1
|
Kim D, Ahn J, Kim D, Kim JY, Yoo S, Lee JH, Ghosh P, Luke MC, Kim C. Quantitative volumetric photoacoustic assessment of vasoconstriction by topical corticosteroid application in mice skin. PHOTOACOUSTICS 2024; 40:100658. [PMID: 39553383 PMCID: PMC11563941 DOI: 10.1016/j.pacs.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Topical corticosteroids manage inflammatory skin conditions via their action on the immune system. An effect of application of corticosteroids to the skin is skin blanching caused by peripheral vasoconstriction. This has been used to characterize, in some cases relative potency and also as a way to compare skin penetration. Chromameters have been used to assess skin blanching-the outcome of vasoconstriction caused by topical corticosteroids-but do not directly measure vasoconstriction. Here, we demonstrate quantitative volumetric photoacoustic microscopy (PAM) as a tool for directly assessing the vasoconstriction followed by topical corticosteroid application, noninvasively visualizing skin vasculature without any exogeneous contrast agent. We photoacoustically differentiated the vasoconstrictive ability of four topical corticosteroids in small animals through multiparametric analyses, offering detailed 3D insights into vasoconstrictive mechanisms across different skin depths. Our findings highlight the potential of PAM as a noninvasive tool for measurement of comparative vasoconstriction with potential for clinical, pharmaceutical, and bioequivalence applications.
Collapse
Affiliation(s)
- Donggyu Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Donghyun Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jin Young Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Seungah Yoo
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Priyanka Ghosh
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Markham C. Luke
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| |
Collapse
|
2
|
Zhu X, Menozzi L, Cho SW, Yao J. High speed innovations in photoacoustic microscopy. NPJ IMAGING 2024; 2:46. [PMID: 39525278 PMCID: PMC11541221 DOI: 10.1038/s44303-024-00052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Photoacoustic microscopy (PAM) is a key implementation of photoacoustic imaging (PAI). PAM merges rich optical contrast with deep acoustic detection, allowing for broad biomedical research and diverse clinical applications. Recent advancements in PAM technology have dramatically improved its imaging speed, enabling real-time observation of dynamic biological processes in vivo and motion-sensitive targets in situ, such as brain activities and placental development. This review introduces the engineering principles of high-speed PAM, focusing on various excitation and detection methods, each presenting unique benefits and challenges. Driven by these technological innovations, high-speed PAM has expanded its applications across fundamental, preclinical, and clinical fields. We highlight these notable applications, discuss ongoing technical challenges, and outline future directions for the development of high-speed PAM.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Soon-Woo Cho
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
3
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Kim J, Lee J, Choi S, Lee H, Yang J, Jeon H, Sung M, Kim WJ, Kim C. 3D Multiparametric Photoacoustic Computed Tomography of Primary and Metastatic Tumors in Living Mice. ACS NANO 2024; 18:18176-18190. [PMID: 38941553 PMCID: PMC11256897 DOI: 10.1021/acsnano.3c12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Photoacoustic computed tomography (PACT), an emerging imaging modality in preclinical cancer research, can provide multiparametric 3D information about structures, physiological functions, and pharmacokinetics. Here, we demonstrate the use of high-definition 3D multiparametric PACT imaging of both primary and metastatic tumors in living mice to noninvasively monitor angiogenesis, carcinogenesis, hypoxia, and pharmacokinetics. The high-definition PACT system with a 1024-element hemispherical ultrasound transducer array provides an isotropic spatial resolution of 380 μm, an effective volumetric field-of-view of 12.8 mm × 12.8 mm × 12.8 mm without scanning, and an acquisition time of <30 s for a whole mouse body. Initially, we monitor the structural progression of the tumor microenvironment (e.g., angiogenesis and vessel tortuosity) after tumor cell inoculation. Then, we analyze the change in oxygen saturation of the tumor during carcinogenesis, verifying induced hypoxia in the tumor's core region. Finally, the whole-body pharmacokinetics are photoacoustically imaged after intravenous injection of micelle-loaded IR780 dye, and the in vivo PACT results are validated in vivo and ex vivo by fluorescence imaging. By employing the premium PACT system and applying multiparametric analyses to subcutaneous primary tumors and metastatic liver tumors, we demonstrate that this PACT system can provide multiparametric analyses for comprehensive cancer research.
Collapse
Affiliation(s)
- Jiwoong Kim
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jihye Lee
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seongwook Choi
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyori Lee
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jinge Yang
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyunseo Jeon
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsik Sung
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Won Jong Kim
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chulhong Kim
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
5
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
6
|
Li S, Zhang G, Wang Y, Li W, Sun Y, Li C. Photoacoustic imaging of peripheral vessels in extremities by large-scale synthetic matrix array. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11519. [PMID: 38259508 PMCID: PMC10800540 DOI: 10.1117/1.jbo.29.s1.s11519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Significance Various peripheral vascular diseases (PVD) in extremities, such as arterial atherosclerosis or venous occlusion in arm or legs, are a serious global health threat. Noninvasive vascular imaging is of great value for both diagnosis and assessment of PVD. Approach By scanning a one-dimensional non-focusing linear array, an equivalent large two-dimensional (2D) matrix array with hundreds of thousands or more ultrasound elements is formed, thereby achieving a wide signal reception angle as well as large imaging area for three-dimensional (3D) imaging of peripheral extremities. Aim To provide a feasible bedside and noninvasive imaging method for vascular imaging in extremities. Results Our system can achieve high-quality photoacoustic (PA) peripheral vessel imaging. The 3D subcutaneous vascular imaging results of the palms and arms of healthy volunteers demonstrate the superior performance of the system. Conclusions This work proposes a clinically oriented PA 3D subcutaneous vascular imaging system for human extremities. The system employs a synthetic matrix array via scanning a one-dimensional non-focusing linear probe, providing noninvasive, high-resolution, and high-contrast images of human extremities. It has potential application value in the diagnosis and monitoring of vascular diseases.
Collapse
Affiliation(s)
- Shuang Li
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
| | - Guangjie Zhang
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
| | - Yibing Wang
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
| | - Wenzhao Li
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
| | - Yu Sun
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
| | - Changhui Li
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
- Peking University, National Biomedical Imaging Center, Beijing, China
| |
Collapse
|
7
|
Lee H, Park B, Lee J, Kang Y, Han M, Lee J, Kim C, Kim WJ. Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303668. [PMID: 37612796 DOI: 10.1002/smll.202303668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.
Collapse
Affiliation(s)
- Hyori Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihye Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
8
|
Gao Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. 4D spectral-spatial computational photoacoustic dermoscopy. PHOTOACOUSTICS 2023; 34:100572. [PMID: 38058749 PMCID: PMC10696115 DOI: 10.1016/j.pacs.2023.100572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Photoacoustic dermoscopy (PAD) is an emerging non-invasive imaging technology aids in the diagnosis of dermatological conditions by obtaining optical absorption information of skin tissues. Despite advances in PAD, it remains unclear how to obtain quantitative accuracy of the reconstructed PAD images according to the optical and acoustic properties of multilayered skin, the wavelength and distribution of excitation light, and the detection performance of ultrasound transducers. In this work, a computing method of four-dimensional (4D) spectral-spatial imaging for PAD is developed to enable quantitative analysis and optimization of structural and functional imaging of skin. This method takes the optical and acoustic properties of heterogeneous skin tissues into account, which can be used to correct the optical field of excitation light, detectable ultrasonic field, and provide accurate single-spectrum analysis or multi-spectral imaging solutions of PAD for multilayered skin tissues. A series of experiments were performed, and simulation datasets obtained from the computational model were used to train neural networks to further improve the imaging quality of the PAD system. All the results demonstrated the method could contribute to the development and optimization of clinical PADs by datasets with multiple variable parameters, and provide clinical predictability of photoacoustic (PA) data for human skin.
Collapse
Affiliation(s)
- Yang Gao
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Ting Feng
- Fudan University, Academy for Engineering and Technology, Shanghai 200433, China
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Qian Chen
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Chao Zuo
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Haigang Ma
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| |
Collapse
|
9
|
Karlas A, Fasoula NA, Kallmayer M, Schäffer C, Angelis G, Katsouli N, Reidl M, Duelmer F, Al Adem K, Hadjileontiadis L, Eckstein HH, Ntziachristos V. Optoacoustic biomarkers of lipids, hemorrhage and inflammation in carotid atherosclerosis. Front Cardiovasc Med 2023; 10:1210032. [PMID: 38028502 PMCID: PMC10666780 DOI: 10.3389/fcvm.2023.1210032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Imaging plays a critical role in exploring the pathophysiology and enabling the diagnostics and therapy assessment in carotid artery disease. Ultrasonography, computed tomography, magnetic resonance imaging and nuclear medicine techniques have been used to extract of known characteristics of plaque vulnerability, such as inflammation, intraplaque hemorrhage and high lipid content. Despite the plethora of available techniques, there is still a need for new modalities to better characterize the plaque and provide novel biomarkers that might help to detect the vulnerable plaque early enough and before a stroke occurs. Optoacoustics, by providing a multiscale characterization of the morphology and pathophysiology of the plaque could offer such an option. By visualizing endogenous (e.g., hemoglobin, lipids) and exogenous (e.g., injected dyes) chromophores, optoacoustic technologies have shown great capability in imaging lipids, hemoglobin and inflammation in different applications and settings. Herein, we provide an overview of the main optoacoustic systems and scales of detail that enable imaging of carotid plaques in vitro, in small animals and humans. Finally, we discuss the limitations of this novel set of techniques while investigating their potential to enable a deeper understanding of carotid plaque pathophysiology and possibly improve the diagnostics in future patients with carotid artery disease.
Collapse
Affiliation(s)
- Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Christoph Schäffer
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Georgios Angelis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Mario Reidl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix Duelmer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Computer Aided Medical Procedures and Augmented Reality, Department of Informatics, Technical University of Munich, Munich, Germany
| | - Kenana Al Adem
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Yao J, Kim C, Kolios M, Hu S. Editorial: Breaking the speed limits in photoacoustic microscopy. PHOTOACOUSTICS 2023; 32:100541. [PMID: 37692756 PMCID: PMC10492007 DOI: 10.1016/j.pacs.2023.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Michael Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Song Hu
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
11
|
Barulin A, Park H, Park B, Kim I. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study. PHOTOACOUSTICS 2023; 32:100545. [PMID: 37645253 PMCID: PMC10461252 DOI: 10.1016/j.pacs.2023.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Photoacoustic microscopy is advancing with research on utilizing ultraviolet and visible light. Dual-wavelength approaches are sought for observing DNA/RNA- and vascular-related disorders. However, the availability of high numerical aperture lenses covering both ultraviolet and visible wavelengths is severely limited due to challenges such as chromatic aberration in the optics. Herein, we present a groundbreaking proposal as a pioneering simulation study for incorporating multilayer metalenses into ultraviolet-visible photoacoustic microscopy. The proposed metalens has a thickness of 1.4 µm and high numerical aperture of 0.8. By arranging cylindrical hafnium oxide nanopillars, we design an achromatic transmissive lens for 266 and 532 nm wavelengths. The metalens achieves a diffraction-limited focal spot, surpassing commercially available objective lenses. Through three-dimensional photoacoustic simulation, we demonstrate high-resolution imaging with superior endogenous contrast of targets with ultraviolet and visible optical absorption bands. This metalens will open new possibilities for downsized multispectral photoacoustic microscopy in clinical and preclinical applications.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemi Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Kim D, Ahn J, Park E, Kim JY, Kim C. In vivo quantitative photoacoustic monitoring of corticosteroid-induced vasoconstriction. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082805. [PMID: 36844430 PMCID: PMC9951467 DOI: 10.1117/1.jbo.28.8.082805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Significance Corticosteroids-commonly prescribed medications for skin diseases-inhibit the secretion of vasodilators, such as prostaglandin, thereby exerting anti-inflammatory action by constricting capillaries in the dermis. The effectiveness of corticosteroids is determined by the degree of vasoconstriction followed by skin whitening, namely, the blanching effect. However, the current method of observing the blanching effect indirectly evaluates the effects of corticosteroids. Aim In this study, we employed optical-resolution photoacoustic (PA) microscopy (OR-PAM) to directly visualize the blood vessels and quantitatively evaluate vasoconstriction. Approach Using OR-PAM, the vascular density in mice skin was monitored for 60 min after performing each experimental procedure for four groups, and the vasoconstriction was quantified. Volumetric PA data were segmented into the papillary dermis, reticular dermis, and hypodermis based on the vascular characteristics obtained through OR-PAM. The vasoconstrictive effect of each skin layer was quantified according to the dermatological treatment method. Results In the case of corticosteroid topical application, vasoconstriction was observed in the papillary ( 56.4 ± 10.9 % ) and reticular ( 45.1 ± 4.71 % ) dermis. For corticosteroid subcutaneous injection, constriction was observed solely in the reticular ( 49.5 ± 9.35 % ) dermis. In contrast, no vasoconstrictions were observed with nonsteroidal topical application. Conclusions Our results indicate that OR-PAM can quantitatively monitor the vasoconstriction induced by corticosteroids, thereby validating OR-PAMs potential as a practical evaluation tool for predicting the effectiveness of corticosteroids in dermatology.
Collapse
Affiliation(s)
- Donggyu Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Joongho Ahn
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Eunwoo Park
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Jin Young Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| |
Collapse
|
13
|
Han S, Kye H, Kim CS, Kim TK, Yoo J, Kim J. Automated Laser-Fiber Coupling Module for Optical-Resolution Photoacoustic Microscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:6643. [PMID: 37514935 PMCID: PMC10384817 DOI: 10.3390/s23146643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Photoacoustic imaging has emerged as a promising biomedical imaging technique that enables visualization of the optical absorption characteristics of biological tissues in vivo. Among the different photoacoustic imaging system configurations, optical-resolution photoacoustic microscopy stands out by providing high spatial resolution using a tightly focused laser beam, which is typically transmitted through optical fibers. Achieving high-quality images depends significantly on optical fluence, which is directly proportional to the signal-to-noise ratio. Hence, optimizing the laser-fiber coupling is critical. Conventional coupling systems require manual adjustment of the optical path to direct the laser beam into the fiber, which is a repetitive and time-consuming process. In this study, we propose an automated laser-fiber coupling module that optimizes laser delivery and minimizes the need for manual intervention. By incorporating a motor-mounted mirror holder and proportional derivative control, we successfully achieved efficient and robust laser delivery. The performance of the proposed system was evaluated using a leaf-skeleton phantom in vitro and a human finger in vivo, resulting in high-quality photoacoustic images. This innovation has the potential to significantly enhance the quality and efficiency of optical-resolution photoacoustic microscopy.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunjun Kye
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Tae-Kyoung Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Jinwoo Yoo
- Department of Automobile and IT Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano- and micro- to macro-scale. NANO CONVERGENCE 2023; 10:29. [PMID: 37335405 PMCID: PMC10279631 DOI: 10.1186/s40580-023-00377-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Functional photoacoustic imaging is a promising biological imaging technique that offers such unique benefits as scalable resolution and imaging depth, as well as the ability to provide functional information. At nanoscale, photoacoustic imaging has provided super-resolution images of the surface light absorption characteristics of materials and of single organelles in cells. At the microscopic and macroscopic scales. photoacoustic imaging techniques have precisely measured and quantified various physiological parameters, such as oxygen saturation, vessel morphology, blood flow, and the metabolic rate of oxygen, in both human and animal subjects. This comprehensive review provides an overview of functional photoacoustic imaging across multiple scales, from nano to macro, and highlights recent advances in technology developments and applications. Finally, the review surveys the future prospects of functional photoacoustic imaging in the biomedical field.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghyeon Oh
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
15
|
Lee C, Cho S, Lee D, Lee J, Park JI, Kim HJ, Park SH, Choi W, Kim U, Kim C. Panoramic volumetric clinical handheld photoacoustic and ultrasound imaging. PHOTOACOUSTICS 2023; 31:100512. [PMID: 37252650 PMCID: PMC10208888 DOI: 10.1016/j.pacs.2023.100512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Photoacoustic (PA) imaging has gained much attention, providing structural and functional information in combination with clinical ultrasound (US) imaging systems. 2D PA and US imaging is easily implemented, but its heavy dependence on operator skills makes 3D imaging preferable. In this study, we propose a panoramic volumetric clinical PA and US imaging system equipping a handheld imaging scanner weighing 600 g and measuring 70 × 62 × 110 mm3. Multiple PA/US scans were performed to cover a large field-of-view (FOV), and the acquired PA/US volumes were mosaic-stitched after manually correcting the positions and rotations in a total of 6 degrees of freedom. PA and US maximum amplitude projection images were visualized online, while spectral unmixed data was quantified offline. The performance of the system was tested via tissue-mimicking phantom experiments. The system's potential was confirmed in vivo by panoramically imaging vascular networks in human arms and necks, with FOVs of 331 × 38 and 129 × 120 mm2, respectively. Further, we quantified hemoglobin oxygen saturation levels in the radial artery, brachial artery, carotid artery, and jugular vein. We hope that this system can be applied for various clinical fields such as cardiovascular imaging, dermatology, vascular surgery, internal medicine, and oncology.
Collapse
Affiliation(s)
- Changyeop Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seonghee Cho
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Donghyun Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jonghun Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Il Park
- Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Hong-Ju Kim
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Seoul 03722, Republic of Korea
| | - Sae Hyun Park
- Division of Cardiology, Department of Internal Medicine, Daegu Veterans Hospital, Daegu 42835, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ung Kim
- Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
16
|
Lee H, Choi W, Kim C, Park B, Kim J. Review on ultrasound-guided photoacoustic imaging for complementary analyses of biological systems in vivo. Exp Biol Med (Maywood) 2023; 248:762-774. [PMID: 37452700 PMCID: PMC10468641 DOI: 10.1177/15353702231181341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Photoacoustic imaging has been developed as a new biomedical molecular imaging modality. Due to its similarity to conventional ultrasound imaging in terms of signal detection and image generation, dual-modal photoacoustic and ultrasound imaging has been applied to visualize physiological and morphological information in biological systems in vivo. By complementing each other, dual-modal photoacoustic and ultrasound imaging showed synergistic advances in photoacoustic imaging with the guidance of ultrasound images. In this review, we introduce our recent progresses in dual-modal photoacoustic and ultrasound imaging systems at various scales of study, from preclinical small animals to clinical humans. A summary of the works reveals various strategies for combining the structural information of ultrasound images with the molecular information of photoacoustic images.
Collapse
Affiliation(s)
- Haeni Lee
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
17
|
Ahn J, Baik JW, Kim D, Choi K, Lee S, Park SM, Kim JY, Nam SH, Kim C. In vivo photoacoustic monitoring of vasoconstriction induced by acute hyperglycemia. PHOTOACOUSTICS 2023; 30:100485. [PMID: 37082618 PMCID: PMC10112177 DOI: 10.1016/j.pacs.2023.100485] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Postprandial hyperglycemia, blood glucose spikes, induces endothelial dysfunction, increasing cardiovascular risks. Endothelial dysfunction leads to vasoconstriction, and observation of this phenomenon is important for understanding acute hyperglycemia. However, high-resolution imaging of microvessels during acute hyperglycemia has not been fully developed. Here, we demonstrate that photoacoustic microscopy can noninvasively monitor morphological changes in blood vessels of live animals' extremities when blood glucose rises rapidly. As blood glucose level rose from 100 to 400 mg/dL following intraperitoneal glucose injection, heart/breath rate, and body temperature remained constant, but arterioles constricted by approximately -5.7 ± 1.1% within 20 min, and gradually recovered for another 40 min. In contrast, venular diameters remained within about 0.6 ± 1.5% during arteriolar constriction. Our results experimentally and statistically demonstrate that acute hyperglycemia produces transitory vasoconstriction in arterioles, with an opposite trend of change in blood glucose. These findings could help understanding vascular glucose homeostasis and the relationship between diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Woo Baik
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Donggyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Karam Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea
| | - Seunghyun Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung-Min Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Hyun Nam
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea
- Corresponding authors.
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Corresponding authors.
| |
Collapse
|
18
|
Wi JS, Kim J, Kim MY, Choi S, Jung HJ, Kim C, Na HK. Theoretical and experimental comparison of the performance of gold, titanium, and platinum nanodiscs as contrast agents for photoacoustic imaging. RSC Adv 2023; 13:9441-9447. [PMID: 36968039 PMCID: PMC10034477 DOI: 10.1039/d3ra00795b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Exogenous contrast agents in photoacoustic imaging help improve spatial resolution and penetration depth and enable targeted molecular imaging. To screen efficient photoacoustic signaling materials as contrast agents, we propose a light absorption-weighted figure of merit (FOM) that can be calculated using material data from the literature and numerically simulated light absorption cross-sections. The calculated light absorption-weighted FOM shows that a Ti nanodisc has a photoacoustic conversion performance similar to that of an Au nanodisc and better than that of a Pt nanodisc. The photoacoustic imaging results of Ti, Au, and Pt nanodiscs, which are physically synthesized with identical shapes and dimensions, experimentally demonstrated that the Ti nanodisc could be a highly efficient contrast agent.
Collapse
Affiliation(s)
- Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University Daejeon 34158 Republic of Korea
| | - Jiwoong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Myeong Yun Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science Daejeon 34113 Republic of Korea
| | - Seongwook Choi
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Hae Jue Jung
- Safety Measurement Institute, Korea Research Institute of Standards and Science Daejeon 34113 Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science Daejeon 34113 Republic of Korea
| |
Collapse
|
19
|
Sharma AK. Current Trends in Nanotheranostics: A Concise Review on Bioimaging and Smart Wearable Technology. Nanotheranostics 2023; 7:258-269. [PMID: 37064611 PMCID: PMC10093415 DOI: 10.7150/ntno.82886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The area of interventional nanotheranostics combines the use of interventional procedures with nanotechnology for the detection and treatment of physiological disorders. Using catheters or endoscopes, for example, interventional techniques make use of minimally invasive approaches to diagnose and treat medical disorders. It is feasible to increase the precision of these approaches and potency by integrating nanotechnology. To visualize and target various parts of the body, such as tumors or obstructed blood veins, one can utilize nanoscale probes or therapeutic delivery systems. Interventional nanotheranostics offers targeted, minimally invasive therapies that can reduce side effects and enhance patient outcomes, and it has the potential to alter the way that many medical illnesses are handled. Clinical enrollment and implementation of such laboratory scale theranostics approach in medical practice is promising for the patients where the user can benefit by tracking its physiological state. This review aims to introduce the most recent advancements in the field of clinical imaging and diagnostic techniques as well as newly developed on-body wearable devices to deliver therapeutics and monitor its due alleviation in the biological milieu.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Song X, Li S, Wang Z, Cao X. High-resolution volumetric information fusion for depth of field enhancement in photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200234. [PMID: 36366876 DOI: 10.1002/jbio.202200234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Optical-resolution photoacoustic microscopy suffers from limited depth of field due to the strongly focused laser beam. Here, a novel volumetric information fusion is proposed to achieve large volumetric and high-resolution imaging. First, three-dimensional stationary wavelet transform was performed on the multi-focus data to obtain eight wavelet coefficients. Differential evolution based on joint weighted evaluation was then employed to optimize the block size of division for each wavelet coefficient. The proposed fusion rule using standard deviation for focus detection was used to fuse the corresponding sub-coefficients. Finally, photoacoustic imaging with large depth of field can be achieved by the inverse stationary wavelet transform. Performance test shows that the depth of field of photoacoustic imaging can be doubled without sacrificing lateral resolution. The proposed volumetric information fusion can further promote the capability of volumetric imaging of optical-resolution photoacoustic microscopy and will be helpful in the acquisition of physiological and pathological process.
Collapse
Affiliation(s)
- Xianlin Song
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Sihang Li
- Ji luan Academy, Nanchang University, Nanchang, China
| | | | - Xiongjun Cao
- School of Information Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Han S, Ninjbadgar T, Kang M, Kim C, Kim J. Recent Advances in Photoacoustic Agents for Theranostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:695. [PMID: 36839061 PMCID: PMC9964871 DOI: 10.3390/nano13040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Photoacoustic agents are widely used in various theranostic applications. By evaluating the biodistribution obtained from photoacoustic images, the effectiveness of theranostic agents in terms of their delivery efficiency and treatment responses can be analyzed. Through this study, we evaluate and summarize the recent advances in photoacoustic-guided phototherapy, particularly in photothermal and photodynamic therapy. This overview can guide the future directions for theranostic development. Because of the recent applications of photoacoustic imaging in clinical trials, theranostic agents with photoacoustic monitoring have the potential to be translated into the clinical world.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Tsedendamba Ninjbadgar
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Mijeong Kang
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
22
|
Cho SW, Phan TTV, Nguyen VT, Park SM, Lee H, Oh J, Kim CS. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window. PHOTOACOUSTICS 2023; 29:100456. [PMID: 36785577 PMCID: PMC9918423 DOI: 10.1016/j.pacs.2023.100456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we propose an efficient label-free in vivo photoacoustic (PA) imaging of melanoma using a condensed near infrared-I (NIR-I) supercontinuum light source. Although NIR-II spectral window is advantageous such as longer penetration depth compared to the NIR-I region, supercontinuum light sources emitting both NIR-I and NIR-II region could lower the efficiency to target melanoma because of low optical power density in the melanoma's absorption spectra. To exploit efficient in vivo PA imaging of melanoma, we demonstrated the light source emitting from visible (532-600 nm) to NIR-I (600-1000 nm) by optimizing stimulated Raman scattering induced supercontinuum generation. The melanoma's structure is successfully differentiated from blood vessels at a high pulse energy of 2.5 µJ and a flexible pulse repetition rate (PRR) of 5-50 kHz. The proposed light source with the microjoules energies and tens of kHz of PRR can potentially accelerate clinical trials such as early diagnosis of melanoma.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
- Department of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Viet Nam
| | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| | - Hwidon Lee
- Harvard Medical School, Boston, Massachusetts MA 02115, USA
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, the Republic of Korea
- Ohlabs Corporation, Busan 48513, the Republic of Korea
| | - Chang-Seok Kim
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| |
Collapse
|
23
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
24
|
Kim W, Choi W, Ahn J, Lee C, Kim C. Wide-field three-dimensional photoacoustic/ultrasound scanner using a two-dimensional matrix transducer array. OPTICS LETTERS 2023; 48:343-346. [PMID: 36638453 DOI: 10.1364/ol.475725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional matrix transducer arrays are the most appropriate imaging probes for acquiring dual-modal 3D photoacoustic (PA)/ultrasound (US) images. However, they have small footprints which limit the field-of-view (FOV) to less than 10 mm × 10 mm and degrade the spatial resolution. In this study, we demonstrate a dual-modal PA and US imaging system (using a 2D matrix transducer array and a motorized 2D scanning system) to enlarge the FOV of volumetric images. Multiple PA volumes were merged to form a wide-field image of approximately 45 mm × 45 mm. In vivo imaging was demonstrated using rat sentinel lymph nodes (SLNs) and bladders stained with methylene blue. We believe that this volumetric PA/US imaging technique with a 2D matrix transducer array can be a useful tool for narrow-field real-time monitoring and wide-field imaging of various preclinical and clinical studies.
Collapse
|
25
|
Yoo J, Oh D, Kim C, Kim HH, Um JY. Switchable preamplifier for dual modal photoacoustic and ultrasound imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:89-105. [PMID: 36698663 PMCID: PMC9842014 DOI: 10.1364/boe.476453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Photoacoustic (PA) imaging is a high-fidelity biomedical imaging technique based on the principle of molecular-specific optical absorption of biological tissue constitute. Because PA imaging shares the same basic principle as that of ultrasound (US) imaging, the use of PA/US dual-modal imaging can be achieved using a single system. However, because PA imaging is limited to a shallower depth than US imaging due to the optical extinction in biological tissue, the PA signal yields a lower signal-to-noise ratio (SNR) than US images. To selectively amplify the PA signal, we propose a switchable preamplifier for acoustic-resolution PA microscopy implemented on an application-specific integrated circuit. Using the preamplifier, we measured the increments in the SNR with both carbon lead and wire phantoms. Furthermore, in vivo whole-body PA/US imaging of a mouse with a preamplifier showed enhancement of SNR in deep tissues, unveiling deeply located organs and vascular networks. By selectively amplifying the PA signal range to a level similar to that of the US signal without contrast agent administration, our switchable amplifier strengthens the mutual complement between PA/US imaging. PA/US imaging is impending toward clinical translation, and we anticipate that this study will help mitigate the imbalance of image depth between the two imaging modalities.
Collapse
Affiliation(s)
- Jinhee Yoo
- School of Interdisciplinary Bioscience and
Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Contributed equally
| | - Donghyeon Oh
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Contributed equally
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and
Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and
Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Equal contribution
| | - Ji-Yong Um
- Department of Medical IT
Convergence Engineering, Kumoh National Institute of
Technology, Gumi 39253, Republic
of Korea
- Equal contribution
| |
Collapse
|
26
|
Yoon C, Lee C, Shin K, Kim C. Motion Compensation for 3D Multispectral Handheld Photoacoustic Imaging. BIOSENSORS 2022; 12:1092. [PMID: 36551059 PMCID: PMC9775698 DOI: 10.3390/bios12121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) handheld photoacoustic (PA) and ultrasound (US) imaging performed using mechanical scanning are more useful than conventional 2D PA/US imaging for obtaining local volumetric information and reducing operator dependence. In particular, 3D multispectral PA imaging can capture vital functional information, such as hemoglobin concentrations and hemoglobin oxygen saturation (sO2), of epidermal, hemorrhagic, ischemic, and cancerous diseases. However, the accuracy of PA morphology and physiological parameters is hampered by motion artifacts during image acquisition. The aim of this paper is to apply appropriate correction to remove the effect of such motion artifacts. We propose a new motion compensation method that corrects PA images in both axial and lateral directions based on structural US information. 3D PA/US imaging experiments are performed on a tissue-mimicking phantom and a human wrist to verify the effects of the proposed motion compensation mechanism and the consequent spectral unmixing results. The structural motions and sO2 values are confirmed to be successfully corrected by comparing the motion-compensated images with the original images. The proposed method is expected to be useful in various clinical PA imaging applications (e.g., breast cancer, thyroid cancer, and carotid artery disease) that are susceptible to motion contamination during multispectral PA image analysis.
Collapse
Affiliation(s)
- Chiho Yoon
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changyeop Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | | | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
27
|
Wilkinson S, Cummings J, Zafar S, Kozar M, Manning J, Dinsdale G, Berks M, Taylor C, Dickinson M, Herrick AL, Murray AK. Photoacoustic imaging is a novel tool to measure finger artery structure and oxygenation in patients with SSc. Sci Rep 2022; 12:20446. [PMID: 36443311 PMCID: PMC9705533 DOI: 10.1038/s41598-022-23826-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc)-related digital ischaemia is a major cause of morbidity, resulting from a combination of microvascular and digital artery disease. Photoacoustic imaging offers a newly available, non-invasive method of imaging digital artery structure and oxygenation. The aim of this study was to establish whether photoacoustic imaging could detect and measure vasculopathy in digital arteries, including the level of oxygenation, in patients with SSc and healthy controls. 22 patients with SSc and 32 healthy controls (HC) underwent photoacoustic imaging of the fingers. Vascular volume and oxygenation were assessed across eight fingers at the middle phalanx. In addition, oxygenation change during finger occlusion was measured at the non-dominant ring finger and the vascular network was imaged along the length of one finger for qualitative assessment. There was no statistically significant difference in vascular volume between patients with SSc and HC (mean of eight fingers; SSc, median 118.6 IQR [95.0-130.5] vs. HC 115.6 [97.8-158.9]) mm3. However, baseline oxygenation (mean 8 fingers) was lower in SSc vs. HC (0.373 [0.361-0.381] vs. 0.381 [0.373-0.385] arbitrary sO2 units respectively; p = 0.03). Hyperaemic oxygenation response following occlusion release was significantly lower in SSc compared to HC (0.379 [0.376-0.381] vs. 0.382 [0.377-0.385]; p = 0.03). Whilst vascular volume was similar between groups, digital artery oxygenation was decreased in patients with SSc as compared to HC, indicative of functional deficit. Photoacoustic imaging offers an exciting new method to image the vascular network in patients with SSc and the possibility to capture oxygenation as a functional measure.
Collapse
Affiliation(s)
- Sarah Wilkinson
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| | - James Cummings
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Sakif Zafar
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Martin Kozar
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Joanne Manning
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| | - Graham Dinsdale
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| | - Michael Berks
- Centre for Imaging Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - Christopher Taylor
- Centre for Imaging Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - Mark Dickinson
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- Photon Science Institute, University of Manchester, Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
- NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Andrea K Murray
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK.
- Department of Rheumatology, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK.
- Photon Science Institute, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
28
|
Deep learning alignment of bidirectional raster scanning in high speed photoacoustic microscopy. Sci Rep 2022; 12:16238. [PMID: 36171249 PMCID: PMC9519743 DOI: 10.1038/s41598-022-20378-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Simultaneous point-by-point raster scanning of optical and acoustic beams has been widely adapted to high-speed photoacoustic microscopy (PAM) using a water-immersible microelectromechanical system or galvanometer scanner. However, when using high-speed water-immersible scanners, the two consecutively acquired bidirectional PAM images are misaligned with each other because of unstable performance, which causes a non-uniform time interval between scanning points. Therefore, only one unidirectionally acquired image is typically used; consequently, the imaging speed is reduced by half. Here, we demonstrate a scanning framework based on a deep neural network (DNN) to correct misaligned PAM images acquired via bidirectional raster scanning. The proposed method doubles the imaging speed compared to that of conventional methods by aligning nonlinear mismatched cross-sectional B-scan photoacoustic images during bidirectional raster scanning. Our DNN-assisted raster scanning framework can further potentially be applied to other raster scanning-based biomedical imaging tools, such as optical coherence tomography, ultrasound microscopy, and confocal microscopy.
Collapse
|
29
|
Qu Z, Liu C, Zhu J, Zhang Y, Zhou Y, Wang L. Two-step proximal gradient descent algorithm for photoacoustic signal unmixing. PHOTOACOUSTICS 2022; 27:100379. [PMID: 35722270 PMCID: PMC9198964 DOI: 10.1016/j.pacs.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 05/02/2023]
Abstract
Photoacoustic microscopy uses multiple wavelengths to measure concentrations of different absorbers. The speed of sound limits the shortest wavelength switching time to sub-microseconds, which is a bottleneck for high-speed broad-spectrum imaging. Via computational separation of overlapped signals, we can break the sound-speed limit on the wavelength switching time. This paper presents a new signal unmixing algorithm named two-step proximal gradient descent. It is advantageous in separating multiple wavelengths with long overlapping and high noise. In the simulation, we can unmix up to nine overlapped signals and successfully separate three overlapped signals with 12-ns delay and 15.9-dB signal-to-noise ratio. We apply this technique to separate three-wavelength photoacoustic images in microvessels. In vivo results show that the algorithm can successfully unmix overlapped multi-wavelength photoacoustic signals, and the unmixed data can improve accuracy in oxygen saturation imaging.
Collapse
Affiliation(s)
- Zheng Qu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Chao Liu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Jingyi Zhu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Yachao Zhang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Yingying Zhou
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Lidai Wang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong 518057, China
- Corresponding author at: City University of Hong Kong, Department of Biomedical Engineering, Kowloon, .Hong Kong, China
| |
Collapse
|
30
|
Zeng Y, Dou T, Ma L, Ma J. Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: "Always-On" and "Turn-On" Probes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202384. [PMID: 35773244 PMCID: PMC9443455 DOI: 10.1002/advs.202202384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging is a nonionizing, noninvasive imaging technique that combines optical and ultrasonic imaging modalities to provide images with excellent contrast, spatial resolution, and penetration depth. Exogenous PA contrast agents are created to increase the sensitivity and specificity of PA imaging and to offer diagnostic information for illnesses. The existing PA contrast agents are categorized into two groups in this review: "always-on" and "turn-on," based on their ability to be triggered by target molecules. The present state of these probes, their merits and limitations, and their future development, is explored.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi Province, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi Province, 7100126, P. R. China
| | - Taotao Dou
- Neurosurgery Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Lei Ma
- Vascular Intervention Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| |
Collapse
|
31
|
Park J, Park B, Ahn J, Kim D, Kim JY, Kim HH, Kim C. Opto-ultrasound biosensor for wearable and mobile devices: realization with a transparent ultrasound transducer. BIOMEDICAL OPTICS EXPRESS 2022; 13:4684-4692. [PMID: 36187254 PMCID: PMC9484414 DOI: 10.1364/boe.468969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 05/11/2023]
Abstract
Mobile and wearable healthcare electronics are widely used for measuring bio-signals using various fusion sensors that employ photoplethysmograms, cameras, microphones, ultrasound (US) sensors, and accelerometers. However, the consumer demand for small form factors has significantly increased as the integration of multiple sensors is difficult in small mobile or wearable devices. This study proposes two novel opto-US sensors, namely (1) a wearable photoplethysmography (PPG)-US device and (2) a PPG sensor built-in mobile smartphone with a US sensor, seamlessly integrated using a transparent ultrasound transducer (TUT). The TUT exhibits a center frequency of 6 MHz with a 50% bandwidth and 82% optical transparency in visible and near-infrared regions. We developed an integrated wearable PPG-US device to demonstrate its feasibility and coupled the TUT sensor with a smartphone. We measured the heart rates optically and acoustically in human subjects and quantified the oxygen saturation optically by passing light through the TUT. The proposed proof-of-concept is a novel sensor fusion for mobile and wearable devices that require a small form factor and aim to improve digital healthcare. The results of this study can form the basis for innovative developments in sensor-based high-tech industrial applications, such as automobiles, robots, and drones, in addition to healthcare applications.
Collapse
Affiliation(s)
- Jeongwoo Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- These authors contributed equally to this work
| | - Byullee Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- These authors contributed equally to this work
| | - Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Donggyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyung Ham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
32
|
Seong D, Yi S, Han S, Lee J, Park S, Hwang YH, Kim J, Kim HK, Jeon M. Target ischemic stroke model creation method using photoacoustic microscopy with simultaneous vessel monitoring and dynamic photothrombosis induction. PHOTOACOUSTICS 2022; 27:100376. [PMID: 35734368 PMCID: PMC9207728 DOI: 10.1016/j.pacs.2022.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 06/02/2023]
Abstract
The ischemic stroke animal model evaluates the efficacy of reperfusion and neuroprotective strategies for ischemic injuries. Various conventional methods have been reported to induce the ischemic models; however, controlling specific neurological deficits, mortality rates, and the extent of the infarction is difficult as the size of the affected region is not precisely controlled. In this paper, we report a single laser-based localized target ischemic stroke model development method by simultaneous vessel monitoring and photothrombosis induction using photoacoustic microscopy (PAM), which has minimized the infarct size at precise location with high reproducibility. The proposed method has significantly reduced the infarcted region by illuminating the precise localization. The reproducibility and validity of suggested method have been demonstrated through repeated experiments and histological analyses. These results demonstrate that our method can provide the ischemic stroke model closest to the clinical pathology for brain ischemia research from inducement, occurrence mechanisms to the recovery process.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Soojin Yi
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Institute of Biomedical Engineering, School of Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Jaeyul Lee
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sungjo Park
- Pohang Innotown Center, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| |
Collapse
|
33
|
Ahn J, Baik JW, Kim Y, Choi K, Park J, Kim H, Kim JY, Kim HH, Nam SH, Kim C. Fully integrated photoacoustic microscopy and photoplethysmography of human in vivo. PHOTOACOUSTICS 2022; 27:100374. [PMID: 35646590 PMCID: PMC9133750 DOI: 10.1016/j.pacs.2022.100374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic microscopy (PAM) is used to visualize blood vessels and to monitor their time-dependent changes. Photoplethysmography (PPG) measures hemodynamic time-series changes such as heart rate. However, PPG's limited visual access to the dynamic changes of blood vessels has prohibited further understanding of hemodynamics. Here, we propose a novel, fully integrated PAM and photoplethysmography (PAM-PPG) system to understand hemodynamic features in detail. Using the PAM-PPG system, we simultaneously acquire vascular images (by PAM) and changes in the blood volume (by PPG) from human fingers. Next, we determine the heart rate from changes in the PA signals, which match well with the PPG signals. These changes can be measured if the blood flow is not blocked. From the results, we believe that PAM-PPG could be a useful clinical tool in various clinical fields such as cardiology and endocrinology.
Collapse
Affiliation(s)
- Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jin Woo Baik
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Yeonggeon Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Karam Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jeongwoo Park
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Hyojin Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Hyung Ham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Sung Hyun Nam
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
34
|
Hexa-BODIPY-cyclotriphosphazene based nanoparticle for NIR fluorescence/photoacoustic dual-modal imaging and photothermal cancer therapy. Biosens Bioelectron 2022; 216:114612. [DOI: 10.1016/j.bios.2022.114612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022]
|
35
|
Li X, Yeung K, Tsang VTC, Huang B, Lo CTK, Wong TTW. Low-cost high-resolution photoacoustic microscopy of blood oxygenation with two laser diodes. BIOMEDICAL OPTICS EXPRESS 2022; 13:3893-3903. [PMID: 35991932 PMCID: PMC9352289 DOI: 10.1364/boe.458645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/31/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) has been widely used for imaging blood vessel and oxygen saturation of hemoglobin (sO2), providing high-resolution functional images of living animals in vivo. However, most of them require one or multiple bulky and costly pulsed lasers, hindering their applicability in preclinical and clinical settings. In this paper, we demonstrate a reflection-mode low-cost high-resolution OR-PAM system by using two cost-effective and compact laser diodes (LDs), achieving microvasculature and sO2 imaging with a high lateral resolution of ∼6 µm. The cost of the excitation sources has dramatically reduced by ∼20-40 times compared to that of the pulsed lasers used in state-of-the-art OR-PAM systems. A blood phantom study was performed to show a determination coefficient R 2 of 0.96 in linear regression analysis. Experimental results of in vivo mouse ear imaging show that the proposed dual-wavelength LD-based PAM system can provide high-resolution functional images at a low cost.
Collapse
Affiliation(s)
- Xiufeng Li
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kylie Yeung
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Victor T. C. Tsang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Bingxin Huang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Claudia T. K. Lo
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Terence T. W. Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
36
|
Shintate R, Ishii T, Ahn J, Kim JY, Kim C, Saijo Y. High-speed optical resolution photoacoustic microscopy with MEMS scanner using a novel and simple distortion correction method. Sci Rep 2022; 12:9221. [PMID: 35654947 PMCID: PMC9163157 DOI: 10.1038/s41598-022-12865-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) is a remarkable biomedical imaging technique that can selectively visualize microtissues with optical-dependent high resolution. However, traditional OR-PAM using mechanical stages provides slow imaging speed, making it difficult to biologically interpret in vivo tissue. In this study, we developed a high-speed OR-PAM using a recently commercialized MEMS mirror. This system (MEMS-OR-PAM) consists of a 1-axis MEMS mirror and a mechanical stage. Furthermore, this study proposes a novel calibration method that quickly removes the spatial distortion caused by fast MEMS scanning. The proposed calibration method can easily correct distortions caused by both the scan geometry of the MEMS mirror and its nonlinear motion by running an image sequence only once using a ruler target. The combination of MEMS-OR-PAM and distortion correction method was verified using three experiments: (1) leaf skeleton phantom imaging to test the distortion correction efficacy; (2) spatial resolution and depth of field (DOF) measurement for system performance; (3) in-vivo finger capillary imaging to verify their biomedical use. The results showed that the combination could achieve a high-speed (32 s in 2 × 4 mm) and high lateral resolution (~ 6 µm) imaging capability and precisely visualize the circulating structure of the finger capillaries.
Collapse
Affiliation(s)
- Ryo Shintate
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan.
| | - Takuro Ishii
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 930-8555, Japan
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Young Kim
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yoshifumi Saijo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan
| |
Collapse
|
37
|
Mantri Y, Dorobek TR, Tsujimoto J, Penny WF, Garimella PS, Jokerst JV. Monitoring peripheral hemodynamic response to changes in blood pressure via photoacoustic imaging. PHOTOACOUSTICS 2022; 26:100345. [PMID: 35295617 PMCID: PMC8918860 DOI: 10.1016/j.pacs.2022.100345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 05/18/2023]
Abstract
Chronic wounds and amputations are common in chronic kidney disease patients needing hemodialysis (HD). HD is often complicated by drops in blood pressure (BP) called intra-dialytic hypotension. Whether intra-dialytic hypotension is associated with detectable changes in foot perfusion, a risk factor for wound formation and impaired healing remains unknown. Photoacoustic (PA) imaging is ideally suited to study perfusion changes. We scanned the feet of 20 HD and 11 healthy subjects. HD patients were scanned before and after a dialysis session whereas healthy subjects were scanned twice at rest and once after a 10 min exercise period while BP was elevated. Healthy (r = 0.70, p < 0.0001) and HD subjects (r = 0.43, p < 0.01) showed a significant correlation between PA intensity and systolic BP. Furthermore, HD cohort showed a significantly reduced PA response to changes in BP compared to the healthy controls (p < 0.0001), showing that PA can monitor hemodynamic changes due to changes in BP.
Collapse
Affiliation(s)
- Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Tyler R. Dorobek
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jason Tsujimoto
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - William F. Penny
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pranav S. Garimella
- Department of Nephrology – Hypertension, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jesse V. Jokerst
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Materials Science Program, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Correspondence to: University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Kim J, Kim G, Li L, Zhang P, Kim JY, Kim Y, Kim HH, Wang LV, Lee S, Kim C. Deep learning acceleration of multiscale superresolution localization photoacoustic imaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:131. [PMID: 35545614 PMCID: PMC9095876 DOI: 10.1038/s41377-022-00820-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
A superresolution imaging approach that localizes very small targets, such as red blood cells or droplets of injected photoacoustic dye, has significantly improved spatial resolution in various biological and medical imaging modalities. However, this superior spatial resolution is achieved by sacrificing temporal resolution because many raw image frames, each containing the localization target, must be superimposed to form a sufficiently sampled high-density superresolution image. Here, we demonstrate a computational strategy based on deep neural networks (DNNs) to reconstruct high-density superresolution images from far fewer raw image frames. The localization strategy can be applied for both 3D label-free localization optical-resolution photoacoustic microscopy (OR-PAM) and 2D labeled localization photoacoustic computed tomography (PACT). For the former, the required number of raw volumetric frames is reduced from tens to fewer than ten. For the latter, the required number of raw 2D frames is reduced by 12 fold. Therefore, our proposed method has simultaneously improved temporal (via the DNN) and spatial (via the localization method) resolutions in both label-free microscopy and labeled tomography. Deep-learning powered localization PA imaging can potentially provide a practical tool in preclinical and clinical studies requiring fast temporal and fine spatial resolutions.
Collapse
Affiliation(s)
- Jongbeom Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Gyuwon Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 138-78, Pasadena, CA, 91125, USA
| | - Pengfei Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jin Young Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Opticho, 532, CHANGeUP GROUND, 87 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk, 37673, Republic of Korea
| | - Yeonggeun Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyung Ham Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 138-78, Pasadena, CA, 91125, USA.
| | - Seungchul Lee
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Chulhong Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Opticho, 532, CHANGeUP GROUND, 87 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk, 37673, Republic of Korea.
| |
Collapse
|
39
|
Ma H, Wang Z, Zuo C, Huang Q. Three dimensional confocal photoacoustic dermoscopy with an autofocusing sono-opto probe. JOURNAL OF BIOPHOTONICS 2022; 15:e202100323. [PMID: 34989131 DOI: 10.1002/jbio.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Photoacoustic dermoscopy (PAD) is uniquely positioned for the diagnosis and assessment of dermatological conditions because of its ability to visualize optical absorption contrast in vivo in three dimensions. In this Letter, we developed a 3D confocal PAD (3D-CPAD) equipped with an autofocusing sono-opto probe to facilitate the reconstruction of high-spatial-resolution imaging of skin with multilaminate structures in depth direction. The autofocusing sono-opto probe integrated a 10-mm electrowetting-based varifocal lens to automatically control the acoustic and optical confocal length, and an annular ultrasonic detector with a mid-frequency of ~32.8 MHz is coaxially configured for receiving photoacoustic signals. Using this sono-opto probe, the acoustic and optical confocal length-shifting range from ~7 to 43 mm with high image contrast and spatial resolution in the 3D image reconstruction. Autofocusing property tests and 3D human skin in vivo imaging were carried out to demonstrate the imaging capability of the 3D-CPAD for potential clinical foreground in noninvasive biopsies of skin disease.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Qinghua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
40
|
Park B, Park S, Kim J, Kim C. Listening to drug delivery and responses via photoacoustic imaging. Adv Drug Deliv Rev 2022; 184:114235. [PMID: 35346776 DOI: 10.1016/j.addr.2022.114235] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Administrating pharmaceutic agents efficiently to achieve the therapeutic effect is the aim of all drug delivery techniques. Recent drug delivery systems aim to deliver high doses of drugs to disease sites accurately while maximizing therapeutic effects and minimizing potential side effects. Key approaches apply image guidance techniques for the quantification of drug biodistribution and pharmacokinetic parameters during drug delivery. This review highlights recent research on image-guided drug delivery systems based on photoacoustic imaging, which has been attracting attention for its non-invasiveness, non-ionizing radiation, and real-time imaging functions. Photoacoustic imaging based on the photothermal conversion efficiency of agents can be easily combined with various phototherapeutics, making them highly suitable for drug delivery therapy platforms. Here, we summarize and compare the characteristics of various types of photoacoustic imaging systems, focus on contrast-enhanced photoacoustic imaging and controlled release of therapeutics in drug delivery systems for synergistic therapies.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sinyoung Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jeesu Kim
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
41
|
Han S, Lee H, Kim C, Kim J. Review on Multispectral Photoacoustic Analysis of Cancer: Thyroid and Breast. Metabolites 2022; 12:metabo12050382. [PMID: 35629886 PMCID: PMC9143964 DOI: 10.3390/metabo12050382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
In recent decades, photoacoustic imaging has been used widely in biomedical research, providing molecular and functional information from biological tissues in vivo. In addition to being used for research in small animals, photoacoustic imaging has also been utilized for in vivo human studies, achieving a multispectral photoacoustic response in deep tissue. There have been several clinical trials for screening cancer patients by analyzing multispectral responses, which in turn provide metabolomic information about the underlying biological tissues. This review summarizes the methods and results of clinical photoacoustic trials available in the literature to date to classify cancerous tissues, specifically of the thyroid and breast. From the review, we can conclude that a great potential exists for photoacoustic imaging to be used as a complementary modality to improve diagnostic accuracy for suspicious tumors, thus significantly benefitting patients’ healthcare.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
| | - Haeni Lee
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
- Correspondence:
| |
Collapse
|
42
|
Functional photoacoustic microscopy of hemodynamics: a review. Biomed Eng Lett 2022; 12:97-124. [PMID: 35529339 PMCID: PMC9046529 DOI: 10.1007/s13534-022-00220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Functional blood imaging can reflect tissue metabolism and organ viability, which is important for life science and biomedical studies. However, conventional imaging modalities either cannot provide sufficient contrast or cannot support simultaneous multi-functional imaging for hemodynamics. Photoacoustic imaging, as a hybrid imaging modality, can provide sufficient optical contrast and high spatial resolution, making it a powerful tool for in vivo vascular imaging. By using the optical-acoustic confocal alignment, photoacoustic imaging can even provide subcellular insight, referred as optical-resolution photoacoustic microscopy (OR-PAM). Based on a multi-wavelength laser source and developed the calculation methods, OR-PAM can provide multi-functional hemodynamic microscopic imaging of the total hemoglobin concentration (CHb), oxygen saturation (sO2), blood flow (BF), partial oxygen pressure (pO2), oxygen extraction fraction, and metabolic rate of oxygen (MRO2). This concise review aims to systematically introduce the principles and methods to acquire various functional parameters for hemodynamics by photoacoustic microscopy in recent studies, with characteristics and advantages comparison, typical biomedical applications introduction, and future outlook discussion.
Collapse
|
43
|
Park EY, Lee H, Han S, Kim C, Kim J. Photoacoustic imaging systems based on clinical ultrasound platform. Exp Biol Med (Maywood) 2022; 247:551-560. [PMID: 35068228 PMCID: PMC9014524 DOI: 10.1177/15353702211073684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Photoacoustic imaging has drawn a significant amount of attention due to its unique capacity for functional, metabolic, and molecular imaging, which is achieved by the combination of optical excitation and acoustic detection. With both strengths of light and ultrasound, photoacoustic images can provide strong optical contrast at high ultrasound resolution in deep tissue. As photoacoustic imaging can be used to visualize complementary information to ultrasound imaging using the same data acquisition process, several studies have been conducted on combining photoacoustic imaging with existing clinical ultrasound systems. This review highlights our development of a photoacoustic/ultrasound dual-modal imaging system, various features and functionalities implemented for clinical translation, and preclinical/clinical studies performed by using the systems.
Collapse
Affiliation(s)
- Eun-Yeong Park
- Departments of Electrical Engineering,
Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation
Center, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Radiology, School of
Medicine, Stanford University, Stanford, CA 94305, USA
| | - Haeni Lee
- Department of Cogno-Mechatronics
Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seongyi Han
- Department of Cogno-Mechatronics
Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering,
Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation
Center, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
| | - Jeesu Kim
- Department of Cogno-Mechatronics
Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Optics and Mechatronics
Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
44
|
Kim H, Kim JY, Cho S, Ahn J, Kim Y, Kim H, Kim C. Performance comparison of high-speed photoacoustic microscopy: opto-ultrasound combiner versus ring-shaped ultrasound transducer. Biomed Eng Lett 2022; 12:147-153. [PMID: 35529340 PMCID: PMC9046515 DOI: 10.1007/s13534-022-00218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic microscopy (PAM) embedded with a 532 nm pulse laser is widely used to visualize the microvascular structures in both small animals and humans in vivo. An opto-ultrasound combiner (OUC) is often utilized in high-speed PAM to confocally align the optical and acoustic beams to improve the system's sensitivity. However, acoustic impedance mismatch in the OUC results in little improvement in the sensitivity. Alternatively, a ring-shaped ultrasound transducer (RUT) can also accomplish the confocal configuration. Here, we compare the performance of OUC and RUT modules through ultrasound pulse-echo tests and PA imaging experiments. The signal-to-noise ratios (SNRs) of the RUT-based system were 15 dB, 12 dB, and 7 dB higher when compared to the OUC-based system for ultrasound pulse-echo test, PA phantom imaging test, and PA in-vivo imaging test, respectively. In addition, the RUT-based system could image the microvascular structures of small parts of a mouse body in a few seconds with minimal loss in SNR. Thus, with increased sensitivity, improved image details, and fast image acquisition, we believe the RUT-based systems could play a significant role in the design of future fast-PAM systems.
Collapse
Affiliation(s)
- Hyojin Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seonghee Cho
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Yeonggeun Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Hyungham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
45
|
Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed Eng Lett 2021; 12:19-35. [DOI: 10.1007/s13534-021-00214-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
|
46
|
Kim J, Ahn J, Kang G, Hwang JH, Kim C. High-resolution photoacoustic/ultrasound imaging of the porcine stomach wall: an ex vivo feasibility study. BIOMEDICAL OPTICS EXPRESS 2021; 12:6717-6729. [PMID: 34858676 PMCID: PMC8606154 DOI: 10.1364/boe.441241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging has become invaluable in preclinical and clinical research. Endoscopic PA imaging in particular has been explored as a noninvasive imaging modality to view vasculature and diagnose cancers in the digestive system. However, these feasibility studies are still limited to rodents or rabbits. Here, we develop a fully synchronized simultaneous ultrasound and photoacoustic microscopy system using two spectral bands (i.e., the visible and near-infrared) in both optical- and acoustic-resolution modes. We investigate the feasibility of imaging gastric vasculature in an ex vivo porcine model. The entire gastric wall, including the mucosa, submucosa, muscularis propria, and serosa, was excised from fresh porcine stomachs immediately followed by ultrasound and PA imaging being performed within a few hours of sacrifice. PA images of the mucosal vasculature were obtained at depths of 1.90 mm, which is a clinically significant accomplishment considering that the average thickness of the human mucosa is 1.26 mm. The layer structure of the stomach wall could be clearly distinguished in the overlaid PA and US images. Because gastric cancer starts from the mucosal surface and infiltrates into the submucosa, PA imaging can cover a clinically relevant depth in early gastric cancer diagnosis. We were able to detect mucosal vasculature in the entire mucosal layer, suggesting the potential utility of combined PA/US imaging in gastroenterology.
Collapse
Affiliation(s)
- Jaewoo Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- These authors have contributed equally
| | - Joongho Ahn
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- These authors have contributed equally
| | - Gwansuk Kang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joo Ha Hwang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|