1
|
Sadighparvar S, Al-Hamed FS, Sharif-Naeini R, Meloto CB. Preclinical orofacial pain assays and measures and chronic primary orofacial pain research: where we are and where we need to go. FRONTIERS IN PAIN RESEARCH 2023; 4:1150749. [PMID: 37293433 PMCID: PMC10244561 DOI: 10.3389/fpain.2023.1150749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but evidence support complex and multifactorial etiology and pathophysiology. Important fragments of this complex array of factors have been identified over the years largely with the help of preclinical studies. However, findings have yet to translate into better pain care for chronic OFP patients. The need to develop preclinical assays that better simulate the etiology, pathophysiology, and clinical symptoms of OFP patients and to assess OFP measures consistent with their clinical symptoms is a challenge that needs to be overcome to support this translation process. In this review, we describe rodent assays and OFP pain measures that can be used in support of chronic primary OFP research, in specific pTMDs, TN, and BMS. We discuss their suitability and limitations considering the current knowledge of the etiology and pathophysiology of these conditions and suggest possible future directions. Our goal is to foster the development of innovative animal models with greater translatability and potential to lead to better care for patients living with chronic primary OFP.
Collapse
Affiliation(s)
- Shirin Sadighparvar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Reza Sharif-Naeini
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
| | - Carolina Beraldo Meloto
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Fejes-Szabó A, Spekker E, Tar L, Nagy-Grócz G, Bohár Z, Laborc KF, Vécsei L, Párdutz Á. Chronic 17β-estradiol pretreatment has pronociceptive effect on behavioral and morphological changes induced by orofacial formalin in ovariectomized rats. J Pain Res 2018; 11:2011-2021. [PMID: 30310305 PMCID: PMC6165783 DOI: 10.2147/jpr.s165969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The prevalence of craniofacial pain disorders show sexual dimorphism with generally more common appearance in women suggesting the influence of estradiol, but the exact cause remains unknown. The common point in the pathogenesis of these disorders is the activation of trigeminal system. One of the animal experimental models of trigeminal activation is the orofacial formalin test, in which we investigated the effect of chronic 17β-estradiol pretreatment on the trigeminal pain-related behavior and activation of trigeminal second-order neurons at the level of spinal trigeminal nucleus pars caudalis (TNC). Methods Female Sprague Dawley rats were ovariectomized and silicone capsules were implanted subcutaneously containing cholesterol in the OVX group and 17β-estradiol and cholesterol in 1:1 ratio in the OVX+E2 group. We determined 17β-estradiol levels in serum after the implantation of capsules. Three weeks after operation, 50 µL of physiological saline or 1.5% of formalin solution was injected subcutaneously into the right whisker pad of rats. The time spent on rubbing directed to the injected area and c-Fos immunoreactivity in TNC was measured as the formalin-induced pain-related behavior, and as the marker of pain-related neuronal activation, respectively. Results The chronic 17β-estradiol pretreatment mimics the plasma levels of estrogen occurring in the proestrus phase and significantly increased the formalin-induced pain-related behavior and neuronal activation in TNC. Conclusion Our results demonstrate that the chronic 17β-estradiol treatment has strong pronociceptive effect on orofacial formalin-induced inflammatory pain suggesting modulatory action of estradiol on head pain through estrogen receptors, which are present in the trigeminal system.
Collapse
Affiliation(s)
| | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| | - Lilla Tar
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Gábor Nagy-Grócz
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary, .,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary, .,Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| | - Klaudia Flóra Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary, .,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary, .,Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary,
| |
Collapse
|
3
|
Tashiro A, Nishida Y, Bereiter DA. Local group I mGluR antagonists reduce TMJ-evoked activity of trigeminal subnucleus caudalis neurons in female rats. Neuroscience 2015; 299:125-33. [PMID: 25934040 DOI: 10.1016/j.neuroscience.2015.04.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Group I metabotropic glutamate receptors (mGluR1 and mGluR5) are functionally linked to estrogen receptors and play a key role in the plasticity of central neurons. Estrogen status strongly influences sensory input from the temporomandibular joint (TMJ) to neurons at the spinomedullary (Vc/C1-2) region. This study tested the hypothesis that TMJ input to trigeminal subnucleus caudalis/upper cervical cord (Vc/C1-2) neurons involved group I mGluR activation and depended on estrogen status. TMJ-responsive neurons were recorded in superficial laminae at the Vc/C1-2 region in ovariectomized (OvX) female rats treated with low-dose estradiol (2 μg/day, LE) or high-dose estradiol (20 μg/day, HE) for 2 days. TMJ-responsive units were activated by adenosine triphosphate (ATP, 1mM) injected into the joint space. Receptor antagonists selective for mGluR1 (CPCCOEt) or mGluR5 (MPEP) were applied topically to the Vc/C1-2 surface at the site of recording 10 min prior to the intra-TMJ ATP stimulus. In HE rats, CPCCOEt (50 and 500 μM) markedly reduced ATP-evoked unit activity. By contrast, in LE rats, a small but significant increase in neural activity was seen after 50 μM CPCCOEt, while 500 μM caused a large reduction in activity that was similar in magnitude as that seen in HE rats. Local application of MPEP produced a significant inhibition of TMJ-evoked unit activity independent of estrogen status. Neither mGluR1 nor mGluR5 antagonism altered the spontaneous activity of TMJ units in HE or LE rats. High-dose MPEP caused a small reduction in the size of the convergent cutaneous receptive field in HE rats, while CPCCOEt had no effect. These data suggest that group I mGluRs play a key role in sensory integration of TMJ nociceptive input to the Vc/C1-2 region and are largely independent of estrogen status.
Collapse
Affiliation(s)
- A Tashiro
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa City, Saitama 359-8513, Japan.
| | - Y Nishida
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa City, Saitama 359-8513, Japan
| | - D A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-214, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Aloisi AM, Sorda G. Relationship of female sex hormones with pain perception: focus on estrogens. Pain Manag 2014; 1:229-38. [PMID: 24646389 DOI: 10.2217/pmt.11.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The role of gonadal hormones has slowly gathered the right attention in the study of chronic pain mechanisms. The clear presence of sex differences in chronic pain and the number of studies showing the power of gonadal hormones to modify pain-induced behavioral responses appear to have convinced clinicians and researchers. Indeed, available data strongly indicate that more studies on gonadal hormones would certainly enhance the possibility of greatly increasing the knowledge of pain mechanisms and, thus, treatments. In the present article, old and new literature are summarized to evaluate data on pain and its modulation by gonadal hormones, particularly estrogens. Peripheral and central targets of these hormones are discussed with the aim of renewing interest in important aspects of estrogenic functions and their interactions with pain processes.
Collapse
Affiliation(s)
- Anna Maria Aloisi
- San Carlo Clinic, via dell'Ospedale 21, Paderno Dugnano Milano, Italy; Neurophysiology of Stress & Pain Laboratory, Department of Physiology, Polo Scientifico San Miniato, Via Aldo Moro 2, 53100 Siena, Italy
| | | |
Collapse
|
5
|
Traub RJ, Ji Y. Sex differences and hormonal modulation of deep tissue pain. Front Neuroendocrinol 2013; 34:350-66. [PMID: 23872333 PMCID: PMC3830473 DOI: 10.1016/j.yfrne.2013.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/11/2022]
Abstract
Women disproportionately suffer from many deep tissue pain conditions. Experimental studies show that women have lower pain thresholds, higher pain ratings and less tolerance to a range of painful stimuli. Most clinical and epidemiological reports suggest female gonadal hormones modulate pain for some, but not all, conditions. Similarly, animal studies support greater nociceptive sensitivity in females in many deep tissue pain models. Gonadal hormones modulate responses in primary afferents, dorsal horn neurons and supraspinal sites, but the direction of modulation is variable. This review will examine sex differences in deep tissue pain in humans and animals focusing on the role of gonadal hormones (mainly estradiol) as an underlying component of the modulation of pain sensitivity.
Collapse
Affiliation(s)
- Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, 650 W. Baltimore St., 8 South, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA; Center for Pain Studies, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| | | |
Collapse
|
6
|
Thrivikraman KV, Kinkead B, Murray KE, Owens MJ. In vivo dialysis setup with a loop injection valve facilitates retrodialysis studies. J Pharmacol Toxicol Methods 2013; 68:217-224. [PMID: 23831608 DOI: 10.1016/j.vascn.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Retrodialysis, as used in neuropharmacological research, is a technique for in vivo delivery of neuroactive agents with concurrent monitoring of their effects on cellular activity with a separation between certain degree of spatial and temporal resolution. Typically, this is accomplished either by the use of a liquid-switch requiring multiple pumps, or by exchange of flow tubing requiring stopping and restarting dialysis. In the present study, we describe the use of a medium pressure injection valve for retrodialysis that overcomes these problems. METHODS The valve was configured with a loop to deliver 20μL of solution, and artificial CSF flow from the pump to the probe was established via this device. The application of this setup was evaluated in urethane anesthetized adult male C57BL/6J mice prepared with a CMA 11 probe implanted in the ventral hippocampus. By switching between the load and inject positions, the loop was filled with escitalopram solution (0.3μM) and delivered at a rate of 1μL/min at the probe for retrodialysis. Escitalopram (2mg/kg BW) was administered subcutaneously for microdialysis studies. During these treatments, dialysate fractions were collected for the determination of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). RESULTS Irrespective of route of escitalopram administration, the pattern of dialysate 5-HT, and 5-HIAA response was comparable to that reported by other investigators. Accordingly, the in-line valve assembly did not compromise retrodialysis or microdialysis sampling. The manipulations to carry out retrodialysis using the valve setup are easy and simple. DISCUSSION An in-line injection valve is a promising adaptation for retrodialysis studies and can be incorporated as a standard part of in vivo dialysis instrumentation.
Collapse
Affiliation(s)
- K V Thrivikraman
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Becky Kinkead
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Karen E Murray
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael J Owens
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Torres-Chávez KE, Sanfins JM, Clemente-Napimoga JT, Pelegrini-Da-Silva A, Parada CA, Fischer L, Tambeli CH. Effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Eur J Pain 2012; 16:204-16. [PMID: 22323373 DOI: 10.1016/j.ejpain.2011.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently demonstrated that gonadal steroid hormones decrease formalin-induced temporomandibular joint nociception in rats. Given that the attenuation of inflammation is a potential mechanism underlying this antinociceptive effect, we evaluated the effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Plasma extravasation, a major sign of acute inflammation, and neutrophil migration, an important event related to tissue injury, were evaluated. Formalin induced significantly lower temporomandibular joint plasma extravasation and neutrophil migration in proestrus females than in males and in diestrus females. Since estradiol serum level is high in proestrus females and low in diestrus females and in males, these findings suggest that the high physiological level of estradiol decreases temporomandibular joint inflammation. Estradiol but not progesterone administration in ovariectomized females significantly decreased formalin-induced plasma extravasation and neutrophil migration, an effect that was blocked by the estrogen receptor antagonist ICI 182780. Plasma extravasation and neutrophil migration were not affected by orchiectomy, but testosterone or estradiol administration in orchidectomized males significantly decreased them. The androgen receptor antagonist flutamide blocked the anti-inflammatory effect of testosterone while ICI 182780 blocked that of estradiol in males. Previous intravenous administration of a nonspecific selectin inhibitor significantly decreased formalin-induced temporomandibular joint nociception and neutrophil migration in males, revealing a potent and positive correlation between temporomandibular joint nociception and inflammation. Taken together, these findings demonstrate a pronounced anti-inflammatory effect of estradiol and testosterone in the temporomandibular joint region and suggest that this effect may mediate, at least in part, the antinociceptive effect of these hormones.
Collapse
Affiliation(s)
- K E Torres-Chávez
- Department of Physiology, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Puri J, Bellinger LL, Kramer PR. Estrogen in cycling rats alters gene expression in the temporomandibular joint, trigeminal ganglia and trigeminal subnucleus caudalis/upper cervical cord junction. J Cell Physiol 2011; 226:3169-80. [PMID: 21321935 DOI: 10.1002/jcp.22671] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Females report temporomandibular joint (TMJ) pain more than men and studies suggest estrogen modulates this pain response. Our goal in this study was to determine genes that are modulated by physiological levels of 17β-estradiol that could have a role in TMJ pain. To complete this goal, saline or complete Freund's adjuvant was injected in the TMJ when plasma 17β-estradiol was low or when it was at a high proestrus level. TMJ, trigeminal ganglion, and trigeminal subnucleus caudalis/upper cervical cord junction (Vc/C(1-2) ) tissues were isolated from the treated rats and expression of 184 genes was quantitated in each tissue using real-time PCR. Significant changes in the amount of specific transcripts were observed in the TMJ tissues, trigeminal ganglia, and Vc/C(1-2) region when comparing rats with high and low estrogen. GABA A receptor subunit α6 (Gabra6) and the glycine receptor α2 (Glra2) were two genes of interest because of their direct function in neuronal activity and a >29-fold increase in the trigeminal ganglia was observed in proestrus rats with TMJ inflammation. Immunohistochemical studies showed that Gabrα6 and Glrα2 neuronal and not glial expression increased when comparing rats with high and low estrogen. Estrogen receptors α and β are present in neurons of the trigeminal ganglia, whereby 17β-estradiol can alter expression of Gabrα6 and Glrα2. Also, estrogen receptor α (ERα) but not ERβ was observed in satellite glial cells of the trigeminal ganglia. These results demonstrate that genes associated with neurogenic inflammation or neuronal excitability were altered by changes in the concentration of 17β-estradiol.
Collapse
Affiliation(s)
- Jyoti Puri
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246, USA
| | | | | |
Collapse
|
9
|
Quintero GC, Herrera J, Bethancourt J. Cortical NR2B NMDA subunit antagonism reduces inflammatory pain in male and female rats. J Pain Res 2011; 4:301-8. [PMID: 22003303 PMCID: PMC3191929 DOI: 10.2147/jpr.s24703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Studies have shown that N-methyl-D-aspartate (NMDA) receptors play a critical role in pain processing at different levels of the central nervous system. Methods In this study, we used adult Wistar rats to examine gender differences in the effects of NR2B NMDA antagonism at the level of the anterior cingulate cortex in phasic pain, and in the first and second phases of a formalin test. Rats underwent stereotactic surgery for cannula implantation in the anterior cingulate cortex. After recovery, paw withdrawal latency to a noxious thermal stimulus was assessed. Rats were also subjected to a formalin pain test whereby 60 μL of 5% formalin was injected into the right hind paw. Results Female and male rats that received Ro 25-6981, an NR2B antagonist, before formalin injection showed significantly reduced pain responses to the formalin test compared with saline-injected control rats (P < 0.05). No gender differences in phasic pain responses were found in rats treated with Ro 25-6981. Conclusion These results suggest that cortical antagonism of the NR2B subunit reduces inflammatory pain levels in both genders of rat.
Collapse
Affiliation(s)
- Gabriel C Quintero
- Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Center for Neurosciences, Panama
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Kenneth M Hargreaves
- Departments of Endodontics, Pharmacology, Physiology and Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
12
|
Duenes SL, Thompson R, Chang Z, Okamoto K, Bereiter DA. Psychophysical stress increases the expression of phospho-CREB, Fos protein and neurokinin-1 receptors in superficial laminae of trigeminal subnucleus caudalis in female rats. Neurosci Lett 2010; 486:207-10. [PMID: 20884322 DOI: 10.1016/j.neulet.2010.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 01/20/2023]
Abstract
Psychological stress and estrogen status are risk factors to develop painful temporomandibular joint disorders (TMJD); however, the neural basis for this relationship is not known. This study tested the hypothesis that repeated forced swim stress and estradiol treatment alter the phosphorylation of cAMP responsive element-binding protein (pCREB) in trigeminal subnucleus caudalis (Vc), the initial site of sensory input from the TMJ. Ovariectomized female rats were given low or high dose estradiol and subjected to repeated forced swim stress for 3 days and on day 4 an intra-TMJ injection of mustard oil or vehicle was given. Forced swim alone increased the number of pCREB-positive neurons, independent of estradiol treatment or TMJ stimulation, in superficial and deep laminae of Vc. Forced swim also increased the number of Fos-positive neurons in superficial laminae and neurokinin-1 receptor mRNA in whole dorsal Vc, independent of estradiol treatment. These results indicated that persistent psychophysical stress alone was sufficient to increase the expression of pCREB and downstream regulated genes associated with enhanced excitability in the caudal medullary dorsal horn, a brainstem region thought to be critical for TMJD pain.
Collapse
Affiliation(s)
- Sara L Duenes
- Dept. Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, 18-214 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, United States
| | | | | | | | | |
Collapse
|
13
|
Ovarian hormones and pain response: A review of clinical and basic science studies. ACTA ACUST UNITED AC 2009; 6 Suppl 2:168-92. [DOI: 10.1016/j.genm.2009.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 12/18/2022]
|
14
|
|
15
|
Okamoto K, Bereiter DF, Thompson R, Tashiro A, Bereiter DA. Estradiol replacement modifies c-fos expression at the spinomedullary junction evoked by temporomandibular joint stimulation in ovariectomized female rats. Neuroscience 2008; 156:729-36. [PMID: 18765271 DOI: 10.1016/j.neuroscience.2008.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/01/2008] [Accepted: 08/02/2008] [Indexed: 11/19/2022]
Abstract
The influence of estradiol (E2) treatment on temporomandibular joint (TMJ) nociceptive processing in the caudal trigeminal sensory brain stem complex was assessed in ovariectomized female rats by quantitative Fos-immunoreactivity (Fos-LI). After 2 days of daily injections of high (HE2) or low (LE2) dose E2 rats were anesthetized and the small fiber excitant, mustard oil (MO, 0-20%), was injected into the TMJ and after 2 h brains were processed for Fos-LI. TMJ-evoked Fos-LI in laminae I-II at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C1-2) junction and the dorsal paratrigeminal region (dPa5) was significantly greater in HE2 than LE2 rats, while Fos-LI produced at the ventral trigeminal interpolaris/caudalis transition region (Vi/Vc(vl)) was similar. E2 treatment also modified the influence of N-methyl-D-aspartate (NMDA) and AMPA receptor antagonists on TMJ-evoked Fos-LI. The NMDA antagonist, MK-801, dose-dependently reduced the Fos-LI response at the Vc/C1-2 junction in HE2 rats, while only high dose MK-801 was effective in LE2 rats. MK801 reduced equally the Fos-LI response at the Vi/Vc transition in both groups, while only minor effects were seen at the dPa5 region. The AMPA receptor antagonist, NBQX, reduced Fos-LI at the Vc/C(1-2) and Vi/Vc(vl) regions in HE2 rats, while only high dose NBQX was effective in LE2 rats. NBQX did not reduce Fos-LI at the dPa5 region in either group. These results suggest that estrogen status plays a significant role in TMJ nociceptive processing at the Vc/C1-2 junction mediated, in part, through ionotropic glutamate receptor-dependent mechanisms.
Collapse
Affiliation(s)
- K Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, 18-214 Moos Tower, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
16
|
Xiao Y, Richter JA, Hurley JH. Release of glutamate and CGRP from trigeminal ganglion neurons: Role of calcium channels and 5-HT1 receptor signaling. Mol Pain 2008; 4:12. [PMID: 18416824 PMCID: PMC2359740 DOI: 10.1186/1744-8069-4-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aberrant release of the neurotransmitters, glutamate and calcitonin-gene related peptide (CGRP), from trigeminal neurons has been implicated in migraine. The voltage-gated P/Q-type calcium channel has a critical role in controlling neurotransmitter release and has been linked to Familial Hemiplegic Migraine. Therefore, we examined the importance of voltage-dependent calcium channels in controlling release of glutamate and CGRP from trigeminal ganglion neurons isolated from male and female rats and grown in culture. Serotonergic pathways are likely involved in migraine, as triptans, a class of 5-HT1 receptor agonists, are effective in the treatment of migraine and their effectiveness may be due to inhibiting neurotransmitter release from trigeminal neurons. We also studied the effect of serotonin receptor activation on release of glutamate and CGRP from trigeminal neurons grown in culture. RESULTS P/Q-, N- and L-type channels each mediate a significant fraction of potassium-stimulated release of glutamate and CGRP. We determined that 5-HT significantly inhibits potassium-stimulated release of both glutamate and CGRP. Serotonergic inhibition of both CGRP and glutamate release can be blocked by pertussis toxin and NAS-181, a 5-HT1B/1D antagonist. Stimulated release of CGRP is unaffected by Y-25130, a 5-HT3 antagonist and SB 200646, a 5-HT2B/2C antagonist. CONCLUSION These data suggest that release of both glutamate and CGRP from trigeminal neurons is controlled by calcium channels and modulated by 5-HT signaling in a pertussis-toxin dependent manner and probably via 5-HT1 receptor signaling. This is the first characterization of glutamate release from trigeminal neurons grown in culture.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, Indiana, 46202, USA.
| | | | | |
Collapse
|
17
|
Craft RM. Modulation of pain by estrogens. Pain 2007; 132 Suppl 1:S3-S12. [PMID: 17951003 DOI: 10.1016/j.pain.2007.09.028] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 11/28/2022]
Abstract
It has become increasingly apparent that women suffer a disproportionate amount of pain during their lifetime compared to men. Over the past 15 years, a growing number of studies have suggested a variety of causes for this sex difference, from cellular to psychosocial levels of analysis. From a biological perspective, sexual differentiation of pain appears to occur similarly to sexual differentiation of other phenomena: it results in large part from organizational and activational effects of gonadal steroid hormones. The focus of this review is the activational effects of a single group of ovarian hormones, the estrogens, on pain in humans and animals. The effects of estrogens (estradiol being the most commonly examined) on experimentally induced acute pain vs. clinical pain are summarized. For clinical pain, the review is limited to a few syndromes for which there is considerable evidence for estrogenic involvement: migraine, temporomandibular disorder (TMD) and arthritis. Because estrogens can modulate the function of the nervous, immune, skeletal, and cardiovascular systems, estrogenic modulation of pain is an exceedingly complex, multi-faceted phenomenon, with estrogens producing both pro- and antinociceptive effects that depend on the extent to which each of these systems of the body is involved in a particular type of pain. Forging a more complete understanding of the myriad ways that estrogens can ameliorate vs. facilitate pain will enable us to better prevent and treat pain in both women and men.
Collapse
Affiliation(s)
- Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA
| |
Collapse
|
18
|
Scotland PE, Coderre TJ. Enhanced 3,5-dihydroxyphenylglycine-induced sustained nociceptive behaviors in rats with neuropathy or chronic inflammation. Behav Brain Res 2007; 184:150-6. [PMID: 17681386 DOI: 10.1016/j.bbr.2007.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/22/2007] [Accepted: 07/04/2007] [Indexed: 11/18/2022]
Abstract
Sustained nociceptive behaviors (SNBs) are an important but under-studied component of chronic pain conditions. The group I metabotropic glutamate receptor (mGluR) agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) produces SNBs when injected intrathecally, and group I mGluR antagonists are effective at reducing symptoms of neuropathic and inflammatory pain. The present experiments examined whether rats with sciatic nerve injury or persistent inflammation exhibit greater SNBs following intrathecal DHPG compared with control animals. SNBs were observed following intrathecal injection of DHPG (25 nmol) between the L4 and L5 vertebrae. We used a behavioral observation scoring system that allowed for assessment of specific behaviors in the hind paws. When DHPG was injected intrathecally in rats with chronic constriction injury (CCI) of the sciatic nerve, they showed increased paw stamping behavior compared to DHPG-injected sham controls. Rats treated with complete Freund's adjuvant (CFA)-induced inflammation failed to demonstrate a significant increase in paw stamping behavior. However, both CCI and CFA rats showed increased paw licking and biting of the neuropathic/inflamed hind paw after intrathecal DHPG injection. These results provide evidence for behaviorally relevant contributions of group I mGluRs to SNBs in models of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Phoebe E Scotland
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Hagiwara H, Funabashi T, Mitsushima D, Kimura F. Effects of neonatal testosterone treatment on sex differences in formalin-induced nociceptive behavior in rats. Neurosci Lett 2006; 412:264-7. [PMID: 17145136 DOI: 10.1016/j.neulet.2006.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
There are sex differences in nociceptive behavior induced by formalin in rats. To determine whether these sex differences are the result of the sexual differentiation of the brain, that is masculinization and defeminization [A.P. Arnold, R.A. Gorski, Gonadal steroid induction of structural sex differences in the central nervous system, Annu. Rev. Neurosci. 7 (1984) 413-442; M.M. McCarthy, A.T.M. Konkle, When is a sex difference not a sex difference? Front Neuroendocrinol. 26 (2005) 85-102], some female rats were injected with testosterone propionate (TP, 100 microg/25 microl/rat) on the day of birth and on the following day. As controls, other female rats and all male rats were injected with the same volume of sesame oil. They were castrated at the age of 8 weeks, and implanted with a silicon tube containing 20% of 17beta-estradiol or cholesterol. Two weeks after the implantation, rats were injected with 50 microl of 2% formalin in the right hind paw and their behavioral changes were observed for 1h. In cholesterol-implanted rats, all rats exhibited three typical phases of pain response and there were no significant differences in the scores of nociceptive behavior. In 17beta-estradiol implanted rats, female and TP-treated female rats had a significantly higher score of nociceptive behavior than male rats. These results indicate that estrogen produces sex differences in nociceptive behavior induced by formalin, and suggest that these differences are not due to the sexual differentiation of the brain, since the dose and the timing of the TP treatment effectively defeminize and masculinize female rats. Alternatively, sexual differentiation of the brain response to formalin-induced nociceptive behavior may be different from ordinary sexual differentiation.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | | | | | | |
Collapse
|