1
|
Sun S, Su G, Zheng X. Inhibition of the Tumor Suppressor Gene SPINK5 via EHMT2 Induces the Oral Squamous Cell Carcinoma Development. Mol Biotechnol 2024; 66:208-221. [PMID: 37071303 DOI: 10.1007/s12033-023-00740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
Serine protease inhibitor Kazal-type 5 (SPINK5) has been revealed as a significant prognostic biomarker in oral squamous cell carcinoma (OSCC). However, there is little information regarding the detailed epigenetics mechanism underlying its dysregulation in OSCC. Using the Gene Expression Omnibus database, we identified SPINK5 as a significantly downregulated gene in OSCC tissues. Moreover, SPINK5 inhibited the malignant aggressiveness of HSC3 and squamous cell carcinomas (SCC)9 cells, whereas depletion of SPINK5 using shRNAs led to the opposite trend. The euchromatic histone lysine methyltransferase 2 (EHMT2) was found to bind to the SPINK5 promoter, and EHMT2 repressed the SPINK5 expression. SPINK5 reversed the stimulating effects of EHMT2 on the aggressiveness of HSC3 and SCC9 cells by impairing the Wnt/β-catenin pathway. Wnt/β-catenin inhibitor IWR-1 treatment reverted the malignant phenotype of OSCC cells in the presence of short hairpin RNA (sh)-SPINK5. Silencing of EHMT2 inhibited tumor growth and blocked the Wnt/β-catenin signaling in OSCC, which was reversed by SPINK5 knockdown. Our study shows that SPINK5, mediated by the loss of EHMT2, can inhibit the development of OSCC by inhibiting Wnt/β-catenin signaling and may serve as a treatment target for OSCC.
Collapse
Affiliation(s)
- Suzhen Sun
- Department of Stomatology, Ningbo First Hospital, No. 59, Liuting Street, Haishu District, Ningbo, 315000, Zhejiang, People's Republic of China.
| | - Geng Su
- Department of Paediatrics, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, 433000, Hubei, People's Republic of China
| | - Xijiao Zheng
- Department of Stomatology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, 433000, Hubei, People's Republic of China
| |
Collapse
|
2
|
Govindarasu M, Prathap L, Govindasamy R. Histone deacetylase inhibitors regulate the oral cancer via PI3K/AKT signaling pathway. Oral Oncol 2022; 135:106221. [DOI: 10.1016/j.oraloncology.2022.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
3
|
Espinosa RCG, Costa ARGF, Garcia Júnior MA, Ribeiro RIMDA, Cardoso SV, de Faria PR, Loyola AM. Correlation of H3K9ac and H4K12ac With Cell Proliferation Marker Ki-67 in Oral Leukoplakia: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2022; 30:566-572. [PMID: 35960013 DOI: 10.1097/pai.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to analyze the immunohistochemical expression of H3K9ac and H4K12ac in oral leukoplakia (OL) and its association with cell proliferation marker Ki-67 and clinicopathologic data. Paraffin-embedded, formalin-fixed tissue samples from 50 OLs and 15 fragments of the normal oral mucosa (NOM) were submitted to immunohistochemical assay using the streptavidin-biotin-peroxidase method. Quantitative analysis of the antigen-antibody reaction was performed by obtaining integrated optical density (IOD) and the percentage of positive nuclei (PPN) with ImageJ software. OL samples presented higher PPN ( P =0.02) and lower IOD values ( P =0.007) for H4K12ac in comparison to NOM. The area under the receiver operating characteristic curve for PPN and IOD values of H4K12ac immunostaining were 0.70 ( P =0.02) and 0.73 ( P =0.007), respectively. No differences were found between OL and NOM for H3K9ac. Cell proliferation marker Ki-67 had a positive correlation with PPN ( P <0.0001) and IOD ( P =0.0007) for H3K9ac expression and with IOD values ( P =0.002) for H4K12ac expression. The present findings suggest that alterations in the acetylation pattern of H4K12 occur in the early stages of oral carcinogenesis and that both H3K9ac and H4K12ac might have a role in the regulation of epithelial cell proliferation of OL.
Collapse
Affiliation(s)
- Roberta C G Espinosa
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| | - Anaíra R G F Costa
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| | | | - Rosy I M de A Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Sérgio V Cardoso
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| | - Paulo R de Faria
- Department of Morphology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia
| | - Adriano M Loyola
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| |
Collapse
|
4
|
Li C, Cao M, Zhou X. Role of epigenetics in parturition and preterm birth. Biol Rev Camb Philos Soc 2021; 97:851-873. [PMID: 34939297 DOI: 10.1111/brv.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Preterm birth occurs worldwide and is associated with high morbidity, mortality, and economic cost. Although several risk factors associated with parturition and preterm birth have been identified, mechanisms underlying this syndrome remain unclear, thereby limiting the implementation of interventions for prevention and management. Known triggers of preterm birth include conditions related to inflammatory and immunological pathways, as well as genetics and maternal history. Importantly, epigenetics, which is the study of heritable phenotypic changes that occur without alterations in the DNA sequence, may play a role in linking social and environmental risk factors for preterm birth. Epigenetic approaches to the study of preterm birth, including analyses of the effects of microRNAs, long non-coding RNAs, DNA methylation, and histone modification, have contributed to an improved understanding of the molecular bases of both term and preterm birth. Additionally, epigenetic modifications have been linked to factors already associated with preterm birth, including obesity and smoking. The prevention and management of preterm birth remains a challenge worldwide. Although epigenetic analysis provides valuable insights into the causes and risk factors associated with this syndrome, further studies are necessary to determine whether epigenetic approaches can be used routinely for the diagnosis, prevention, and management of preterm birth.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
5
|
Lara-Carrillo E, Herrera-Serna BY, Conzuelo-Rodríguez G, do Amaral RC, Aguilera-Eguía RA, Toral-Rizo VH. Effect of Human Development Index and other socioeconomic factors on mortality-to-incidence ratio of lips and oral cavity cancer in Mexican states: an ecological study. BMJ Open 2021; 11:e042376. [PMID: 34145006 PMCID: PMC8215233 DOI: 10.1136/bmjopen-2020-042376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To assess the association between the Human Development Index (HDI) and covariates on the mortality-to-incidence ratio (MIR) of lips and oral cavity cancer (LOCC) in Mexico. DESIGN Ecological study. SETTING Data from 32 Mexican states for year 2019. PARTICIPANTS Data set of male and female populations from Mexico. EXPOSURES Socioeconomic conditions based on HDI and covariates related to healthcare system capacity (total health spending per capita, school dropout and ratio of medical personnel in direct contact with patients). PRIMARY AND SECONDARY OUTCOME MEASURES MIR of LOCC by state and sex was calculated from the Global Burden of Disease Study website for year 2019. Data for calculating HDI 2019 by state and covariates were obtained from the National Institute of Statistics and Geography. A multiple regression model was constructed to measure the effects of HDI and covariates on LOCC-MIR. RESULTS Among the states with the highest HDI (>0.780), Colima had the highest aged-standardised rates per 100.000 in men for incidence (5.026) and mortality (3.118). The greatest burden of the disease was found on men, with the highest Men:Women MIR in Colima (3.10) and Baja California Sur (2.73). The highest MIR (>0.65) was found among the states with the lowest HDI (Oaxaca and Chiapas). For each unit of increase of the HDI there was a decrease in the LOCC- MIR of -0.778, controlling for the covariates. The most suitable regression model explained the 57% (F (p): 0.000) of the variance. CONCLUSIONS Men were most affected by LOCC in Mexican states. The highest MIRs of LOCC were found in the states with the highest HDI. But a worse prognosis of the disease, expressed as a higher MIR, is expected in contexts with lower HDI in the country, even with lower MIRs.
Collapse
Affiliation(s)
| | | | | | | | - Raúl Alberto Aguilera-Eguía
- Departamento de Salud Pública, Facultad de Medicina, Carrera de Kinesiología, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | | |
Collapse
|
6
|
Jing FY, Zhou LM, Ning YJ, Wang XJ, Zhu YM. The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and Neck Carcinoma: A Systematic Review. Front Cell Dev Biol 2021; 9:683254. [PMID: 34136491 PMCID: PMC8201395 DOI: 10.3389/fcell.2021.683254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, yet the molecular mechanisms underlying its onset and development have not yet been fully elucidated. Indeed, an in-depth understanding of the potential molecular mechanisms underlying HNSCC oncogenesis may aid the development of better treatment strategies. Recent epigenetic studies have revealed that the m6A RNA modification plays important roles in HNSCC. In this review, we summarize the role of m6A modification in various types of HNSCC, including thyroid, nasopharyngeal, hypopharyngeal squamous cell, and oral carcinoma. In addition, we discuss the regulatory roles of m6A in immune cells within the tumor microenvironment, as well as the potential molecular mechanisms. Finally, we review the development of potential targets for treating cancer based on the regulatory functions of m6A, with an aim to improving targeted therapies for HNSCC. Together, this review highlights the important roles that m6A modification plays in RNA synthesis, transport, and translation, and demonstrates that the regulation of m6A-related proteins can indirectly affect mRNA and ncRNA function, thus providing a novel strategy for reengineering intrinsic cell activity and developing simpler interventions to treat HNSCC.
Collapse
Affiliation(s)
- Feng-Yang Jing
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - Li-Ming Zhou
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - Yu-Jie Ning
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - Xiao-Juan Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - You-Ming Zhu
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Liu L, Wu Y, Li Q, Liang J, He Q, Zhao L, Chen J, Cheng M, Huang Z, Ren H, Chen J, Peng L, Gao F, Chen D, Wang A. METTL3 Promotes Tumorigenesis and Metastasis through BMI1 m 6A Methylation in Oral Squamous Cell Carcinoma. Mol Ther 2020; 28:2177-2190. [PMID: 32621798 PMCID: PMC7544972 DOI: 10.1016/j.ymthe.2020.06.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/16/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023] Open
Abstract
RNA modification plays an essential function in regulating gene expression and diverse biological processes. RNA modification enzyme methyltransferase-like 3 (METTL3) affects tumor progression by regulating the N6-methyladenosine (m6A) modification in the mRNAs of critical oncogenes or tumor suppressors, but its effect in oral squamous cell carcinoma (OSCC) remains unknown. In this study, we revealed that METTL3 was consistently upregulated in two OSCC cohorts, and high METTL3 expression was associated with poor prognosis. Functionally, cell proliferation, self-renewal, migration, and invasion ability in vitro and tumor growth and metastasis in vivo were decreased after METTL3 knockdown in OSCC cells. In contrast, the opposite results were obtained after METTL3 overexpression. In addition, the results obtained with the Mettl3 genetically modified mouse model validated the essential role of Mettl3 in chemical-induced oral carcinogenesis. In mechanism, methylated RNA immunoprecipitation sequencing (MeRIP-seq), MeRIP-quantitative real-time PCR, and luciferase reporter and mutagenesis assays identified that METTL3 mediates the m6A modification in the 3′ UTR of BMI1 mRNA. METTL3 promotes BMI1 translation in OSCC under the cooperation with m6A reader IGF2BP1. Our findings revealed that METTL3 promotes OSCC proliferation and metastasis through BMI1 m6A methylation, suggesting that the METTL3-m6A-BMI1 axis may serve as a prognostic biomarker or therapeutic target in patients with OSCC.
Collapse
Affiliation(s)
- Lin Liu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yu Wu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Luodan Zhao
- Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianwen Chen
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Maosheng Cheng
- Department of Genetics, School of Life Science, Anhui Medical University, Anhui 230031, China
| | - Zhexun Huang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hui Ren
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Chen
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liang Peng
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fengxin Gao
- Guangzhou Epibiotek Co., Ltd, Guangzhou 510700, China
| | - Demeng Chen
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Zhang K, Qiu W, Wu B, Fang F. Long non‑coding RNAs are novel players in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma (Review). Int J Mol Med 2020; 46:535-545. [PMID: 32626947 PMCID: PMC7307862 DOI: 10.3892/ijmm.2020.4628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, a large number of studies have shown that the abnormal expression of long non‑coding (lnc)RNAs can lead to a variety of different diseases, including inflammatory disorders, cardiovascular disease, nervous system diseases, and cancers. Recent research has demonstrated the biological characteristics of lncRNAs and the important functions of lncRNAs in oral inflammation, precancerous lesions and cancers. The present review aims to explore and discuss the potential roles of candidate lncRNAs in oral diseases by summarizing multiple lncRNA profiles in diseased and healthy oral tissues to determine the altered lncRNA signatures. In addition, to highlight the exact regulatory mechanism of lncRNAs in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma. The detection of lncRNAs in oral samples has the potential to be used as a diagnostic and an early detection tool for oral diseases. Furthermore, lncRNAs are promising future therapeutic targets in oral diseases, and research in this field may expand in the future.
Collapse
Affiliation(s)
- Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
9
|
Liu H, Huang X, Mor G, Liao A. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol Life Sci 2020; 77:2091-2101. [PMID: 31813015 PMCID: PMC11105058 DOI: 10.1007/s00018-019-03395-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
Decidualization is a critical event for the blastocyst implantation, placental development and fetal growth and the normal term. In mice, the embryo implantation to the uterine epithelial would trigger the endometrial stromal cells to differentiate into decidual stromal cells. However, decidualization in women takes place from the secretory phase of each menstrual cycle and continues to early pregnancy if there is conceptus. Deficient decidualization is often associated with pregnancy specific complications and reproductive disorders. Dramatic changes occur in the gene expression profiles during decidualization, which is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Recently, emerging evidences showed that epigenetic modifications, mainly including DNA methylation, histone modification, and non-coding RNAs, play an important role in the decidualization process via affecting the target genes' expression. In this review, we will focus on the epigenetic modifications in decidualization and open novel avenues to predict and treat the pregnancy complications caused by abnormal decidualization.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
10
|
Yang G, Yang Y, Tang H, Yang K. Loss of the clock gene Per1 promotes oral squamous cell carcinoma progression via the AKT/mTOR pathway. Cancer Sci 2020; 111:1542-1554. [PMID: 32086839 PMCID: PMC7226219 DOI: 10.1111/cas.14362] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022] Open
Abstract
Current studies have shown that the clock gene Period 1 (Per1) is downregulated in various tumors and plays an important role in promoting tumor progression. However, the biological functions and mechanism of Per1 in tumors remain largely unknown. In this study, 86 specimens of oral squamous cell carcinoma (OSCC) tissues and adjacent noncancerous tissues were collected to determine the Per1 expression level and the clinical significance of Per1 expression. Per1 was stably inhibited or overexpressed in OSCC cells to investigate its function and mechanism in vitro and in vivo. We found that Per1 was remarkably downregulated in OSCC and that low Per1 expression was significantly associated with TNM clinical stage and poor prognosis of OSCC patients. Per1 overexpression in SCC15 OSCC cells (Per1-OE SCC15 cells) significantly promoted autophagy and apoptosis while inhibiting proliferation and the AKT/mTOR pathway. However, the results obtained in Per1-silenced TSCCA OSCC cells were opposite those obtained in Per1-OE SCC15 cells. After addition of the AKT activator SC79 to Per1-OE SCC15 cells, the increased autophagy and apoptosis as well as decreased proliferation were remarkably rescued. Furthermore, increased apoptosis was significantly rescued in Per1-OE SCC15 cells treated with the autophagy inhibitor autophinib. In vivo tumorigenicity assays also confirmed that Per1 overexpression suppressed tumor growth. Taken together, our findings demonstrate for the first time that Per1 promotes OSCC progression by inhibiting autophagy-mediated cell apoptosis and enhancing cell proliferation in an AKT/mTOR pathway-dependent manner, and Per1 could be used as a valuable therapeutic target for OSCC.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Xiao Y, Su M, Ou W, Wang H, Tian B, Ma J, Tang J, Wu J, Wu Z, Wang W, Zhou Y. Involvement of noncoding RNAs in epigenetic modifications of esophageal cancer. Biomed Pharmacother 2019; 117:109192. [PMID: 31387188 DOI: 10.1016/j.biopha.2019.109192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancer (EC) is a serious digestive malignancy and is a leading cause of cancer-related mortality. Apart from genetic mutations, many epigenetic alterations including DNA methylation and histone modifications associated with chromatin remodeling have been identified in the regulation of gene expression in EC. Recently, noncoding RNAs, and mainly lncRNAs and miRNAs, have been revealed to be involved in the epigenetic regulation of EC. In this review, we focus on describing new insights on epigenetic processes associated with noncoding RNAs, which have been characterized to be responsible for the development and progression of EC.
Collapse
Affiliation(s)
- Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Min Su
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Wei Ou
- Department of Pharmacy, The First People's Hospital of Yue Yang, Yue Yang, PR China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Bo Tian
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Junliang Ma
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jinming Tang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jie Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Zhining Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Wenxiang Wang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| | - Yong Zhou
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| |
Collapse
|
12
|
Han X, Xu Z, Tian G, Tang Z, Gao J, Wei Y, Xu X. Suppression of the long non-coding RNA MALAT-1 impairs the growth and migration of human tongue squamous cell carcinoma SCC4 cells. Arch Med Sci 2019; 15:992-1000. [PMID: 31360193 PMCID: PMC6657264 DOI: 10.5114/aoms.2018.73343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/06/2017] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Aberrant expression of long non-coding RNAs (lncRNAs) is associated with metastasis and poor prognosis in patients with various cancer types. However, few studies have assessed lncRNAs in oral squamous cell carcinoma (OSCC). This study aimed to investigate the expression and impact of lncRNAs in OSCC. MATERIAL AND METHODS Real-time PCR analysis was used to examine the expression of four lncRNAs, MALAT-1, UCA1, BC200 and SRA, in 14 OSCC and adjacent normal tissue pairs. The impact of MALAT-1 suppression by siRNA on the proliferation, apoptosis, anchorage-independent growth and migration of the human tongue carcinoma cell line SSC4 was also determined. RESULTS MALAT-1 levels were significantly higher in the OSCC tissue than in the normal tissues (p < 0.004); no significant differences in UCA1, BC200 or SRA RNA levels were observed. Knockdown of MALAT-1 by siRNA significantly suppressed proliferation of SSC4 cells (p < 0.004) and enhanced their apoptosis (p < 0.001). In addition, siRNA-mediated suppression of MALAT-1 inhibited SSC4 cell colony formation (p < 0.001) and migration (p < 0.004). CONCLUSIONS Elevated expression of MALAT-1 in OSCC may play a role in tumorigenesis and/or metastasis. Further studies are necessary to identify the mechanism by which MALAT-1 influences SCC4 growth and migration and validate its increased expression in OSCC patients.
Collapse
Affiliation(s)
- Xu Han
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Zixiao Xu
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Gang Tian
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Zhen Tang
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - JianYong Gao
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yibo Wei
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - XiaoGang Xu
- Department of Stomatology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Wang Y, Huang H, Li Y. Knocking down miR-384 promotes growth and metastasis of osteosarcoma MG63 cells by targeting SLBP. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1458-1465. [PMID: 31007083 DOI: 10.1080/21691401.2019.1601099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhang C, Bao C, Zhang X, Lin X, Pan D, Chen Y. Knockdown of lncRNA LEF1-AS1 inhibited the progression of oral squamous cell carcinoma (OSCC) via Hippo signaling pathway. Cancer Biol Ther 2019; 20:1213-1222. [PMID: 30983488 DOI: 10.1080/15384047.2019.1599671] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is verified that long non-coding RNAs (lncRNAs) play crucial roles in various cancers. LncRNA LEF1-AS1 is a reported oncogene in colorectal cancer and glioblastoma. In this study, we unveiled that LEF1-AS1 markedly increased in oral squamous cell carcinoma (OSCC) tissues and cell lines. Besides, OSCC patients with high levels of LEF1-AS1 were apt to poor prognosis. Functionally, LEF1-AS1 knockdown inhibited cell survival, proliferation and migration, whereas enhanced cell apoptosis and induced G0/G1 cell cycle arrest in vitro. Consistently, LEF1-AS1 silence hindered tumor growth in vivo. Moreover, LEF1-AS1 inhibition stimulated the activation of Hippo signaling pathway through directly interacting with LATS1. Furtherly, we disclosed that LEF1-AS1 silence abolished the interaction of LEF1-AS1 with LATS1 while enhanced the binding of LATS1 to MOB, therefore promoting YAP phosphorylation but impairing YAP1 nuclear translocation. Additionally, we demonstrated that LEF1-AS1 regulated YAP1 translocation via a LATS1-dependent manner. Furthermore, we also uncovered that YAP1 overexpression abolished the suppressive impact of LEF1-AS1 repression on the biological processes of OSCC cells. In a word, we concluded that LEF1-AS1 served an oncogenic part in OSCC through suppressing Hippo signaling pathway by interacting with LATS1, suggesting the therapeutic and prognostic potential of LEF1-AS1 in OSCC.
Collapse
Affiliation(s)
- Chanqiong Zhang
- Department of Pathology, Wenzhou People's Hospital , Wenzhou , Zhejiang , China
| | - Chunchun Bao
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xiuxing Zhang
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xinshi Lin
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Dan Pan
- Department of Pathology, Wenzhou People's Hospital , Wenzhou , Zhejiang , China
| | - Yangzong Chen
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
15
|
Gao P, Fan R, Ge T. SNHG20 serves as a predictor for prognosis and promotes cell growth in oral squamous cell carcinoma. Oncol Lett 2018; 17:951-957. [PMID: 30655853 PMCID: PMC6312994 DOI: 10.3892/ol.2018.9709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) serve important roles in various tumor types, including colorectal cancer and gastric cancer. The present study aimed to investigate the contribution of the lncRNA small nucleolar RNA host gene 20 (SNHG20) in oral squamous cell carcinoma (OSCC) progression. It was demonstrated that SNHG20 expression was significantly increased in OSCC tissue specimens, compared with in adjacent non-tumor tissue specimens. The increased SNHG20 expression in OSCC tissue specimens was associated with tumor differentiation and Tumor-Node-Metastasis stage. Kaplan-Meier analysis and log-rank tests indicated that Higher SNHG20 expression predicted a poor overall survival (OS) rate in patients with OSCC. Multivariate Cox proportional hazards regression analysis demonstrated that increased SNHG20 expression was an independent predictor for the OS of patients with OSCC. Knockdown of SNHG20 expression in OSCC cells suppressed proliferation. The cell proliferation-associated proteins proliferating cell nuclear antigen and Ki67 expression levels were reduced when SNHG20 was knocked down in OSCC cells; thus, the results indicated that SHNG20 may serve as a predictor and potential target for OSCC treatment.
Collapse
Affiliation(s)
- Pengjie Gao
- Department of Stomatology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Rui Fan
- Department of Stomatology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Tao Ge
- Department of Stomatology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
16
|
Al Labban D, Jo SH, Ostano P, Saglietti C, Bongiovanni M, Panizzon R, Dotto GP. Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B. J Clin Invest 2018; 128:2581-2599. [PMID: 29757189 DOI: 10.1172/jci96915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Notch 1/2 genes play tumor-suppressing functions in squamous cell carcinoma (SCC), a very common malignancy in skin and internal organs. In contrast with Notch, we show that the transcription factor CSL (also known as RBP-Jκ), a key effector of canonical Notch signaling endowed with intrinsic transcription-repressive functions, plays a tumor-promoting function in SCC development. Expression of this gene decreased in upper epidermal layers and human keratinocytes (HKCs) undergoing differentiation, while it increased in premalignant and malignant SCC lesions from skin, head/neck, and lung. Increased CSL levels enhanced the proliferative potential of HKCs and SCC cells, while silencing of CSL induced growth arrest and apoptosis. In vivo, SCC cells with increased CSL levels gave rise to rapidly expanding tumors, while cells with silenced CSL formed smaller and more differentiated tumors with enhanced inflammatory infiltrate. Global transcriptomic analysis of HKCs and SCC cells with silenced CSL revealed major modulation of apoptotic, cell-cycle, and proinflammatory genes. We also show that the histone demethylase KDM6B is a direct CSL-negative target, with inverse roles of CSL in HKC and SCC proliferative capacity, tumorigenesis, and tumor-associated inflammatory reaction. CSL/KDM6B protein expression could be used as a biomarker of SCC development and indicator of cancer treatment.
Collapse
Affiliation(s)
- Dania Al Labban
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Seung-Hee Jo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | | | | | - Renato Panizzon
- Department of Dermatology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
17
|
Zhang H, Fu X, Su X, Yang A. CBX3/HP1γ is upregulated in tongue squamous cell carcinoma and is associated with an unfavorable prognosis. Exp Ther Med 2018; 15:4271-4276. [PMID: 29731822 PMCID: PMC5920882 DOI: 10.3892/etm.2018.5969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Increased expression of CBX3/HP1γ, a core component of heterochromatin protein 1, has recently proved to be involved in human tumorigenesis and patient prognosis. The present study aimed to investigate the expression of CBX3/HP1γ and its clinicopathological significance in primary tongue squamous cell carcinoma (TSCC). Gene expression profiles of CBX3/HP1γ in TSCC from Oncomine database were analyzed. The expression of CBX3/HP1γ at protein level was measured using immunohistochemistry (IHC). The potential associations between CBX3/HP1γ expression and multiple clinicopathological parameters were estimated using the Chi square test. In addition, the effect of CBX3/HP1γ expression on patients' survival was further assessed by Kaplan-Meier and Cox regression analyses. The agreement of elevated CBX3/HP1γ expression was indicated in four datasets on the Oncomine database. Aberrant overexpression of CBX3/HP1γ was identified in TSCC tissues compared with cancer-adjacent normal tissue, which was significantly associated with cervical nodes metastasis (P=0.010) and clinical stage (P=0.025). Furthermore, patients with high CBX3/HP1γ expression exhibited a reduced survival compared with those with low expression (Log-rank test, P=0.004). Univariate and multivariate Cox regression analysis suggested that the expression status of CBX3/HP1γ could be regarded as an independent prognostic factor for TSCC patients (HR=2.461; 95% CI=1.128–5.370; P=0.024). The present study indicated that aberrant overexpression of Cbx3/HP1γ was associated with cervical nodes metastasis and unfavorable survival in TSCC. These findings suggest that CBX3/HP1γ may serve an important role in tongue tumorigenesis and may be a valuable candidate diagnostic and prognostic marker for TSCC patients.
Collapse
Affiliation(s)
- Huayong Zhang
- Department of Head and Neck Surgery, Sun Yan-sen University Cancer Centre, Guangzhou, Guangdong 510000, P.R. China.,Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Sun Yan-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaoyan Fu
- Department of Head and Neck Surgery, Sun Yan-sen University Cancer Centre, Guangzhou, Guangdong 510000, P.R. China
| | - Xuan Su
- Department of Head and Neck Surgery, Sun Yan-sen University Cancer Centre, Guangzhou, Guangdong 510000, P.R. China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yan-sen University Cancer Centre, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
18
|
Li X, Cao Y, Gong X, Li H. Long noncoding RNAs in head and neck cancer. Oncotarget 2018; 8:10726-10740. [PMID: 27802187 PMCID: PMC5354695 DOI: 10.18632/oncotarget.12960] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Head and neck cancers (HNCs) include a series of malignant tumors arising in epithelial tissues, typically oral cancer, laryngeal cancer, nasopharynx cancer and thyroid cancer. HNCs are important contributors to cancer incidence and mortality, leading to approximately 225,100 new patients and 77,500 deaths in China every year. Determination of the mechanisms of HNC carcinogenesis and progression is an urgent priority in HNC treatment. Long noncoding RNAs (lncRNAs) are noncoding RNAs longer than 200 bps. lncRNAs have been reported to participate in a broad scope of biological processes, and lncRNA dysregulation leads to diverse human diseases, including cancer. In this review, we focus on lncRNAs that are dysregulated in HNCs, summarize the latest findings regarding the function and molecular mechanisms of lncRNAs in HNC carcinogenesis and progression, and discuss the clinical application of lncRNAs in HNC diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Xiuhua Li
- School of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,Department of Stomatology,ChanghaiHospital, Second Military Medical University, Shanghai, P. R. China
| | - Yongbing Cao
- School of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Xiaojian Gong
- School of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Hongjiao Li
- Department of Stomatology,ChanghaiHospital, Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
19
|
Xu M, Yin L, Cai Y, Hu Q, Huang J, Ji Q, Hu Y, Huang W, Liu F, Shi S, Deng X. Epigenetic regulation of integrin β6 transcription induced by TGF-β1 in human oral squamous cell carcinoma cells. J Cell Biochem 2018; 119:4193-4204. [PMID: 29274289 DOI: 10.1002/jcb.26642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Overexpression of integrin αvβ6 is believed to play an important role in the invasion and metastasis of oral squamous cell carcinoma (OSCC). However, little is known about the molecular mechanisms leading to αvβ6 upregulation in OSCC. As the integrin β6 (ITGB6) is the only partner with αv, the expression of αvβ6 is dependent on ITGB6, it is, therefore, pivotal to investigate the mechanisms underlying ITGB6 overexpression in OSCC. We previously reported the cloning and characterization of human ITGB6 gene. In the current study, we further investigated the molecular mechanisms of ITGB6 expression and the upregulation by carcinogenesis related cytokine-transforming growth factor-β1 (TGF-β1) in OSCC cells. We first demonstrated that TGF-β1 can induce ITGB6 mRNA and protein express in a time and concentration dependent manner, and the induced-ITGB6 mRNA was not due to increase the mRNA stability, but regulated at transcriptional level. By using a luciferase reporter assay, site-mutation, RNA interference, and chromatin immunoprecipitation assay, we revealed for the first time that JunB, a member of the activator protein-1 (AP-1) family, is involved in the positive regulation to the ITGB6 transcription induced by TGF-β1 in OSCC cells. Furthermore, our data also demonstrated that histone acetyltransferase (HAT) CBP mediated histone H3 and H4 hyperacetylation, and RNA Polymerase II recruitment to ITGB6 promoter, facilitated the binding of transcription factor JunB to ITGB6 promoter after TGF-β1 stimulation. Collectively, these findings demonstrate that JunB and CBP-mediated histone hyperacetylation are responsible for TGF-β1 induced ITGB6 transcription in OSCC cells, suggesting that epigenetic mechanisms are responsible for the active transcription expression of ITGB6 induced by TGF-β1 in OSCC cells.
Collapse
Affiliation(s)
- Mingyan Xu
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China.,Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China.,Department of Stomatology, Xiamen Medical College, Xiamen, Fujian, China
| | - Liqin Yin
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China
| | - Yihuang Cai
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China.,Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China
| | - Qingwei Hu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China
| | - Jie Huang
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China
| | - Qing Ji
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian, China
| | - Yanping Hu
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China
| | - Wenxia Huang
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China
| | - Fan Liu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China
| | - Songlin Shi
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China
| | - Xiaoling Deng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, Fujian, China
| |
Collapse
|
20
|
Guglas K, Bogaczyńska M, Kolenda T, Ryś M, Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J, Lamperska K. lncRNA in HNSCC: challenges and potential. Contemp Oncol (Pozn) 2017; 21:259-266. [PMID: 29416430 PMCID: PMC5798417 DOI: 10.5114/wo.2017.72382] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world. Some progress has been made in the therapy of HNSCC, however treatment remains unsatisfactory. Recent studies have shown that different types of long non-coding RNAs (lncRNAs) are dysregulated in HNSCC and correlate with tumor progression, lymph node metastasis, clinical stage and poor prognosis. lncRNAs are a class of functional RNA molecules that can not be translated into proteins but can modulate the activity of transcription factors or regulate changes in chromatin structure. The lncRNAs might have potential of biomarker in HNSCC diagnosis, prognosis, prediction and targeted treatment. In this review we describe the potential role of lncRNAs as new biomarkers and discuss their features including source of origin, extraction methods, stability, detection methods and data normalization and potential function as biomarkers in HNSCC.
Collapse
Affiliation(s)
- Kacper Guglas
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Bogaczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- HAN University of Applied Sciences, Nijmegen, Netherlands
| | - Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
| | - Marcel Ryś
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poland
- Department of Biology and Environmental Sciences, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
21
|
Kolenda T, Guglas K, Ryś M, Bogaczyńska M, Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J, Lamperska KM. Biological role of long non-coding RNA in head and neck cancers. Rep Pract Oncol Radiother 2017; 22:378-388. [PMID: 28794691 DOI: 10.1016/j.rpor.2017.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) are one of the worst prognosis cancers with high mortality of patients. The treatment strategy is primarily based on surgery and radiotherapy but chemotherapy is also used. Every year the knowledge concerning HNSCC biology is updated with new elements such as the recent discovered molecules - long non-coding RNAs. Long non-coding RNAs are involved in regulatory processes in the cells. It has been revealed that the expression levels of lncRNAs are disturbed in tumor cells what results in the acquisition of their specific phenotype. lncRNAs influence cell growth, cell cycle, cell phenotype, migration and invasion ability as well as apoptosis. Development of the lncRNA panel characteristic for HNSCC and validation of specific lncRNA functions are yet to be elucidated. In this work, we collected available data concerning lncRNAs in HNSCC and characterized their biological role. We believe that the tumor examination, in the context of lncRNA expression, may lead to understanding complex biology of the cancer and improve therapeutic methods in the future.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61th Zwirki i Wigury Street, 02-091 Warszawa, Poland.,Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland
| | - Marcel Ryś
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland
| | - Marta Bogaczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland
| | - Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18th Grunwaldzka Street, 60-786 Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18th Grunwaldzka Street, 60-786 Poznan, Poland.,Department of Biology and Environmental Sciences, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15th Garbary Street, 61-866 Poznan, Poland
| | - Katarzyna M Lamperska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland
| |
Collapse
|
22
|
Webber LP, Wagner VP, Curra M, Vargas PA, Meurer L, Carrard VC, Squarize CH, Castilho RM, Martins MD. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. Histopathology 2017; 71:278-286. [DOI: 10.1111/his.13218] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/18/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Liana P Webber
- Experimental Pathology Unit; Hospital de Clínicas de Porto Alegre; Porto Alegre RS Brazil
- Department of Oral Pathology; School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
- Laboratory of Epithelial Biology; Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
| | - Vivian P Wagner
- Experimental Pathology Unit; Hospital de Clínicas de Porto Alegre; Porto Alegre RS Brazil
- Department of Oral Pathology; School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Marina Curra
- Experimental Pathology Unit; Hospital de Clínicas de Porto Alegre; Porto Alegre RS Brazil
- Department of Oral Pathology; School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Pablo A Vargas
- Department of Oral Diagnosis; Piracicaba Dental School; State University of Campinas; Piracicaba SP Brazil
| | - Luise Meurer
- Experimental Pathology Unit; Hospital de Clínicas de Porto Alegre; Porto Alegre RS Brazil
- Department of Pathology; School of Medicine; Universidade Federal do Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Vinícius C Carrard
- Department of Oral Pathology; School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology; Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
| | - Rogério M Castilho
- Laboratory of Epithelial Biology; Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry; Ann Arbor MI USA
| | - Manoela D Martins
- Experimental Pathology Unit; Hospital de Clínicas de Porto Alegre; Porto Alegre RS Brazil
- Department of Oral Pathology; School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
23
|
Kumar A, Sarode SC, Sarode GS, Majumdar B, Patil S, Sharma NK. Beyond gene dictation in oral squamous cell carcinoma progression and its therapeutic implications. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17701463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Gargi S Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Barnali Majumdar
- Department of Oral Pathology and Microbiology, Bhojia Dental College and Hospital, Baddi, Himachal Pradesh, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
24
|
Wang Y, Hu H, Wang Q, Li Z, Zhu Y, Zhang W, Wang Y, Jiang H, Cheng J. The level and clinical significance of 5-hydroxymethylcytosine in oral squamous cell carcinoma: An immunohistochemical study in 95 patients. Pathol Res Pract 2017; 213:969-974. [PMID: 28554766 DOI: 10.1016/j.prp.2017.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/26/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Accumulating evidence has revealed that aberrant abundance of 5-hydroxymethylcytosine (5hmC) is critically involved in tumorigenesis. The aim of the present study was to investigate the level of 5hmC in primary oral squamous cell carcinoma (OSCC) and determine its clinical significance as well as prognostic value in predicting patients' outcomes. The expression levels of 5hmC in 95 human OSCC samples and 24 normal oral mucosa were evaluated by immunohistochemical staining. Moreover, the associations between the expression status of 5hmC and several clinicopathological parameters as well as patients' survival were further statistically assessed. Our immunohistochemical results revealed that 5hmC was significantly downregulated in a significant fraction of OSCC as compared their normal counterparts. However, elevated 5hmC level was found to be significantly associated with pathological grade and cervical node metastasis with P-values of 0.0239 and 0.0041, respectively. Results from Kaplan-Meier cumulative survival analyses indicated that high expression of 5hmC in OSCC was significantly associated with decreased overall survival, disease-free and disease-specific survival as compared to those with low 5hmC (Log-rank, P=0.0210, 0.0313, 0.0415, respectively). Furthermore, the univariate and multivariate survival analyses further identified the expression status of 5hmC as an independent prognostic factor affecting patients' survival. Taken together, our results reveal a significant decrease of 5hmC level in a large subset of OSCC. However, high level of 5hmC associates with tumor aggressive features and unfavorable prognosis in a fraction of OSCC patients.
Collapse
Affiliation(s)
- Yi Wang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Huijun Hu
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Qiong Wang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhongwu Li
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yumin Zhu
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yanling Wang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hongbing Jiang
- Jiangsu Key Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
25
|
Overexpression of suppressor of zest 12 is associated with cervical node metastasis and unfavorable prognosis in tongue squamous cell carcinoma. Cancer Cell Int 2017; 17:26. [PMID: 28228691 PMCID: PMC5307854 DOI: 10.1186/s12935-017-0395-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/04/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Increased expression of suppressor of zest 12 (SUZ12), a core component of the polycomb repressive complex 2, contributes to human tumorigenesis and associates with patient prognosis. In the present study, we sought to investigate the expression of SUZ12 and its clinicopathological significance in primary tongue squamous cell carcinoma (TSCC). METHODS The expression of SUZ12 protein was determined by immunohistochemistry in clinical samples from a retrospective cohort of 72 patients with primary TSCC who were treated at our institution from Jan. 2007 to Dec. 2013. The potential associations between SUZ12 abundance and multiple clinicopathological parameters were assessed by Chi square test. Moreover, the effect of SUZ12 expression on patients' survival was further estimated by Kaplan-Meier and Cox regression analyses. RESULTS Our immunohistochemical staining data revealed aberrant overexpression of SUZ12 in a large subset of TSCC as compared to normal tongue mucosa. Elevated SUZ12 was found to be significantly associated with cervical nodes metastasis (P = 0.0325) and reduced overall as well as disease-free survival (Log-rank test, P = 0.0225, 0.0179, respectively). Both univariate and multivariate Cox regression analysis identified the expression status of SUZ12 (low/high) as an important independent prognostic factor for patients' survival. CONCLUSIONS Our data reveal that aberrant SUZ12 overexpression is associated with cervical nodes metastasis and reduced survival in TSCC. These findings suggest that SUZ12 might play critical roles during tongue tumorigenesis and serve as a novel biomarker with diagnostic and prognostic significance.
Collapse
|
26
|
Lindsay C, Seikaly H, Biron VL. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets. J Otolaryngol Head Neck Surg 2017; 46:9. [PMID: 28143553 PMCID: PMC5282807 DOI: 10.1186/s40463-017-0185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.
Collapse
Affiliation(s)
- Cameron Lindsay
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Hadi Seikaly
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Vincent L Biron
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
27
|
Huang C, Liu H, Gong XL, Wu L, Wen B. Expression of DNA methyltransferases and target microRNAs in human tissue samples related to sporadic colorectal cancer. Oncol Rep 2016; 36:2705-2714. [PMID: 27666771 DOI: 10.3892/or.2016.5104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/19/2016] [Indexed: 11/06/2022] Open
Abstract
Tissue microenvironment functions as a pivotal mediator in colorectal carcinogenesis, and its alteration can cause some important cellular responses including epigenetic events. The present study examined histologically altered tissue structure, DNA methyltransferases (DNMTs) and their corresponding expression of target microRNAs (miRNA). Tissues resected by surgery were from primary colorectal carcinoma. These samples were from three locations: and were ≥10, 5 and ≤2 cm away from the proximal lesion of colon cancer, and marked as no. 1, no. 2 and no. 3, respectively. Histological alteration was assessed by H&E staining, expression of DNMT1, DNMT3A, and DNMT3B was detected by immunohistochemistry and western blotting, microarray chip was used to screen distinguishable miRNAs and miRNAs targeting DNMTs whose validation assay was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Our results revealed that normal crypt structure was shown in no. 1, while many aberrant crypt foci appeared in no. 3. Significant upregulation of DNMT1, DNMT3A, and DNMT3B expression was found in para-carcinoma tissues, compared with the histopathologically unchanged tissues (P<0.05), furthermore, distinguishable expression profiling was observed of target miRNAs in tissues with different distance. Our results provide additional insights for future research of colorectal carcinogenesis by introducing the tissue microenvironment.
Collapse
Affiliation(s)
- Chao Huang
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Hong Liu
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Xiu-Li Gong
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Liyun Wu
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Bin Wen
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
28
|
Singh NN, Peer A, Nair S, Chaturvedi RK. Epigenetics: A possible answer to the undeciphered etiopathogenesis and behavior of oral lesions. J Oral Maxillofac Pathol 2016; 20:122-8. [PMID: 27194874 PMCID: PMC4860913 DOI: 10.4103/0973-029x.180967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/10/2016] [Indexed: 01/07/2023] Open
Abstract
Much controversy has existed over the etiopathogenesis and management of oral lesions, especially oral malignancies. The knowledge of genetic basis is proving to be inadequate in the light of emerging new mechanisms termed epigenetic phenomena. The present review article aims to understand the role of epigenetic mechanisms in oral lesions. Epigenetics is the study of acquired changes in chromatin structure that arise independently of a change in the underlying deoxyribonucleic acid (DNA) nucleotide sequence. Key components involved in epigenetic regulation are DNA methylation, histone modifications and modifications in micro ribonucleic acids (miRNA). Epigenetics is a reversible system that can be affected by various environmental factors such as diet, drugs, mental stress, physical activity and addictive substances such as tobacco, nicotine and alcohol. Epigenetics may also play a role in explaining the etiopathogenesis of developmental anomalies, genetic defects, cancer as well as substance addiction (tobacco, cigarette and alcohol). Epigenetic modifications may contribute to aberrant epigenetic mechanisms seen in oral precancers and cancers. In the near future, epigenetic variations found in oral dysplastic cells can act as a molecular fingerprint for malignancies. The literature in English language was searched and a structured scientific review and meta-analysis of scientific publications from the year 2000 to year 2015 was carried out from various journals. It was observed that epigenetic marks can prove to be novel markers for early diagnosis, prognosis and treatment of oral cancers as well as other oral diseases.
Collapse
Affiliation(s)
- Narendra Nath Singh
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| | - Aakanksha Peer
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| | - Sherin Nair
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| | - Rupesh K Chaturvedi
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| |
Collapse
|
29
|
Yu T, Li C, Wang Z, Liu K, Xu C, Yang Q, Tang Y, Wu Y. Non-coding RNAs deregulation in oral squamous cell carcinoma: advances and challenges. Clin Transl Oncol 2015; 18:427-36. [PMID: 26370423 DOI: 10.1007/s12094-015-1404-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/31/2015] [Indexed: 12/28/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common cause of cancer death. Despite decades of improvements in exploring new treatments and considerable advance in multimodality treatment, satisfactory curative rates have not yet been reached. The difficulty of early diagnosis and the high prevalence of metastasis associated with OSCC contribute to its dismal prognosis. In the last few decades the emerging data from both tumor biology and clinical trials led to growing interest in the research for predictive biomarkers. Non-coding RNAs (ncRNAs) are promising biomarkers. Among numerous kinds of ncRNAs, short ncRNAs, such as microRNAs (miRNAs), have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. In contrast to miRNAs, long non-coding RNAs (lncRNAs) are much less known concerning their functions in human cancers especially in OSCC. The present review highlighted the roles of miRNAs and newly discovered lncRNAs in oral tumorigenesis, metastasis, and their clinical implication.
Collapse
Affiliation(s)
- T Yu
- Department of Head and Neck Oncology Surgery, Sichuan Cancer Hospital, No. 55, Sec. 4, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China.
| | - C Li
- Department of Head and Neck Oncology Surgery, Sichuan Cancer Hospital, No. 55, Sec. 4, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Z Wang
- Department of Head and Neck Oncology Surgery, Sichuan Cancer Hospital, No. 55, Sec. 4, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - K Liu
- Department of Head and Neck Oncology Surgery, Sichuan Cancer Hospital, No. 55, Sec. 4, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - C Xu
- Department of Head and Neck Oncology Surgery, Sichuan Cancer Hospital, No. 55, Sec. 4, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Q Yang
- Department of Head and Neck Oncology Surgery, Sichuan Cancer Hospital, No. 55, Sec. 4, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Y Tang
- Department of Head and Neck Oncology Surgery, Sichuan Cancer Hospital, No. 55, Sec. 4, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Y Wu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Irimie AI, Braicu C, Zanoaga O, Pileczki V, Gherman C, Berindan-Neagoe I, Campian RS. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. Onco Targets Ther 2015; 8:461-70. [PMID: 25759589 PMCID: PMC4346003 DOI: 10.2147/ott.s78358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is the major bioactive component of green tea. Our experimental data indicated that EGCG treatment suppresses cell proliferation of SSC-4 human oral squamous cell carcinoma (OSCC), the effect being dose- and time-dependent. In parallel was observed the activation of apoptosis and autophagy, in response to EGCG exposure in SSC-4 cells. Treatment with EGCG activates the expression of the BAD, BAK, FAS, IGF1R, WNT11, and ZEB1 genes and inhibits CASP8, MYC, and TP53. All of these results suggest that EGCG has an excellent potential to become a therapeutic compound for patients with OSCC, by inducing tumor cell death via apoptosis and autophagy.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthodontics and Dental Materials, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Valentina Pileczki
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Claudia Gherman
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania ; Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Experimental Therapeutics MD Anderson Cancer Center Houston, TX, USA
| | - Radu Septimiu Campian
- Department of Oral Rehabilitation, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Le JM, Squarize CH, Castilho RM. Histone modifications: Targeting head and neck cancer stem cells. World J Stem Cells 2014; 6:511-525. [PMID: 25426249 PMCID: PMC4178252 DOI: 10.4252/wjsc.v6.i5.511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor improvement in the last three decades. Despite new surgical techniques and chemotherapy protocols, tumor resistance to chemotherapy remains a significant challenge for HNSCC patients. Numerous mechanisms underlie chemoresistance, including genetic and epigenetic alterations in cancer cells that may be acquired during treatment and activation of mitogenic signaling pathways, such as nuclear factor kappa-light-chain-enhancer-of activated B cell, that cause reduced apoptosis. In addition to dysfunctional molecular signaling, emerging evidence reveals involvement of cancer stem cells (CSCs) in tumor development and in tumor resistance to chemotherapy and radiotherapy. These observations have sparked interest in understanding the mechanisms involved in the control of CSC function and fate. Post-translational modifications of histones dynamically influence gene expression independent of alterations to the DNA sequence. Recent findings from our group have shown that pharmacological induction of post-translational modifications of tumor histones dynamically modulates CSC plasticity. These findings suggest that a better understanding of the biology of CSCs in response to epigenetic switches and pharmacological inhibitors of histone function may directly translate to the development of a mechanism-based strategy to disrupt CSCs. In this review, we present and discuss current knowledge on epigenetic modifications of HNSCC and CSC response to DNA methylation and histone modifications. In addition, we discuss chromatin modifications and their role in tumor resistance to therapy.
Collapse
|