed in NFS60 cells and rats, respectively. In addition, in vivo distribution, plasma half-life, and histopathological effect were studied in rat. The characterization tests confirmed the successful conjugation. There was no difference between G-CSF cytotoxicity before and after conjugation, and no difference with the control group. No mice showed abnormal toxicity. Although in vitro biological activity revealed both conjugated and free G-CSF promote proliferation cells, biological activity decreased significantly after conjugation about one-third of the unconjugated form. Nonetheless, in vivo biological activity of conjugated G-CSF increased by more than 2.5-fold relative to the unconjugated form, totally. Fortunately, no histopathologic adverse effect was observed in vital rat tissues. Also, in vivo distribution of the conjugate was similar to the native protein with an enhanced terminal half-life. Our data revealed that G-CSF conjugated dendrimer could be considered as a candidate to improve the in vivo biological activity of G-CSF. Moreover, multivalent capability of the dendrimer may be used for other new potentials of G-CSF in future perspectives.
Collapse
Affiliation(s)
| | | | - Reza Ahangari Cohan
- Department of NanobiotechnologyNew Technologies Research GroupPasteur Institute of IranTehranIran
| | | | - Behrouz Vaziri
- Biotechnology Research CenterPasteur Institute of IranTehranIran
| | | | - Sahar Saberi
- Department of Biotechnology, Food and Drug Control LaboratoriesNational Food and Drug OrganizationTehranIran
| | - Vahideh Masoumi
- Department of Biotechnology, Food and Drug Control LaboratoriesNational Food and Drug OrganizationTehranIran
| |
Collapse
|
5
|
Tarach P, Janaszewska A. Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. Int J Mol Sci 2021; 22:2912. [PMID: 33805602 PMCID: PMC7999260 DOI: 10.3390/ijms22062912] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Carriers of genetic material are divided into vectors of viral and non-viral origin. Viral carriers are already successfully used in experimental gene therapies, but despite advantages such as their high transfection efficiency and the wide knowledge of their practical potential, the remaining disadvantages, namely, their low capacity and complex manufacturing process, based on biological systems, are major limitations prior to their broad implementation in the clinical setting. The application of non-viral carriers in gene therapy is one of the available approaches. Poly(amidoamine) (PAMAM) dendrimers are repetitively branched, three-dimensional molecules, made of amide and amine subunits, possessing unique physiochemical properties. Surface and internal modifications improve their physicochemical properties, enabling the increase in cellular specificity and transfection efficiency and a reduction in cytotoxicity toward healthy cells. During the last 10 years of research on PAMAM dendrimers, three modification strategies have commonly been used: (1) surface modification with functional groups; (2) hybrid vector formation; (3) creation of supramolecular self-assemblies. This review describes and summarizes recent studies exploring the development of PAMAM dendrimers in anticancer gene therapies, evaluating the advantages and disadvantages of the modification approaches and the nanomedicine regulatory issues preventing their translation into the clinical setting, and highlighting important areas for further development and possible steps that seem promising in terms of development of PAMAM as a carrier of genetic material.
Collapse
MESH Headings
- Biocompatible Materials/administration & dosage
- Biocompatible Materials/chemical synthesis
- Dendrimers/administration & dosage
- Dendrimers/chemical synthesis
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Genetic Therapy/methods
- Government Regulation
- Humans
- MicroRNAs/administration & dosage
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nanomedicine/legislation & jurisprudence
- Nanomedicine/methods
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Plasmids/administration & dosage
- Plasmids/chemistry
- Plasmids/metabolism
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Surface Properties
Collapse
Affiliation(s)
- Piotr Tarach
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
6
|
Wang J, Cooper RC, Yang H. Polyamidoamine Dendrimer Grafted with an Acid-Responsive Charge-Reversal Layer for Improved Gene Delivery. Biomacromolecules 2020; 21:4008-4016. [PMID: 32820887 PMCID: PMC7583228 DOI: 10.1021/acs.biomac.0c00580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on a heterogeneous dendrimer (G3-acetal-NH2) derivative possessing an acid-responsive charge-reversal layer. The synthesis of G3-acetal-NH2 starts with a polyamidoamine (PAMAM) dendrimer G3 core and follows the aza-Michael addition with N-(2-(1-(allyloxy)ethoxy)ethyl)acrylamide synthesized by us and the thiol-ene click chemistry with cysteamine hydrochloride in sequence. In a weakly acidic environment, the surface of this newly formed dendrimer can turn from amine-terminated to hydroxyl-terminated due to the cleavage of the acetal groups. This charge conversion from 34.3 ± 2.7 to 18.0 ± 0.3 mV in 24 h at pH 5.3 enables its capacity as a gene delivery vehicle. G3-acetal-NH2 with a positively charged surface can condense pMAX GFP plasmid at similar weight ratios as native G4-NH2 (above 2:1), allowing for its protected uptake into cells and endosomal escape. Meanwhile, in the endosome, the drop in vesicle pH cleaves the acetal bond, releasing the genetic payload and limiting its recondensation by the reduction in the dendrimer surface charge. When the vector/plasmid weight ratio was 2:1, G3-acetal-NH2 improved transfection of pMAX GFP plasmid by 5-fold over native G4-NH2 in NIH3T3 cells in terms of GFP protein expression. Taken together, we show that this surface charge conversion performance makes the synthesized heterogeneous dendrimer an improved vehicle for gene transfection.
Collapse
Affiliation(s)
- Juan Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Remy C. Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
7
|
Mohammad Jafari R, Ala M, Goodarzi N, Dehpour AR. Does Pharmacodynamics of Drugs Change After Presenting them as Nanoparticles Like their Pharmacokinetics? Curr Drug Targets 2020; 21:807-818. [DOI: 10.2174/1389450121666200128113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
:
Nowadays, the breakthrough in different medical branches makes it feasible to designate
new methods of drug delivery to achieve the most cost-effective and the least unpleasant consequenceimposing
solutions to overcome a wide range of diseases.
:
Nanoparticle (NP) drugs entered the therapeutic system, especially in cancer chemotherapy. These
drugs are quite well-known for two traits of being long-acting and less toxic. For a long time, it has
been investigated how NPs will change the kinetics of drugs. However, there are a few studies that inclined
their attention to how NPs affect the dynamics of drugs. In this review, the latter point will
mainly be discussed in an example-based manner. Besides, other particular features of NPs will be
briefly noted.
:
NPs are capable of affecting the biologic system as much as a drug. Moreover, NPs could arise a wide
variety of effects by triggering their own receptors. NPs are able to change a receptor function and
manipulate its downstream signaling cascade.
Collapse
Affiliation(s)
- Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Goodarzi
- Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Wang S, Allen N, Vickers TA, Revenko AS, Sun H, Liang XH, Crooke ST. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2019. [PMID: 29514240 PMCID: PMC5909429 DOI: 10.1093/nar/gky145] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Nickolas Allen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alexey S Revenko
- Department of Antisense Drug, Discovery, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
10
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
11
|
Yuan Q, Yeudall WA, Lee E, Yang H. Targeted inactivation of EPS8 using dendrimer-mediated delivery of RNA interference. Int J Pharm 2019; 557:178-181. [PMID: 30597261 PMCID: PMC10629616 DOI: 10.1016/j.ijpharm.2018.12.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/18/2023]
Abstract
We developed polyamidoamine dendrimers conjugated with epidermal growth factor (EGF) for use in receptor-mediated delivery of therapeutics to cancer cells. Here, we demonstrate the utility of this approach to inhibit proliferation and migration of head and neck squamous carcinoma cells through targeting of EPS8, a key regulator of squamous carcinoma growth and motility. Use of EGF-dendrimers to deliver siRNA or shRNA against EPS8 resulted in inhibition of cell growth and reduction in cell motility. Moreover, more profound repression of the target protein was obtained with repeat exposure to the targeting reagent, and was consistent with the altered biological properties. Thus, targeting of EPS8 can be achieved with EGF-conjugated dendrimers delivering EPS8-specific RNAi therapeutics, leading to a reduction in the malignant phenotype of cells.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - W Andrew Yeudall
- Department of Oral Biology, Augusta University, Augusta, GA 30912, United States; Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States
| | - Eunmee Lee
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
12
|
Su N, Jiang LY, Wang X, Gao PL, Zhou J, Wang CY, Luo Y. Membrane-Binding Adhesive Particulates Enhance the Viability and Paracrine Function of Mesenchymal Cells for Cell-Based Therapy. Biomacromolecules 2019; 20:1007-1017. [PMID: 30616345 DOI: 10.1021/acs.biomac.8b01624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the fundamental cell-material interactions is essential to designing functional materials for biomedical applications. Although mesenchymal stromal cells (MSCs) are known to secrete cytokines and exosomes that are effective to treat degenerative diseases, the inherent property of biomaterials to modulate the therapeutic function of MSCs remains to be investigated. Here, a multivalent cell-membrane adhesive conjugate was generated through polyamindoamine (PAMAM) and an oligopeptide, IKVAV, and the conjugate was further complexed with hyaluronic acid (HA). The adhesive particulates were used to coat the surface of adipose-derived mesenchymal stromal cells (Ad-MSCs) and studied in the MSC spheroid culture. The analysis showed that the adhesive complexes formed via PAMAM conjugates and HA significantly promoted the proliferation and the gene expression of pro-angiogenesis cytokines in MSCs; the production of anti-inflammatory miRNAs in exosomes could also be elevated. The transplantation of the Ad-MSCs primed with PAMAM-IKVAV/HA composite particulates in a rat myocardial infarction model further demonstrated the beneficial effects of membrane-binding materials on improving the cell retention and tissue angiogenesis. The new function of membrane-binding adhesive materials potentially provides useful ways to improve cell-based therapy.
Collapse
Affiliation(s)
- Ni Su
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Li-Yang Jiang
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Xi Wang
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Peng-Lai Gao
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center , Academy of Military Medical Sciences , 27 Taiping Road , Haidian District, Beijing 100039 , China
| | - Chang-Yong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center , Academy of Military Medical Sciences , 27 Taiping Road , Haidian District, Beijing 100039 , China
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering , Peking University Room 206, Fangzheng Building, 298 Chengfu Road , Haidian District, Beijing 100871 , China
| |
Collapse
|
13
|
He H, Yuan Q, Bie J, Wallace RL, Yannie PJ, Wang J, Lancina MG, Zolotarskaya OY, Korzun W, Yang H, Ghosh S. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Transl Res 2018; 193:13-30. [PMID: 29172034 PMCID: PMC6198660 DOI: 10.1016/j.trsl.2017.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden.
Collapse
Affiliation(s)
- Hongliang He
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va
| | - Quan Yuan
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Jinghua Bie
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Ryan L Wallace
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Va
| | - Jing Wang
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | | | - Olga Yu Zolotarskaya
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va
| | - William Korzun
- Dept. of Clinical and Laboratory Sciences, VCU Medical Center, Richmond, Va
| | - Hu Yang
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va; Dept. of Pharmaceutics, VCU, Richmond, Va; Massey Cancer Center, VCU Medical Center, Richmond, Va
| | - Shobha Ghosh
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va; Hunter Homes McGuire VA Medical Center, Richmond, Va.
| |
Collapse
|
14
|
Urbiola K, Blanco-Fernández L, Ogris M, Rödl W, Wagner E, Tros de Ilarduya C. Novel PAMAM-PEG-Peptide Conjugates for siRNA Delivery Targeted to the Transferrin and Epidermal Growth Factor Receptors. J Pers Med 2018; 8:jpm8010004. [PMID: 29315261 PMCID: PMC5872078 DOI: 10.3390/jpm8010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
The transferrin (TfR) and epidermal growth factor receptors (EGFR) are known to be overexpressed on the surface of a wide variety of tumor cells. Therefore, the peptides B6 (TfR specific) and GE11 (targeted to the EGFR) were linked to the PAMAM (polyamidoamine) structure via a polyethylenglycol (PEG) 2 kDa chain with the aim of improving the silencing capacity of the PAMAM-based dendriplexes. The complexes showed an excellent binding capacity to the siRNA with a maximal condensation at nitrogen/phosphate (N/P) 2. The nanoparticles formed exhibited hydrodynamic diameters below 200 nm. The zeta potential was always positive, despite the complexes containing the PEG chain in the structure showing a drop of the values due to the shielding effect. The gene silencing capacity was assayed in HeLa and LS174T cells stably transfected with the eGFPLuc cassette. The dendriplexes containing a specific anti luciferase siRNA, assayed at different N/P ratios, were able to mediate a mean decrease of the luciferase expression values of 14% for HeLa and 20% in LS174T cells, compared to an unspecific siRNA-control. (p < 0.05). In all the conditions assayed, dendriplexes resulted to be non-toxic and viability was always above 75%.
Collapse
Affiliation(s)
- Koldo Urbiola
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
| | - Manfred Ogris
- Department of Pharmaceutical Chemistry, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, 1010 Vienna, Austria;
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology, Center for NanoScience (CeNS), Ludwig-Maximilians-University (LMU) 80799 Munich, Germany; (W.R.); (E.W.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoScience (CeNS), Ludwig-Maximilians-University (LMU) 80799 Munich, Germany; (W.R.); (E.W.)
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
- Correspondence: ; Tel.: +34-948-425600 (ext. 80-6375)
| |
Collapse
|
15
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
16
|
Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery. Acta Biomater 2017; 57:251-261. [PMID: 28438704 DOI: 10.1016/j.actbio.2017.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/06/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
Abstract
The utility of folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) as a vector was investigated for local delivery of siRNA. In a xenograft HN12 (or HN12-YFP) tumor mouse model of head and neck squamous cell carcinomas (HNSCC), intratumorally (i.t.) injected G4-FA exhibited high tumor uptake and sustained highly localized retention in the tumors according to near infrared (NIR) imaging assessment. siRNA against vascular endothelial growth factor A (siVEGFA) was chosen as a therapeutic modality. Compared to the nontherapeutic treatment groups (PBS solution or dendrimer complexed with nontherapeutic siRNA against green fluorescent protein (siGFP)), G4-FA/siVEGFA showed tumor inhibition effects in single-dose and two-dose regimen studies. In particular, two doses of G4-FA/siVEGFA i.t. administered eight days apart resulted in a more profound inhibition of tumor growth, accompanied with significant reduction in angiogenesis, as judged by CD31 staining and microvessel counts. Tumor size reduction in the two-dose regimen study was ascertained semi-quantitatively by live fluorescence imaging of YFP tumors and independently supported antitumor effects of G4-FA/siVEGFA. Taken together, G4-FA shows high tumor uptake and sustained retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. STATEMENT OF SIGNIFICANCE Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is difficult to transfect for gene therapy. We developed folate receptor (FR)-targeted polyamidoamine (PAMAM) dendrimer for enhanced delivery of genes to HNSCC and gained in-depth understanding of how gene delivery and transfection in head and neck squamous cancer cells can be enhanced via FR-targeted PAMAM dendrimers. The results we report here are encouraging and present latest advances in using dendrimers for cancer therapies, in particular for HNSCC. Our work has demonstrated that localized delivery of FR-targeted PAMAM dendrimer G4 complexed with siVEGFA resulted in pronounced tumor suppression in an HN12 xenograft tumor model. Tumor suppression was attributed to enhanced tumor uptake of siRNA and prolonged nanoparticle retention in the tumor. Taken together, G4-FA shows high tumor uptake and sustained highly localized retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC.
Collapse
|
17
|
Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today 2017; 23:300-314. [PMID: 28697371 DOI: 10.1016/j.drudis.2017.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022]
Abstract
Highly controllable dendritic structural design means dendrimers are a leading carrier in drug delivery applications. Dendrimer- and other nanocarrier-based hybrid systems are an emerging platform in the field of drug delivery. This review is a compilation of increasing reports of dendrimer interactions, such as dendrimer-liposome, dendrimer-carbon-nanotube, among others, known as hybrid carriers. This should prompt entirely new research with promising results for these hybrid carriers. It is assumed that such emerging hybrid nanosystems - from combining two already-established drug delivery platforms - could lead the way for the development of newer delivery systems with multiple applicability for latent theranostic applications in the future.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Avinash Gothwal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305801, India
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Keerti Jain
- Faculty of Pharmacy, M. S. University of Baroda, Vadodara, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305801, India.
| |
Collapse
|
18
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
19
|
Xu L, Kittrell S, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer mediates selective uptake and high expression of genes in head and neck cancer cells. Nanomedicine (Lond) 2016; 11:2959-2973. [PMID: 27781559 DOI: 10.2217/nnm-2016-0244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIM Folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) was synthesized and studied for targeted delivery of genes to head and neck cancer cells expressing high levels of folate receptors (FRs). METHODS Cellular uptake, targeting specificity, cytocompatibility and transfection efficiency were evaluated. RESULTS G4-FA competes with free FA for the same binding site. G4-FA facilitates the cellular uptake of DNA plasmids in a FR-dependent manner and selectively delivers plasmids to FR-high cells, leading to enhanced gene expression. CONCLUSION G4-FA is a suitable vector to deliver genes selectively to head and neck cancer cells. The fundamental understandings of G4-FA as a vector and its encouraging transfection results for head and neck cancer cells provided support for its further testing in vivo.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.,Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Shannon Kittrell
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - W Andrew Yeudall
- Department of Oral Biology, Augusta University, Augusta, GA 30912, USA.,Molecular Oncology & Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
20
|
Li J, Liu J, Li S, Hao Y, Chen L, Zhang X. Antibody h-R3-dendrimer mediated siRNA has excellent endosomal escape and tumor targeted delivery ability, and represents efficient siPLK1 silencing and inhibition of cell proliferation, migration and invasion. Oncotarget 2016; 7:13782-96. [PMID: 26883109 PMCID: PMC4924678 DOI: 10.18632/oncotarget.7368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
The major obstacle to developing siRNA delivery is their extracellular and intracellular barriers. Herein, a humanized anti-EGFR monoclonal antibody h-R3 was developed to modify the self-assembled binary complexes (dendriplexes) of PAMAM and siRNA via electrostatic interactions, and two common ligands HSA and EGF were used as a control. Compared to dendriplexes, h-R3/EGF/HSA-dendriplexes showed increased particle size, decreased zeta potentials and lower cytotoxicity. Moreover, h-R3-dendriplexes presented greater cellular uptake and excellent endosomal escape ability in HepG2 cells. Ex vivo fluorescence imaging revealed that h-R3-dendriplexes showed higher targeted delivery and gene expression in the tumors than dendriplexes, HSA-dendriplexes and EGF-dendriplexes, which was in agreement with confocal results of cryosections. Furthermore, h-R3-dendriplexes for siPLK1 delivery indicated efficient gene silencing, potentiated cell growth inhibition and cell apoptosis, and suppressed cellular migration/invasion. These results indicate that h-R3-dendriplexes represent a great potential to be used as efficient targeted siRNA delivery carriers.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Shengnan Li
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Yanli Hao
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Xiaoning Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Zalba S, Contreras AM, Merino M, Navarro I, de Ilarduya CT, Trocóniz IF, Koning G, Garrido MJ. EGF-liposomes promote efficient EGFR targeting in xenograft colocarcinoma model. Nanomedicine (Lond) 2016; 11:465-77. [DOI: 10.2217/nnm.15.208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: Development of EGF-liposomes (LP-EGF) for selective molecules delivery in tumors expressing EGFR. Material & methods: In vitro cellular interaction of EGF-LP and nontargeted liposomes (LP-N) was assayed at 37 and 4°C in cells expressing different EGFR levels. Receptor-mediated uptake was investigated by competition with a monoclonal antibody anti-EGFR. Selective intracellular drug delivery and efficacy was tested by oxaliplatin encapsulation. In vivo biodistribution of LP-N and LP-EGF was done in xenograft model. Results: LP-EGF was internalized by an active and selective mechanism through EGFR without receptor activation. Oxaliplatin LP-EGF decreased IC50 between 48 and 13% in cell EGFR+. LP-EGF was accumulated in tumor over 72 h postdosing, while LP-N in spleen. Conclusion: LP-EGF represents an attractive nanosystem for cancer therapy or diagnosis.
Collapse
Affiliation(s)
- Sara Zalba
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
- Innovative Targeting, Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ana Margarita Contreras
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - María Merino
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Iñigo Navarro
- Department of Chemistry & Edaphology, University of Navarra, Pamplona, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Iñaki F Trocóniz
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Gerben Koning
- Innovative Targeting, Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| |
Collapse
|
22
|
Liu Y, Wang J. Therapeutic Potentials of Noncoding RNAs: Targeted Delivery of ncRNAs in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:429-58. [PMID: 27376745 DOI: 10.1007/978-981-10-1498-7_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge of multiple actions of short noncoding RNAs (ncRNAs) has truly allowed for viewing DNA, RNA, and protein in novel ways. The ncRNAs are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of ncRNAs in cancer therapy, many challenges remain, including rapid degradation and clearance, poor cellular uptake, off-target effects, and immunogenicity. Rational design, chemical modifications, and delivery carriers offer significant opportunities to overcome these challenges. In this chapter, the development of ncRNAs as cancer therapeutics from early stages to clinical trials and strategies for ncRNA-targeted delivery to cancer cells will be introduced.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China.
| |
Collapse
|
23
|
Yang H. Targeted nanosystems: Advances in targeted dendrimers for cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:309-16. [PMID: 26706410 DOI: 10.1016/j.nano.2015.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Dendrimers possess discrete highly compact nanostructures constituted of successive branched layers. Soon after the inception of dendrimers, recognition of their tunable structures and biologically favorable properties provoked a great enthusiasm in delving deeply into the utility of dendrimers for biomedical and pharmaceutical applications. One of the most important nanotechnology applications is the development of nanomedicines for targeted cancer therapies. Tremendous success in targeted therapies has been achieved with the use of dendrimer-based nanomedicines. This article provides a concise review on latest advances in the utility of dendrimers in immunotherapies and hormone therapies. FROM THE CLINICAL EDITOR Much basic and clinical research has been done since the invention of dendrimers, which are highly branched nano-sized molecules with the ability to act as carriers in nanomedicine. In this concise review article, the authors highlighted the current use of dendrimers in immunotherapies and hormone therapies in the fight against cancers.
Collapse
Affiliation(s)
- Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
24
|
Oki AT, Seidman D, Lancina MG, Mishra MK, Kannan RM, Yang H, Carlyon JA. Dendrimer-enabled transformation of Anaplasma phagocytophilum. Microbes Infect 2015; 17:817-22. [PMID: 26369714 PMCID: PMC4666749 DOI: 10.1016/j.micinf.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that causes the emerging infection, granulocytic anaplasmosis. While electroporation can transform A. phagocytophilum isolated from host cells, no method has been developed to transform it while growing inside the ApV (A. phagocytophilum-occupied vacuole). Polyamidoamine (PAMAM) dendrimers, well-defined tree-branched macromolecules used for gene therapy and nucleic acid delivery into mammalian cells, were recently shown to be effective in transforming Chlamydia spp. actively growing in host cells. We determined if we could adapt a similar system to transform A. phagocytophilum. Incubating fluorescently labeled PAMAM dendrimers with infected host cells resulted in fluorescein-positive ApVs. Incubating infected host cells or host cell-free A. phagocytophilum organisms with dendrimers complexed with pCis GFPuv-SS Himar A7 plasmid, which carries a Himar1 transposon cassette encoding GFPuv and spectinomycin/streptomycin resistance plus the Himar1 transposase itself, resulted in GFP-positive, antibiotic resistant bacteria. Yet, transformation efficiencies were low. The transformed bacterial populations could only be maintained for a few passages, likely due to random Himar1 cassette-mediated disruption of A. phagocytophilum genes required for fitness. Nonetheless, these results provide proof of principle that dendrimers can deliver exogenous DNA into A. phagocytophilum, both inside and outside of host cells.
Collapse
Affiliation(s)
- Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA, 23298-0678, United States
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA, 23298-0678, United States
| | - Michael G Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University School of Engineering, P.O. Box 843067, Richmond, VA 23284-3067, United States
| | - Manoj K Mishra
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21235, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21235, United States
| | - Hu Yang
- Department of Biomedical Engineering, Virginia Commonwealth University School of Engineering, P.O. Box 843067, Richmond, VA 23284-3067, United States
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA, 23298-0678, United States.
| |
Collapse
|
25
|
Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 2014; 20:536-47. [PMID: 25555748 DOI: 10.1016/j.drudis.2014.12.012] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023]
Abstract
Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Use-inspired Biomaterials and Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-inspired Biomaterials and Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J Control Release 2014; 196:168-83. [DOI: 10.1016/j.jconrel.2014.09.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
|
27
|
Xu L, Zolotarskaya OY, Yeudall WA, Yang H. Click hybridization of immune cells and polyamidoamine dendrimers. Adv Healthc Mater 2014; 3:1430-8. [PMID: 24574321 DOI: 10.1002/adhm.201300515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/25/2014] [Indexed: 11/06/2022]
Abstract
Immobilizing highly branched polyamidoamine (PAMAM) dendrimers to the cell surface represents an innovative method of enhancing cell surface loading capacity to deliver therapeutic and imaging agents. In this work, hybridized immune cells, that is, macrophage RAW264.7 (RAW), with PAMAM dendrimer G4.0 (DEN) on the basis of bioorthogonal chemistry are clicked. Efficient and selective cell surface immobilization of dendrimers is confirmed by confocal microscopy. Viability and motility of RAW-DEN hybrids remain the same as untreated RAW cells according to WST-1 assay and wound closure assay. Furthermore, Western blot analysis reveals that there are no significant alterations in the expression levels of signaling molecules AKT, p38, and NFκB (p65) and their corresponding activated (phosphorylated) forms in RAW cells treated with azido sugar and dendrimer, indicating that the hybridization process neither induced cell stress response nor altered normal signaling pathways. Taken together, this work shows the feasibility of applying bioorthogonal chemistry to create cell-nanoparticle hybrids and demonstrates the noninvasiveness of this cell surface engineering approach.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Biomedical Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| | - Olga Yu. Zolotarskaya
- Department of Biomedical Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| | - W. Andrew Yeudall
- Philips Institute of Oral and Craniofacial Molecular Biology; Virginia Commonwealth University; Richmond VA 23298 USA
- Massey Cancer Center; Virginia Commonwealth University; Richmond VA 23298 USA
| | - Hu Yang
- Department of Biomedical Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
- Massey Cancer Center; Virginia Commonwealth University; Richmond VA 23298 USA
| |
Collapse
|
28
|
|
29
|
Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 2014; 5:2-13. [PMID: 24274162 DOI: 10.1021/cn400182z] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.
Collapse
Affiliation(s)
- Leyuan Xu
- Department
of Biomedical Engineering, ‡Department of Mechanical and Nuclear Engineering, §Department of Chemical
and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hao Zhang
- Department
of Biomedical Engineering, ‡Department of Mechanical and Nuclear Engineering, §Department of Chemical
and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Yue Wu
- Department
of Biomedical Engineering, ‡Department of Mechanical and Nuclear Engineering, §Department of Chemical
and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
30
|
Polymer–Drug Conjugate in Focal Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved, endogenous process for post-transcriptional regulation of gene expression. Although RNAi therapeutics have recently progressed through the pipeline toward clinical trials, the application of these as ideal, clinical therapeutics requires the development of safe and effective delivery systems. Inspired by the immense progress with nanotechnology in drug delivery, efforts have been dedicated to the development of nanoparticle-based RNAi delivery systems. For example, a precisely engineered, multifunctional nanocarrier with combined passive and active targeting capabilities may address the delivery challenges for the widespread use of RNAi as a therapy. Therefore, in this review, we introduce the major hurdles in achieving efficient RNAi delivery and discuss the current advances in applying nanotechnology-based delivery systems to overcome the delivery hurdles of RNAi therapeutics. In particular, some representative examples of nanoparticle-based delivery formulations for targeted RNAi therapeutics are highlighted.
Collapse
|
32
|
Dongargaonkar AA, Bowlin GL, Yang H. Electrospun blends of gelatin and gelatin-dendrimer conjugates as a wound-dressing and drug-delivery platform. Biomacromolecules 2013; 14:4038-45. [PMID: 24127747 DOI: 10.1021/bm401143p] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetate (0, 0.83, 1.65, and 3.30% w/w) were successfully electrospun into nanofiber constructs (NCs). The NCs were further converted into semi-interpenetrating networks (sIPNs) with photoreactive polyethylene glycol diacrylate (Mn = 575 g mol(-1)) (PEG DA575). They were characterized in terms of fiber morphology, diameter, pore size, permeability, degradation, and mechanical properties. The resulting sIPN NCs retained nanofiber morphology, possessed similar fiber diameters to counterpart NCs, and gained improved structural stability. The sIPN NCs also showed good swelling capacity owing to porous structures and were permeable to aqueous solutions. Silver-containing sIPN NCs allowed sustained silver release and showed antimicrobial activity against two common types of pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation of dendrimers into the gelatin nanofibers through covalent conjugation not only expands drug loading capacity of nanofiber constructs but also provides tremendous flexibility for developing multifunctional electrospun dressing materials.
Collapse
Affiliation(s)
- Alpana A Dongargaonkar
- Department of Biomedical Engineering, Virginia Commonwealth University , 401 West Main Street, Richmond, Virginia 23284, United States
| | | | | |
Collapse
|
33
|
Dendrimers as carriers for siRNA delivery and gene silencing: a review. ScientificWorldJournal 2013; 2013:630654. [PMID: 24288498 PMCID: PMC3830781 DOI: 10.1155/2013/630654] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term "gene silencing." One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.
Collapse
|
34
|
Chen YC, Huang SC, Wang YK, Liu YT, Wu TK, Chen TM. Ligand-functionalization of BPEI-coated YVO4:Bi3+,Eu3+ nanophosphors for tumor-cell-targeted imaging applications. Chem Asian J 2013; 8:2652-9. [PMID: 23894123 DOI: 10.1002/asia.201300570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/22/2013] [Indexed: 01/06/2023]
Abstract
In this study, surface-functionalized, branched polyethylenimine (BPEI)-modified YVO4:Bi(3+),Eu(3+) nanocrystals (NCs) were successfully synthesized by a simple, rapid, solvent-free hydrothermal method. The BPEI-coated YVO4:Bi(3+),Eu(3+) NCs with high crystallinity show broad-band excitation in the λ=250 to 400 nm near-ultraviolet (NUV) region and exhibit a sharp-line emission band centered at λ=619 nm under excitation at λ=350 nm. The surface amino groups contributed by the capping agent, BPEI, not only improve the dispersibility and water/buffer stability of the BPEI-coated YVO4:Bi(3+),Eu(3+) NCs, but also provide a capability for specifically targeted biomolecule conjugation. Folic acid (FA) and epidermal growth factor (EGF) were further attached to the BPEI-coated YVO4:Bi(3+),Eu(3+) NCs and exhibited effective positioning of fluorescent NCs toward the targeted folate receptor overexpressed in HeLa cells or EGFR overexpressed in A431 cells with low cytotoxicity. These results demonstrate that the ligand-functionalized, BPEI-coated YVO4:Bi(3+),Eu(3+) NCs show great potential as a new-generation biological luminescent bioprobe for bioimaging applications. Moreover, the unique luminescence properties of BPEI-coated YVO4:Bi(3+),Eu(3+) NCs show potential to combine with a UVA photosensitizing drug to produce both detective and therapeutic effects for human skin cancer therapy.
Collapse
Affiliation(s)
- Yi-Chin Chen
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Science Building 2, 1001 Ta Hsueh Road, Hsinchu, 300 (Taiwan), Fax: (+886) 3-5723764
| | | | | | | | | | | |
Collapse
|
35
|
The effects of an RGD-PAMAM dendrimer conjugate in 3D spheroid culture on cell proliferation, expression and aggregation. Biomaterials 2013; 34:2665-73. [PMID: 23340194 DOI: 10.1016/j.biomaterials.2013.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/01/2013] [Indexed: 12/18/2022]
|
36
|
Drug carriers for oral delivery of peptides and proteins: accomplishments and future perspectives. Ther Deliv 2013; 4:251-65. [PMID: 23343163 DOI: 10.4155/tde.12.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective formulation for peptide and protein delivery through the oral route has always been the critical effort with the advent of biotechnology. Stability, enzymatic degradation and ineffective absorption are common difficulties found for conventional dosage forms. As a result, new drug-delivery approaches are used to circumvent these limitations and enhance effective oral drug delivery. Some of these technologies have reached late stages of clinical trials and promising results will be available in the near future. This review covers, in general, the recent carriers reported in literature.
Collapse
|
37
|
Xu L, Yeudall WA, Yang H. Dendrimer-Based RNA Interference Delivery for Cancer Therapy. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1135.ch012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Leyuan Xu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - W. Andrew Yeudall
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hu Yang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
38
|
Zhu J, Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 2013; 1:4199-4211. [DOI: 10.1039/c3tb20724b] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Yin Z, Liu N, Ma M, Wang L, Hao Y, Zhang X. A novel EGFR-targeted gene delivery system based on complexes self-assembled by EGF, DNA, and activated PAMAM dendrimers. Int J Nanomedicine 2012; 7:4625-35. [PMID: 22942644 PMCID: PMC3428245 DOI: 10.2147/ijn.s30671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Indexed: 11/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted gene delivery is a promising approach in gene therapy against EGFR-positive cancer. In addition, macromolecules, such as polyamidoamine (PAMAM) dendrimers, are potential nonviral gene carriers in this therapy because of their biocompatibility and modifiable features. To achieve the goal of selectively enhancing the transfection efficiency in EGFR-positive cancer cells, the researchers developed chemical approaches of EGF-dendrimer conjugate, which were effective but complicated. Studies on liposomes reveal that self-assembly is another effective but simpler approach in EGF modification. Moreover, properly activated PAMAM dendrimers exhibit higher transfection efficiency, but little research has been done on its ligand-modification. In this study, we developed and characterized a novel gene-delivery system based on activated EGF-dendriplexes, which is formed via self-assembly by EGF and complexes prepared by activated PAMAM dendrimer and plasmid DNA. Such complexes exhibit desired features compared to nonmodified or non-activated dendriplexes in vitro, including selective enhancement of transfection efficiency in EGFR-positive cells, decreased cytotoxicity, and low agonist effect. In vivo experimentation shows their EGFR-positive tumor targeted biodistribution and increased transfection efficiency at EGFR-positive tumors. Our results demonstrated that activated EGF-dendriplexes are safe and effective carriers for delivering gene drugs to EGFR-positive cells, which makes these complexes a promising targeted nonviral gene-delivery system for auxiliary cancer therapy.
Collapse
Affiliation(s)
- Zhe Yin
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
40
|
Nanomedicines based on recombinant fusion proteins for targeting therapeutic siRNA oligonucleotides. Ther Deliv 2012; 2:891-905. [PMID: 22318893 DOI: 10.4155/tde.11.56] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The enormous promise of siRNA technology for rational and targeted therapy can only be realized if the inherent problems in terms of pharmaceutical development are overcome. Besides liposomal and polymeric nanoparticles, fusion proteins hold great potential for cell-type specific delivery of siRNA. Consisting of a protein binder and an oligonucleotide complexing domain, fusion proteins are designed for targeted delivery to a certain tissue or organ and subsequent release of the siRNA after cellular uptake. This article focuses on the possibilities and importance of targeting and complexing domains, including polymers and dendrimers. In vitro and in vivo evaluations are discussed with an in-depth view on pharmacokinetic properties. Remaining challenges concerning specificity on the tissue and molecular levels are highlighted.
Collapse
|
41
|
Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for DNA, shRNA and siRNA. Pharmaceutics 2012; 4:130-48. [PMID: 24300184 PMCID: PMC3834900 DOI: 10.3390/pharmaceutics4010130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 11/27/2022] Open
Abstract
Gene, short hairpin RNA (shRNA) and small interfering RNA (siRNA) delivery can be particularly used for the treatment of diseases by the entry of genetic materials mammalian cells either to express new proteins or to suppress the expression of proteins, respectively. Polyamidoamine (PAMAM) StarburstTM dendrimers are used as non-viral vectors (carriers) for gene, shRNA and siRNA delivery. Recently, multifunctional PAMAM dendrimers can be used for the wide range of biomedical applications including intracellular delivery of genes and nucleic acid drugs. In this context, this review paper provides the recent findings on PAMAM dendrimer conjugates with cyclodextrins (CyDs) for gene, shRNA and siRNA delivery.
Collapse
|
42
|
|
43
|
|
44
|
Arima H, Motoyama K, Higashi T. Potential Use of Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for siRNA. Pharmaceuticals (Basel) 2011; 5:61-78. [PMID: 24288043 PMCID: PMC3763628 DOI: 10.3390/ph5010061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Cyclodextrin (CyD)-based nanoparticles and polyamidoamine (PAMAM) starburst dendrimers (dendrimers) are used as novel carriers for DNA and RNA. Recently, small interfering RNA (siRNA) complex with β-CyD-containing polycations (CDP) having adamantine-PEG or adamantine-PEG-transferrin underwent a phase I study for treatment of solid tumors. Multifunctional dendrimers can be used for a wide range of biomedical applications, including the interaction and intracellular delivery of DNA and RNA. The present review will address the latest developments in dendrimer conjugates with cyclodextrins for siRNA delivery including the novel sustained release system.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
45
|
Pokorski JK, Hovlid ML, Finn MG. Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor. Chembiochem 2011; 12:2441-7. [PMID: 21956837 DOI: 10.1002/cbic.201100469] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Indexed: 11/06/2022]
Abstract
Structurally uniform protein nanoparticles derived from the self-assembly of viral capsid proteins are attractive platforms for the multivalent display of cell-targeting motifs for use in nanomedicine. Virus-based nanoparticles are of particular interest because the scaffold can be manipulated both genetically and chemically to simultaneously display targeting groups and carry a functional payload. Here, we displayed the human epidermal growth factor (EGF) on the exterior surface of bacteriophage Qβ as a C-terminal genetic fusion to the Qβ capsid protein. The co-assembly of wild-type Qβ and EGF-modified subunits resulted in structurally homogeneous nanoparticles displaying between 5 and 12 copies of EGF on their exterior surface. The particles were found to be amenable to bioconjugation by standard methods as well as the high-fidelity copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC). Such chemical derivatization did not impair the ability of the particles to specifically interact with the EGF receptor. Additionally, the particle-displayed EGF remained biologically active promoting autophosphorylation of the EGF receptor and apoptosis of A431 cells. These results suggest that hybrid Qβ-EGF nanoparticles could be useful vehicles for targeted delivery of imaging and/or therapeutic agents.
Collapse
Affiliation(s)
- Jonathan K Pokorski
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
46
|
Yoshimura A, Mizukami S, Hori Y, Watanabe S, Kikuchi K. Cell-Surface Protein Labeling with Luminescent Nanoparticles through Biotinylation by Using Mutant β-Lactamase-Tag Technology. Chembiochem 2011; 12:1031-4. [DOI: 10.1002/cbic.201100021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Indexed: 11/12/2022]
|
47
|
Merkel OM, Zheng M, Mintzer MA, Pavan GM, Librizzi D, Maly M, Höffken H, Danani A, Simanek EE, Kissel T. Molecular modeling and in vivo imaging can identify successful flexible triazine dendrimer-based siRNA delivery systems. J Control Release 2011; 153:23-33. [PMID: 21342661 DOI: 10.1016/j.jconrel.2011.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 12/28/2022]
Abstract
This study aimed to identify suitable siRNA delivery systems based on flexible generation 2-4 triazine dendrimers by correlating physico-chemical and biological in vitro and in vivo properties of the complexes with thermodynamic parameters calculated using molecular modeling. The siRNA binding properties of the dendrimers and PEI 25 kDa were simulated, binding and stability were measured in SYBR Gold assays, and hydrodynamic diameters, zeta potentials, and cytotoxicity were quantified. These parameters were compared with cellular uptake of the complexes and their ability to mediate RNAi. Radiolabeled complexes were administered intravenously, and pharmacokinetic profiles and biodistribution of these polyplexes were assessed both invasively and non-invasively. All flexible triazine dendrimers formed thermodynamically more stable complexes than PEI. While PEI and the generation 4 dendrimer interacted more superficially with siRNA, generation 2 and 3 virtually coalesced with siRNA, forming a tightly intertwined structure. These dendriplexes were therefore more efficiently charge-neutralized than PEI complexes, reducing agglomeration. This behavior was confirmed by results of hydrodynamic diameters (72.0 nm-153.5 nm) and zeta potentials (4.9 mV-21.8 mV in 10 mM HEPES) of the dendriplexes in comparison to PEI complexes (312.8 nm-480.0 nm and 13.7 mV-17.4 mV in 10 mM HEPES). All dendrimers, even generation 3 and 4, were less toxic than PEI. All dendriplexes were efficiently endocytosed and showed significant and specific luciferase knockdown in HeLa/Luc cells. Scintillation counting confirmed that the generation 2 triazine complexes showed more than twofold prolonged circulation times as a result of their good thermodynamic stability. Conversely, generation 3 complexes dissociated in vivo, and generation 4 complexes were captured by the reticulo-endothelial system due to their increased surface charge. Molecular modeling proves very valuable for rationalizing experimental parameters based on the dendrimers' structural properties. Non-invasive molecular imaging predicted the in vivo fate of the complexes. Therefore, both techniques effectively promote the rapid development of safe and efficient siRNA formulations that are stable in vivo.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|